

CONSTRUCTION MONITORING REPORT

Sydney Metro City & Southwest

Package 5 & 6

Customer: Sydney Metro

Document Preparation and Control	Document Review
Geraldine Figueira	James Allsop – Environment Manager
Document Approval	Signature

Project Documents Code					
Downer		Sydney Metro			
TBC Rev. C		TBC			

Project Document Code	Latest Version Number	Latest Version Date
Package 5 SMCSWSW5-DEW-WEC-EM-REP-001258	Rev. C	18/03/2022
Package 6 SMCSWSW6-DEW-WEC-EM-REP-001153		

Document Version History							
Version No.	Date	Document Status	Brief Description of Change(s) from Previous Version				
Rev A	07/02/2022	For review	Issued for comment				
Rev B	11/03/2022	For approval	Document reviewed in response to ER and Metro comments				
Rev C	18/03/2022	For approval	Document reviewed in response to additional ER comments				

Table of Contents

Compliance Matrix
Introduction
Surface Water Monitoring
Noise and vibration
Appendix 1 – Surface Water Monitoring Report -Wiley Park Station - 4NE30187_R001_SWM_WileyPark_RevA27
Appendix 2 – Surface Water Monitoring Report - 4NE30187_R002_SWM_WileyPark_RevA28
Appendix 3 – Surface Water Monitoring Report – Wiley Park Station NE30161_R003_SWM_Wile yPark_Rev0_R1
Appendix 4 – TL927-1-02F02 WE42 NOISE AND VIBRATION MONITORING REPORT (R1)30
Appendix 5 – TL927-1-07F01 WE48 NOISE AND VIBRATION MONITORING REPORT (R1)31
Appendix 6 - TL927-1-08F01 WE49 NOISE AND VIBRATION MONITORING REPORT (R2)32
Appendix 7 – TL927-1-09F01 WE52 WK1 NOISE AND VIBRATION MONITORING REPORT (R3)33
Appendix 8 - TL927-1-10F01 WK52-WE2 NOISE AND VIBRATION MONITORING REPORT (R1)34
Appendix 9 - TL927-1-15F01 WK16 NOISE AND VIBRATION MONITORING REPORT (R6)35
Appendix 10 - TL927-1-16F01 WK17 NOISE AND VIBRATION MONITORING REPORT (R3)36
Appendix 11 – TL927-1-17F01 WK19 NOISE AND VIBRATION MONITORING REPORT (R2)37
Appendix 12 - TL927-1-03F01 HURLSTONE PARK STN VIB MON REPORT (R1)
Appendix 13 - TL927-1-04F01 WILEY PARK STN VIB MON REPORT (R1)
Appendix 14 – TL927-1-05F01 PUNCHBOWL STN VIB MON REPORT (R1)40
Appendix 15 - TL927-1-06F01 BELMORE METRO BUILDING SITE VIB MON REPORT (R1)41
Appendix 16 - TL927-1-12F01 HURLSTONE PARK STN VIB MON REPORT (R1)42
Appendix 17 – TL927-1-13F01 DULWICH HILL STN VIB MON REPORT (R1)43

Compliance Matrix

Condition	Requirement	Compliance
MCoA C14	The results of the Construction Monitoring Programs must be submitted to the Planning Secretary, and relevant regulatory agencies, for information in the form of a Construction Monitoring Report at the frequency identified in the relevant Construction Monitoring Program.	This Construction Monitoring Report

Introduction

This Construction Monitoring Report has been prepared in accordance with Condition C14 of Critical State Significant Infrastructure Planning Approval 8256. It contains the results of Noise and Vibration Monitoring Program and the Water Quality Monitoring Programs, conducted as part of the station upgrades and Metro Services Building (MSB) construction at:

- Dulwich Hill (Package 5)
- Hurlstone Park (Package 6)
- Campsie (Package 5)
- Belmore (Package 6)
- Wiley Park (Package 6)
- Punchbowl (Package 5)

This report details the results of the noise, vibration and surface water conducted during the first six (6) months of construction of Package 5 and Package 6 of the Sydney Metro Southwest Project. Construction of these packages commenced on 21 April 2021 and this report details the results of the monitoring undertaken from 21 April 2021 to 7 November 2021 (being approximately six months). The extension to November captured a run of possessions which included monitoring results and has been included for completeness.

SUBMISSION REQUIREMENTS

In accordance with condition the Ministers Conditions of Approval (MCoA) C14, Construction Monitoring Report will be submitted to the following agencies for information:

- Inner West Council
- City of Canterbury Bankstown
- DPIE

The Independent Environmental Representative for DPIE will review the report prior to submission.

Surface Water Monitoring

The project sites are located within the rail corridor on the T3 Bankstown line between Dulwich Hill and Punchbowl, NSW. The project sites form part of the overall Cooks River catchment with water from the area discharging into the Cooks River via local stormwater drainage or overland flow. The catchment area is highly urbanised with mixed residential, commercial and industrial properties.

The closest Project worksite to an existing watercourse is the Wiley Park Station services building, which is located approximately 100m from an unnamed concrete-lined channel, which forms the upper reaches

of Coxs Creek and is identified as a first-order stream within the Cooks River Catchment. Water quality is measured on an ongoing basis for the wider Cooks River catchment by the NSW Office of Environment and Heritage as part of the Beachwatch programme. The monitoring point is at Kyeemagh Baths at the mouth of the Cooks River in Port Botany. Water quality within the Cooks River catchment is influenced by stormwater, fertilisers, industrial discharges and sewage contamination. Objectives for water quality management during construction are:

- Minimise pollution of surface water through appropriate erosion and sediment control
- Maintain existing water quality of surrounding surface watercourses

The water quality monitoring program, in accordance with Table 13 of the SWMP, is to be undertaken quarterly in response to wet weather events (four wet weather events - >20mm of rain per 24 hours - per year), and also including dry weather sampling. Additional surface water monitoring is undertaken during construction to monitor the effectiveness of measures for managing soil and water impacts implemented. It must be conducted for the duration of construction or unless otherwise agreed to by Downer, Sydney Metro and the Independent Environmental Representative for DPIE. Details of the Water Quality Monitoring Program and the mitigation measures to reduce the impact of the construction activities are contained within the Soil and Water Management Plans listed below:

- Southwest Metro Dulwich Hill, Campsie and Punchbowl Station Upgrades Soil and Water Management Plan. This document can be accessed via the Downer Sydney Metro Environment Documents website. https://www.downergroup.com/Content/cms/Documents/Sydney_Metro_package_5_6/Dulwich_Hill_C ampsie_and_Punchbowl_Station_Upgrades_SWMP_Rev06.pdf
- Southwest Metro Hurlstone Park, Belmore and Wiley Park Station Upgrades Soil and Water Management Plan. This document can be accessed on the Downer Sydney Metro Environment Documents website: https://www.downergroup.com/Content/cms/Documents/Sydney_Metro_package_5_6/Hurlstone_Park_Belmore_and_Wiley_Park_Station_Upgrades_SWMP_Rev06.pdf

RESULTS - SURFACE WATER MONITORING

In accordance with Table 21.4 of the EIS, Vol. 1B, the water quality triggers values relevant for the project are the following:

Indicator	Criteria (lowland rivers)
Total phosphorus	50 ug/L
Total nitrogen	500 ug/L
Chlorophyll-a	5 ug/L
Turbidity	6-50 NTU
Salinity (electrical conductivity) ¹	125-2,200 uS/cm
Dissolved oxygen (per cent saturation)	85-110 %
pH	6.5-8.5

A summary of the Surface Water Monitoring Results is contained within the table below. The complete Surface Water Monitoring Reports are contained within Appendixes 1-3. Bold red text indicates initial criteria exceedances.

¹

Parameter	_10 Mar	ch 2021	20 Mar	ch 2021	5 May	/ 2021	1 July 2	2021
i ulullotoi	WP1	WP2	WP1	WP2	WP1	WP2	WP1	WP2
	(upstream)	(downstrea m)	(upstream)	(downstrea m)	(upstream)	(downstrea m)	(upstream)	(downs tream)
Monitoring Event	Dry weather pre- construction baseline measurement			r event (mid- uction)		r event (mid- uction)	Quarterly s mid-construct	ampling tion event
Water Depth (m)	0.03	0.03	0.3	0.3	0.05	0.3	0.05	0.1
рН	7.9	7.61	8.10	7.58	7.8	7.73	9.01	8.83
Electrical Conductivity (µS/cm)	54	363	246.2	133.4	2500	92.9	910	530.3
Dissolved Oxygen (mg/L)	5.64	4.09	4.79	3.92	6.35	5.95	11.21	7.92
Dissolved Oxygen (%)	63	45.9	52.87	43.18	65.3	62.8	108.8	77.9
SHE1 Redox Potential (mV)	140.7	181.0	122.3	135.9	164.6	109.2	53.7	122.4
Total Suspended Solids (TSS) (mg/L)	<1	<1	9.2	35	4	47	4	4.4
Turbidity (NTU)	2.9	<1	9.3	13	4.3	21	4.1	6.3
Total phosphorus (mg/L)	0.34	0.12	<0.5	<0.5	0.21	0.15	0.18	0.13
Total nitrogen (mg/L)	2.5	1.68	2.3	2.3	5	1	1.3	3.1
Chlorophyll- a (mg/L)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001	<0.001
Condition	Clear Low turbidity Sheen observed	Clear Low turbidity Sheen observed	Brown Medium turbidity	Brown Medium turbidity	Clear Low to medium turbidity Sheen observed	Clear Low to medium turbidity	Clear Minor sheen observed	Clear Low turbidity
Oil and Grease (mg/L)	<10	29	<10	<10	<10	<10	<10	<10

Figure 1: WP1 and WP2 location map. Please note that only WP1-DP1 and WP2-DP1 are Downer's discharge points.

Baseline Dry Weather Event: 10 March 2021

The results of the monitoring event indicates that:

- Electrical Conductivity (µS/cm) was within the adopted assessment criteria at all sample locations;
- Dissolved Oxygen (%Sat) was reported outside of the target range (85%-110%) with results ranging from 63% saturation upstream at WP1 and 45.9% saturation downstream at WP2;
- Concentrations of tested inorganics (phosphorous and nitrogen) were reported below the adopted assessment criteria, with the exception of nitrogen and phosphorous which exceeded the ANZECC criteria at both sample locations. Upstream concentrations at WP1 were higher than concentrations downstream at WP2;
- Concentrations of Oil and Grease were reported below laboratory detection limit at all sample locations, with the exception of the downstream sample WP2;
- Concentrations of Chlorophyll-a were reported below the laboratory detection limit and adopted assessment criteria at all sample locations;
- Total Suspended Solids (TSS) was not detected above the laboratory limit of reporting in both sample locations; and
- Turbidity ranged from 2.9 NTU at WP1 and <1 NTU at WP2.

These results reflect the status of the waterline during dry weather prior to construction commencement, when works had not yet started. Therefore, documented values are not related to any Downer activity.

Mid Construction Wet Weather Event: 20 March 2021

Rainfall recorded at this wet-weather event was of 56.8 mm. The results of the monitoring event indicated that:

- Electrical Conductivity (µS/cm) was within the adopted assessment criteria at all sample locations;
- Dissolved Oxygen (%Sat) was reported outside of the target range (85%-110%) with results ranging from 52.9% saturation upstream at WP1 and 43.2% saturation downstream at WP2. Results are consistent with the baseline measurement;
- Concentrations of analysed inorganics were reported below the adopted assessment criteria, with the exception of nitrogen within both the WP1 and WP2 samples, and phosphorous within a triplicate quality assurance sample from WP2 which exceed the ANZECC criteria. Results are consistent with the baseline measurement;
- Concentrations of Oil and Grease were reported below laboratory detection limit at all sample locations;
- Concentrations of Chlorophyll-a were reported below the laboratory detection limit and adopted assessment criteria at all sample locations;
- Total Suspended Solids (TSS) concentrations were detected within both WP1 and WP2, with concentrations of 9.2 mg/L at WP1 and 35 mg/L at WP2; and
- Turbidity ranged from 9.3 NTU at WP1 to 13.2 NTU at WP2.

Mid Construction Wet-weather Event: 5 May 2021

Rainfall recorded at this wet-weather event was of 22.6 mm. The results of the monitoring event indicate that:

- Electrical Conductivity (µS/cm) was reported outside of the target range (125-2,200 µS/cm) with results ranging from 2,500 µS/cm upstream at WP1 and 92.9 µS/cm downstream at WP2. Readings were re-checked in the field using the WQM from the water collected as a bulk sample and consistent results were observed when re-checking both the WP1 and WP2 sampled water. No point source was observed at WP1;
- Dissolved Oxygen (%Sat) was reported outside of the target range (85%-110%) with results ranging from 65.3% saturation upstream at WP1 and 62.8% saturation downstream at WP2;
- Concentrations of analysed inorganics were reported above the adopted assessment criteria with the total nitrogen concentration within both the WP1 and WP2 samples, and the total phosphorous concentration within both the WP1 and WP2 samples. Results are generally consistent with baseline measurement;
- Concentrations of Oil and Grease were reported below laboratory detection limit at all sample locations;
- Concentrations of Chlorophyll-a were reported below the laboratory detection limit and adopted assessment criteria at all sample locations;
- Total Suspended Solids (TSS) concentrations were detected within both WP1 and WP2, with concentrations of 4 mg/L at WP1 and 21 mg/L at WP2; and
- Turbidity ranged from 4.3 NTU at WP1 to 21 NTU at WP2.

During the wet-weather sampling event the two discharge points (including the one connecting the construction site and the unnamed channel) within the rail corridor immediately upstream / south from WP2 were observed to be not flowing and not contributing to the channel. Therefore, exceedances are not related to Downer's construction activities.

Quarterly Mid-Construction Event – 1 July 2021

The results of the monitoring event indicate that:

- Field measurements physio-chemical parameters:
 - pH was reported outside of the target range (6.5-8.5) with results ranging from 9.01 upstream at WP1 and 8.83 downstream at WP2. The PH is higher upstream and gets closer to target closer to downstream, so pH values are not a result of Downer's works;
 - Electrical Conductivity (μS/cm) was reported within of the target range (125-2,200 μS/cm) at both sampling locations with results ranging from 910 μS/cm upstream at WP1 and 530.3 μS/cm downstream at WP2; and
 - Dissolved Oxygen (%Sat) was reported outside of the target range (85%-110%) at downstream sampling point WP2. The results are ranging from 108.8% saturation upstream at WP1 and 77.9% saturation downstream at WP2. Dissolved oxygen saturation was below the adopted threshold at WP2 but within range at WP1. This is not considered to be a significant issue, due to the pre-construction monitoring results showing saturations of 63% and 45.9% for WP1 and WP2 respectively indicating mid-construction results are closer to the adopted thresholds than the pre-construction event.
- Laboratory analytical results:
 - Concentrations of Chlorophyll-a were reported below the laboratory detection limit and adopted assessment criteria at all sample locations;
 - Concentrations of Oil and Grease were reported below laboratory detection limit at all sample locations;
 - Concentrations of analysed inorganics were reported above the adopted assessment criteria with the total nitrogen concentration within both the WP1 and WP2 samples, and the total phosphorous concentration within both the WP1 and WP2 samples. Concentration of inorganics is lower downstream, so results cannot be attributed to Downer's works.
 - Total Suspended Solids (TSS) concentrations were detected within both WP1 and WP2, with concentrations of 4 mg/L at WP1 and 4.4 mg/L at WP2; and
 - Turbidity ranged from 4.1 NTU at WP1 to 6.3 NTU at WP2.

Nitrogen and turbidity results within the samples were observed to be higher in the downstream WP2 sampling point. In addition, dissolved oxygen saturation was below the adopted range within WP2. Based on comparison to the criteria, and pre-construction monitoring event, these results are not considered to reflect an adverse impact to water quality due to Downer's construction activities.

DISCUSSION - SURFACE WATER MONITORING

The results of the surface water monitoring showed that monitored parameters were generally within the adopted ANZECC screening criteria; however, some results showed parameters outside of the screening criteria. In these instances, the recommended actions were:

- Undertake an inspection of the adjacent works and controls within the current worksite area and propose actions where required in accordance with the SMWP; and
- Assess the area downstream of sampling point WP1 to confirm whether there are additional discharge points downstream of WP1 which may contribute the stormwater in-flow to the unnamed channel during the rainfall events.

In response to these recommendations inspections of the site were conducted to ensure that all sediments and erosion controls were in place, well maintained and functioning correctly. The stormwater system was also inspected, and it was noted that there were stormwater intake points and most likely other stormwater connections between WP1 and WP2, this being the case there are other sources of potential pollution between the two sampling locations.

It should also be noted that Downer conducts regular inspection of the environmental controls, including sediment and erosion controls at Wiley Park. These inspections are conducted by the Project Team and Environmental Team. This proactive approach ensures that environmental controls are functioning properly rather than reactively inspecting the worksite following monitoring and reporting.

Noise and vibration

The area surrounding the project sites contains a variety of land-use types and receivers, including residential, commercial, industrial and sensitive non-residential receivers. These land-uses are mixed within the identified noise catchments, although in general there are clusters of industrial and commercial areas surrounding stations, primarily residential areas between stations. The area surrounding the project sites are affected by rail noise and vibration. The majority of works will occur within the rail corridor, on the station platforms and buildings and within the Metro Services Building Areas, works will mainly occur adjacent to residential properties.

Noise and vibration monitoring must be carried out for the duration of Construction. The predominant reason for monitoring noise and vibration associated with the construction works is to ensure compliance with modelled results for noisy works and to ensure compliance with modelled results and the project's Conditions of Approval(s) and NVMP. Modelling undertaken prior to noisy construction activities assesses if Respite Offers (RO) and Alternate Accommodation (AA) are required to be provided to sensitive receivers that are impacted by noise from works conducted outside of standard working hours. Other reasons to conduct noise and vibration monitoring include:

- In response to noise or vibration complaints;
- If requested by Sydney Metro, the ER, DPIE or EPA;
- To augment baseline noise levels, if the noise environment at a receiver is considered to be different from the noise logger locations used for the EIS;
- To validate predicted noise levels associated with each works scenario assessed in the CNVIS, at the commencement of works and new construction activities or location;
- To confirm baseline vibration levels currently experienced at heritage-listed structures and at any vibration-sensitive equipment;
- Where vibration levels are predicted to exceed the vibration screening level, attended vibration monitoring would be carried out to ensure vibration levels remain below appropriate limits for that structure, in accordance with Revised Environmental Mitigation Measure (REMM) NVC12; and
- As part of a plant noise audit;

The methodology and rationale for conducting noise and vibration monitoring is contained within the relevant Noise and Vibration Monitoring Plans, being:

 Southwest Metro – Dulwich Hill, Campsie and Punchbowl Station Upgrades Noise and Vibration Management Plan. This document can be accessed via the Downer Sydney Metro Environment Documents website,
 https://www.downergroup.com/Content/cms/Documents/Sydney. Metro, package, 5, 6/Dulwich, H

https://www.downergroup.com/Content/cms/Documents/Sydney_Metro_package_5_6/Dulwich_Hill Campsie_and_Punchbowl_Station_Upgrades_NVMP_Rev02_210302_W__.pdf

 Southwest Metro – Hurlstone Park, Belmore and Wiley Park Station Upgrades Noise and Vibration Management Plan. This document can be accessed via the Downer Sydney Metro Environment Documents website,

https://www.downergroup.com/Content/cms/Documents/Sydney_Metro_package_5_6/Southwest_ Metro_-_Hurlstone_Park_Belmore_Wiley_Park_Station_Upgrades_-__Noise_and_Vibration_Management_Plan.pdf

RESULTS – NOISE MONITORING

The table below contains a summary of the noise monitoring results. The complete reports are provided in Appendixes 4 - 17

Assessment Point	Measured Plant	Predicted noise level dB(A)	Measured nois LAeq(15min)	e level LAmax	Above predicted noise level	Comments					
19 th – 20 th April 2021	TL927-1-02F02 WE42	TL927-1-02F02 WE42 NOISE AND VIBRATION MONITORING REPORT (R2) - APPENDIXES 4									
1 Ewart Lane, Dulwich Hill	Demo Saw	72	61	66	No	Temporary noise barriers were setup correctly during the measurement. The measured LAeq, 15min is lower than the predicted noise level.					
	Lighting tower	68	61	61	No	Lighting tower setup on 19.04.2021. The measured LAeq, 15min is lower than the predicted noise level.					
	Lighting tower	68	55	55	No	Lighting tower setup on 20.04.2021. Note that a different lighting tower was setup on the Tuesday night, which produced lower noise levels. The measured LAeq, 15min is lower than the predicted noise level.					
107 Duntroon Street, Hurlstone Park	Demo saw	67	52	57	No	Temporary noise barriers were setup correctly during the measurement. The measured LAeq, 15min is lower than the predicted noise level.					
	Hand tools	56	46	53	No	Temporary noise barriers were setup correctly during the measurement. The measured LAeq, 15min is lower than the predicted noise level.					
13-15 Anglo Rd, Campsie	Lighting tower	68	49	61	No	The lighting tower was not audible at this monitoring location. As a result, the noise contribution from the lighting tower can be assumed to be at least 10dB less than the measured LAeq, 15min.					
	Excavator with clamp attachment	68	61	78	No	The measured LAeq, 15min is lower than the predicted noise level during the demolition of shed works.					
1-3 Shadforth Street, Wiley Park	Hand tools	72	54	61	No	The measured LAeq, 15min is lower than the predicted noise level.					
	Hand tools	72	70	85	No	The measured LAeq, 15min is lower than the predicted noise levels. Note that this measurement included the activity of hammering which produced higher noise levels.					
14 Arthur Street, Punchbowl	Vacuum truck	46	52	64	No	The vacuum truck was not audible at this monitoring location. As a result, the noise contribution from the lighting tower can be assumed to be at least 10dB less than the measured LAeq, 15min.					
28 th May – 29 th May 2021	TL927-1-07F01 WE48	NOISE AND VI	BRATION MONITO	ORING REP	PORT (R1) - APPE	NDIXES 5					
1A Shadforth Street, Wiley Park	Concrete saw (south platform), vacuum truck, lighting tower	73	71	83	No	The measured LAeq, 15min is lower than the predicted noise level.					
	Concrete (north	73	67	72	No	The measured LAeq, 15min is					

	platform), vacuum truck, lighting tower					lower than the predicted noise level.
	Jackhammering	73	66	83	No	The measured LAeq, 15min is lower than the predicted noise level.
2 Shadforth Street, Wiley Park	Concrete saw	80	63	78	No	The measured LAeq, 15min is lower than the predicted noise level. During this measurement, the station platform building was in between the measured plant and the receiver. As a result, the measured noise level is significantly lower than the predicted noise level.
	Chainsaw, wood chipper	82	70	80	No	The measured LAeq, 15min is lower than the predicted noise level.
1 Cornelia Street, Wiley Park	Crane mounted truck	78	72	100	No	The measured LAeq, 15min is lower than the predicted noise level. The measured LAmax of 100 dB(A) was caused by dropping chocks.
2A Cornelia Street, Wiley Park	Crane mounted truck	69	60	74	No	The measured LAeq, 15min is lower than the predicted noise level.
1 Ewart Lane, Dulwich Hill	Excavator	77	65	80	No	The measured LAeq, 15min is lower than the predicted noise level.
	Excavator with bucket, lighting tower, truck and dogs	78	67	82	No	The measured LAeq, 15min is lower than the predicted noise level.
41 Uranga Parade, Punchbowl	5T Excavator with auger attachment	68	63	77	No	The measured LAeq, 15min is lower than the predicted noise level.
13-15 Anglo Road, Campsie	Excavator with bucket, generator	79	60	62	No	The measured LAeq, 15min is lower than the predicted noise level. During this measurement, only the generator was audible at the closest residential receiver. Furthermore, noise barriers were installed around the generator. As a result, the measured noise level is significantly lower than the predicted noise level.
103 Duntroon Street, Hurlstone Park	Excavator with hammer attachment	93	66	74	No	The measured LAeq, 15min is lower than the predicted noise level. The predicted noise level was calculated for the most affected facade. Note that there was no access to the most affected facade. The property building provided shielding from the measured plant. As a result, the measured noise level is significantly lower than the predicted noise level.
1 Acacia Street, Belmore	Vac truck	71	71	78	No	The measured LAeq, 15min is consistent with the predicted noise level.
2 Hopetoun Street, Hurlstone Park	Excavator with hammer, lighting tower, moxy trucks, boring and trenching activities	69	57	62	No	The measured LAeq, 15min is lower than the predicted noise level. Note that the boring and trenching activities were not audible at this monitoring location.
5th June 2021	TL927-1-08F01 WE49 N				ORT (R2) - APPEND	
7 Bedford Crescent,	Flatbed truck, excavator, generator	67	54	66	No	The measured LAeq, 15min is lower than the predicted noise level. The

Dulwich Hill						hoardings on the station platform provided partial shielding for this monitoring location.
3A Commons Street, Hurlstone Park	Generator, excavator, hi-rail loading vehicles	73	69	77	No	The measured LAeq, 15min is lower than the predicted noise level.
12 Railway Street, Hurlstone Park	Telescopic crane, flatbed truck and van	72	59	90	No	The measured LAeq, 15min is lower than the predicted noise level. Explain about the distance of the measured plant.
5-9 London Street, Campsie	Chainsaw	74	61	80	No	The measured LAeq, 15min is lower than the predicted noise level.
1A Shadforth Street, Wiley Park	Excavator with hammer attachment	80	66	87	No	The measured LAeq, 15min is lower than the predicted noise level.
41 Uranga Parade, Punchbowl	Hiab truck, excavator	68	53	79	No	The measured LAeq. 15min is lower than the predicted noise level. Occasional distant noise impacts from the excavator was audible at this monitoring location.
1 Acacia Street, Belmore	Vacuum truck, excavator with bucket and auger attachment	68	57	80	No	The measured LAeq, 15min is lower than the predicted noise level.
28 th June – 1 st July 2021	TL927-1-09F01 WE52 V	VK1 NOISE AN	ND VIBRATION MO	ONITORING	REPORT (R3) - AF	PPENDIXES 7
2 Shadforth Street, Wiley Park	Excavators with bucket attachment, handheld grinder, truck deliveries	81	64	84	No	The measured LAeq, 15min is lower than the predicted noise level.
30 Redman Parade, Belmore	3.5T excavator with rockhammer attachment, excavators with bucket attachment	65	63	76	No	The measured LAeq, 15min is lower than the predicted noise level.
103/105 Duntroon Street, Hurlstone Park	Excavators with bucket attachment, Moxy trucks	82	65	85	No	The measured LAeq, 15min is lower than the predicted noise level
	Excavator with rockhammer attachment, excavator with bucket attachment, generator	84	66	76	No	Note that there was no access to the most affected facade. The property building provided shielding between the rockhammering activity and the measurement location. As a result the measured LAeq, 15min noise level is significantly lower than the predicted noise level.
1 Ewart Lane, Dulwich Hill	Generator, truck deliveries, excavator with rockdrill attachment	74	73	86	No	The measured LAeq, 15min is lower than the predicted noise level.
71 Ewart Street, Dulwich Hill	Excavator with rockdrill attachment	84	64	75	No	The measured LAeq, 15min is lower than the predicted noise level. During this measurement, only the rockdrilling activity is audible from the works. There were no concurrent works in the work area directly across from the monitoring location. As a result, the measured noise level is significantly lower than the predicted noise level.
5 Bedford Crescent, Dulwich Hill	Excavator with rockdrill attachment and generator	74	69	78	No	The measured LAeq, 15min is lower than the predicted noise level.
199 Beamish Street, Campsie	Two 5T excavators with bucket and gripper attachment, truck deliveries	70	75	92	Not applicable	le These measurements were deemed invalid as the environmental conditions caused adverse effect on the measured

	(construction bin)					noise levels.
	Two 5T excavators with gripper attachment	70	75	91	Not applicable	
8 -10 Shadforth Street, Wiley Park	15T excavator with bucket attachment and Moxy truck	64	55	73	No	The measured LAeq, 15min is lower than the predicted noise level.
115 Duntroon Street, Hurlstone Park	Excavator with rockhammer attachment	67	63	83	No	The measured LAeq, 15min is lower than the predicted noise level.
5 Commons Street, Hurlstone Park	Excavator with bucket attachment, Moxy trucks, lighting tower, concrete agitator	68	54	75	No	The measured LAeq, 15min is lower than the predicted noise level
41 Urunga Parade, Punchbowl	Excavator with bucket attachment, stockpile management, Moxy truck	73	58	72	No	The measured LAeq, 15min is lower than the predicted noise level.
50 Floss Street, Hurlstone Park	Two excavators with rockhammer attachment, concrete saw	73	68	74	No	The measured LAeq, 15min is lower than the predicted noise level.
107 Duntroon Street, Hurlstone Park	Concrete saw, excavator with rockhammer attachment, generator, electric rotary cutter	79	66	87	No	The measured LAeq, 15min is lower than the predicted noise level.
5 Railway Street, Hurlstone Park	15T Excavator with bucket attachment, truck delivery, fuel truck, 8T roller	83	63	82	No	The measured LAeq, 15min is lower than the predicted noise level.
	35T Pilling rig with auger, concrete truck	83	65	72	No	The measured LAeq, 15min is lower than the predicted noise level.
7 Commons Street, Hurlstone Park	5T Excavator with bucket attachment, concrete truck, jackhammer	75	59	74	No	The measured LAeq, 15min is lower than the predicted noise level. Jackhammering was not the dominant noise source, as it was just audible at this monitoring location. As a result, the measured noise level is compared to the predicted noise level for a typical activity.
7 th July – 11 th July 2021	TL927-1-10F01 WK52-1	WE2 NOISE AN	ND VIBRATION MC	ONITORING	REPORT (R3) - AF	PPENDIXES 8
5 Railway Street, Hurlstone Park	35T piling rig, generator, delivery truck	82	56 (58)* *Bracketed value represents estimated noise level at the nearest residential façade, based on distance correction	80	No	Note that there was no access to the most affected facade. As a result, the measured LAeq, 15min noise level in the bracket was the estimated noise level at the nearest residential façade, based on distance correction.
5A Foord Ave, Hurstone Park	Concrete pumping, cleaning	82-84	60 (67)* *Bracketed value represents estimated noise level at the nearest residential façade, based on distance correction	73	No	Note that there was no access to the most affected facade. As a result, the measured LAeq, 15min noise level in the bracket was the estimated noise level at the nearest residential façade, based on distance correction. Plant in use different to predicted plant.
5 Foord Ave, Hurstone Park	Excavator 15T with bucket	82-84	56 (59)*	81	No	Measurement was performed at 7m from the worst effected façade The measured LAeq, 15min is

			represents estimated noise level at the nearest residential façade, based on distance			lower than the predicted noise level.
5 Railway Street, Hurlstone Park	35T pilling rig with auger, Excavator 15T (2)	82	*Bracketed value represents estimated noise level at the nearest residential façade, based on distance correction	89	No	Note that there was no access to the most affected facade. As a result, the measured LAeq, 15min noise level in bracket was the estimated noise level at the nearest residential façade, based on distance correction.
5 Foord Ave, Hurlstone Park	Crane Truck delivery	73-75	55	68	No	Measurement was performed at 7m from the worst effected façade The measured LAeq, 15min is lower than the predicted noise level.
5 Railway st. Hurlstone Park	35T pilling rig with auger, 15T excavator with bucket, Crane Truck delivery	82	60 (62)* *Bracketed value represents estimated noise level at the nearest residential façade, based on distance correction	77	No	Note that there was no access to the most affected façade. As a result, the measured LAeq, 15min noise level in bracket was the estimated noise level at the nearest residential façade, based on distance correction.
	35T pilling rig with auger, 15T excavator with bucket	82	63 (65)* *Bracketed value represents estimated noise level at the nearest residential façade, based on distance correction	78	No	Note that there was no access to the most affected facade. As a result, the measured LAeq, 15min noise level in bracket was the estimated noise level at the nearest residential façade, based on distance correction.
254 Wardell Rd, Dulwich Hill	Concrete pumping, Crane truck idling, 13T excavator with Moxy truck	58	50	61	No	Measurement performed on the Wardell Rd. facing Dullwich Hill station. The measured LAeq, 15min is lower than the predicted noise level.
5 Foord Ave, Hurlstone Park	Crane Truck delivery	73-75	48	45	No	Measurement was performed at 7m from the worst effected façade The measured LAeq, 15min is lower than the predicted noise level.
17 Burnett St, Hurlstone Park	Crane Truck delivery	64	51	70	No	The measured LAeq, 15min is lower than the predicted noise level.
5 Railway St. Hurlstone Park	35T pilling with auger, 15T excavator with bucket. Electric rotary cutter	82	61 (63)* *Bracketed value represents estimated noise level at the nearest residential façade, based on distance correction	79	No	Note that there was no access to the most affected facade. As a result, the measured LAeq, 15min noise level in bracket was the estimated noise level at the nearest residential façade, based on distance correction.
7 Bedford Cresent, Dulwich Hill	Concrete truck, excavators with bucket, hand tools	73	60	78	No	The measured LAeq, 15min is lower than the predicted noise level.
1 Ewart Lane,	Concrete truck,	72	69	86	No	The measured LAeq, 15min is

Dulwich Hill	delivery trucks					lower than the predicted noise
						level.
1 Acacia Street, Belmore	Lighting tower	62	57	77	No	The measured LAeq, 15min is lower than the predicted noise level.
30 Redman Parade, Belmore	Excavator with bucket, power tools	63	59	85	No	The measured LAeq, 15min is lower than the predicted noise level.
3 Wilfred Avenue, Campsie	Excavator with bucket, dump trucks	69	57	72	No	The measured LAeq, 15min is lower than the predicted noise level.
13 Angelo Road, Campsie	Excavator with bucket, wackerpacker	74	62	79	No	The measured LAeq, 15min is lower than the predicted noise level. Measurement location is on the corridor boundary fence. Sensitive receivers are on upper floors only.
279 The Boulevard, Punchbowl	Excavator with auger, hand tools, concrete pump	76	68	85	No	The measured LAeq, 15min is lower than the predicted noise level. Measurement location is affected by road traffic. Sensitive receivers are on upper floors only.
709 Punchbowl Road, Punchbowl	Pressure washer, hand tools	73	71	84	No	Dominated by road traffic. Sensitive receivers are on upper floors only
103 Duntroon Street, Hurlstone Park	Concrete truck and pump	82	72	90	No	The measured LAeq, 15min is lower than the predicted noise level.
5 Foord Ave, Hurlstone Park	Excavator with bucket, skip bin truck	84	61 (64)* *Bracketed value represents estimated noise level at the nearest residential façade, based on distance correction	79	No	The measured LAeq, 15min is lower than the predicted noise level.
12 Railway Street, Hurlstone Park	Concrete truck, excavator with bucket, street sweeper	71	70	88	No	The measured LAeq, 15min is lower than the predicted noise level.
107 Duntroon St, Hurlstone Park	Electric jackhammer, Generator	73	58	63	No	The measured LAeq, 15min is lower than the predicted noise level.
16 th October 2021	TL927-1-15F01 WE16	NOISE AND VIE	BRATION MONITC		ORT (R6) - APPENI	DIXES 9
2 Hopetoun Street, Hurlstone Park	Two 15T excavator with bucket attachment	73	64	89	No	The measured LAeq, 15min is lower than the predicted noise level. Note that the measured noise level is lower than the predicted noise level because only the two 15T excavator with bucket attachment were operating during this measurement.
103-105 Duntroon Street, Hurlstone Park	Two 5T excavator with bucket attachment	84	65	78	No	The measured LAeq, 15min is lower than the predicted noise level. Note that the measured noise level is significantly lower than the predicted noise level because only the two 5T excavator with bucket attachment were operating during this measurement. Furthermore, access to the most affected facade for this receiver was not provided. As a result, the measurement was

						taken on the facade facing Duntroon Street. In the prediction model, the distance between the closest work area and the most affected facade is approximately 4 metres. However, it was noted on site that the two 5T excavators with bucket attachment were approximately 12 to 25 metres away from the measurement location.
24 Floss Street, Hurlstone Park	Electrical chainsaw and BC1800 shredder	Not Applicable	85	98	Not Applicable	This activity was undertaken during standard construction hours, from 08:00 to 18:00 - for confirmation of this refer to the timing of the noise verification monitoring contained within the report, being 10:28 to 10:43. This being the case the OoHWA is not applicable to this activity. However, the activity was scheduled between 06:00 and 18:00 in the endorsed OoHWA, and as such has a modelled noise level. It has been noted that the recorded noise level is above the modelled noise level.
41 Urunga Parade, Punchbowl	Electrical chainsaw and BC1800 shredder	78	58	71	No	The measured LAeq, 15min is lower than the predicted noise level. Note that the measured noise level is significantly lower than the predicted noise level because only the electrical chainsaw and the BC1800 shredder were operating during this measurement. Furthermore, it was noted on site that the electrical chainsaw and the BC1800 shredder were approximately 150 metres away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 30 metres.
7 Common Street, Hurlstone Park	Two 15T excavator with bucket attachment, plate compactor	77	62	80	No	The measured LAeq, 15min is lower than the predicted noise level. Note that the measured noise level is significantly lower than the predicted noise level because only the two 5T excavator with bucket attachment and a plate compactor were operating during this measurement. Furthermore, it was noted on site that the two 15T excavator with bucket attachment and the plate compactor were approximately 20 to 40 metres away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres.
23 rd October	TL927-1-16F01 WK17 N	IOISE AND VIB	RATION MONITC	RING REPC	ORT (R3) - APPEND	
2021 7 Commons Street, Hurlstone Park	2T excavator unloading with delivery truck, 7T hi- rail excavator transporting materials,	77	63	86	No	The measured LAeq, 15min is lower than the predicted noise level. Note that the measured noise level is significantly lower than the predicted noise level

	concrete saw					because only the 2T excavator unloading with delivery truck, 7T hi-rail excavator transporting materials and concrete saw were operating during this measurement. Furthermore, it was noted on site that the measured concrete sawing activity was approximately 100 metres away from the measured location. In the prediction model, the distance between the closest high impact work area and the most affected facade is approximately 15 metres.
3A Commons Street, Hurlstone Park	7T excavator with bucket attachment, 5T excavator idling, fencing removal	82	65	96	No	The measured LAeq, 15min is lower than the predicted noise level. LAmax caused by nearby steel fence dropping. Note that the measured noise level is significantly lower than the predicted noise level because only the 7T excavator with bucket attachment and 5T excavator were operating during this measurement. Furthermore, it was noted on site that there were no high impact activities occurring during this measurement. In the prediction model, the distance between the closest high impact work area and the most affected facade is approximately 10 metres.
20 Redman Parade, Belmore	Hi-rail dump truck, stockpile management, 5T excavator with bucket attachment	66	58	75	No	The measured LAeq, 15min is lower than the predicted noise level. Note that the measured noise level is lower than the predicted noise level because only the hi-rail dump truck, stockpile management and 5T excavator with bucket attachment were operating during this measurement. Furthermore, it was noted on site that the measured construction activity was approximately 40 metres away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 30 metres.
17 Redman Parade, Belmore	Hi-rail dump truck, stockpile management, 5T Excavator with bucket	60	60	82	No	The measured LAeq, 15min is consistent with the predicted noise level.
1A Shadforth Street, Wiley Park	5T Excavator with hammer attachment, handheld jackhammer	83	62	74	No	The measured LAeq, 15min is lower than the predicted noise level. It was noted on site that the hammering works were occurring underneath the station concourse. As a result, the noise source was shielded by the station structure. Furthermore, only the 5T Excavator with hammer attachment and the handheld jackhammer were operating during this measurement. It was also noted on site that the measured construction activity was approximately 50 metres away from the measurement location. In

	ET over stars ""	02				the prediction model, the distance between the closest high impact work area and the most affected facade is approximately 15 metres. Therefore, the measured noise level is significantly below the predicted noise level.
	5T excavator with hammer attachment, handheld jackhammer	83	63	82	Νο	The measured LAeq, 15min is lower than the predicted noise level. It was noted on site that the hammering works were occurring underneath the station concourse. As a result, the noise source was shielded by the station structure. Furthermore, only the 5T Excavator with hammer attachment and the handheld jackhammer were operating during this measurement. It was also noted on site that the measured construction activity was approximately 50 metres away from the measurement location. In the prediction model, the distance between the closest high impact work area and the most affected facade is approximately 15 metres. Therefore, the measured noise level is significantly below the predicted noise level.
51 Ewart Lane, Dulwich Hill	8T excavator with hammer attachment, concrete truck	74	69	81	No	The measured LAeq, 15min is lower than the predicted noise level. Note that the measured noise level is lower than the predicted noise level because only the 8T excavator with hammer attachment and concrete truck were operating during this measurement.
57 Ewart Lane, Dulwich Hill	8T excavator with hammer attachment, concrete truck	77	70	82	No	The measured LAeq, 15min is lower than the predicted noise level. Note that the measured noise level is lower than the predicted noise level because only the 8T excavator with hammer attachment and concrete truck were operating during this measurement.
2 Hopetoun Street, Hurlstone Park	Vacuum truck, hi-rail dump truck	73	69	76	No	The measured LAeq, 15min is lower than the predicted noise level.
3A Commons Street, Hurlstone Park	Power hand tools, 5T excavator with bucket attachment, 5T excavator with hammer attachment, hi-rail dump truck	82	62	78	No	The measured LAeq, 15min is lower than the predicted noise level. Note that the measured noise level is significantly lower than the predicted noise level because only the power hand tools, 5T excavator with bucket attachment, 5T excavator with hammer attachment and a hi-rail dump truck were operating during this measurement. Furthermore, it was noted that the measured construction activity was approximately 7 to 40 metres away from the measurement location. In the prediction model, the distance

						between the closest high impact work area and the most affected facade is approximately 10 metres.
	Power hand tools, 5T excavator with bucket attachment, 5T excavator with hammer attachment, hi-rail dump truck	82	63	78	No	The measured LAeq, 15min is lower than the predicted noise level. Note that the measured noise level is significantly lower than the predicted noise level because only the power hand tools, 5T excavator with bucket attachment, 5T excavator with hammer attachment and a hi-rail dump truck were operating during this measurement. Furthermore, it was noted that the measured construction activity was approximately 7 to 40 metres away from the measurement location. In the prediction model, the distance between the closest high impact work area and the most affected facade is approximately 10 metres.
105 Duntroon Street, Hurlstone Park	Two 5T Excavator with bucket attachment, two hi-rail dump truck, handheld power drill	84	67	86	No	The measured LAeq, 15min is lower than the predicted noise level. Note that the measured noise level is significantly lower than the predicted noise level because only the two 5T Excavator with bucket attachment, two hi-rail dump truck and a handheld power drill were operating during this measurement. Furthermore, access to the most affected facade for this receiver was not provided. As a result, the measurement was taken on the facade facing Duntroon Street. In the prediction model, the distance between the closest work area and the most affected facade is approximately 4 metres. However, it was noted on site that the measured construction activity were approximately 23 metres away from the measurement location.
48 Floss Street, Hurlstone Park	Concrete saw, two 5T excavator with bucket attachment, two hirail dump truck	76	52	69	No	The measured LAeq, 15min is lower than the predicted noise level. Note that the measured noise level is significantly lower than the predicted noise level because only the concrete saw, two 5T excavator with bucket attachment and two hi-rail dump truck were operating during this measurement. Furthermore, access to the most affected facade for this receiver was not provided. As a result, the measurement was taken on the facade facing Floss Street. In the prediction model, the distance between the closest work area and the most affected facade is approximately 20 metres. However, it was noted on site that the measured construction activity were approximately 47 to 50 metres away from the measurement location.

6 th November 2021	TL927-1-17F01 WK19 NOISE AND VIBRATION MONITORING REPORT (R2) - APPENDIXES 11									
51A Ewart Lane, Dulwich Hill	5T excavator with hammer attachment, delivery truck and vacuum truck	74	74	82	No	The measured LAeq, 15min is consistent with the predicted noise level.				
57A Ewart Lane, Dulwich Hill	5T excavator with hammer attachment, 3T excavator moving materials	77	70	86	No	The measured LAeq, 15min is lower than the predicted noise level. The measured LAmax was caused by a construction worker dropping materials. Note that the measured noise level is lower than the predicted noise level because the rockhammering activity is intermittent during the measurement. Furthermore, the rockhammering work area is at a lower ground level compared to the measurement location. Therefore, the rockhammering activity was partially shielded at this monitoring location.				
59 Ewart Steet, Dulwich Hill	5T excavator with hammer attachment, rotary cutter, reversing beeper and vacuum truck	74	63	78	No	The measured LAeq, 15min is lower than the predicted noise level. Note that the measured noise level is significantly lower than the predicted noise level because the rockhammering activity is intermittent during the measurement. The rockhammerin work area is at a lower ground level compared to the measurement location. Therefore, the rockhammering activity was partially shielded at this monitoring location. Furthermore, it was note on site that the measured construction activity was approximately 50 metres away from the measurement location. Ir the prediction model, the distance between the closest work area an the most affected facade is approximately 25 metres.				

RESULTS – VIBRATION MONITORING

The table below contains a summary of the vibration monitoring results. The complete reports are provided in Appendixes 4 – 17. The established criteria for cosmetic damage in the Construction Noise & Vibration OOHW Assessments is as follows:

- Reinforced or frame structures: 25.0 mm/s
- Unreinforced or light framed structures: 7.5 mm/s
- Heritage structures: 2.5 mm/s

Station	Plant	Distance from source	95th percentile PPV (mm/s)	Maximum PPV (mm/s)	Above predicted vibration level	Comments			
	19 th – 20 th April 2021	TL927-1-02F	TL927-1-02F02 WE42 NOISE AND VIBRATION MONITORING REPORT (R1) - APPENDIXES 4						
Hurlstone Park Station	Demo saw	0.2m	2.38	2.72	Yes (for heritage structures) No (for reinforced,	At 0.2 metres away, the concrete saw produced a maximum PPV value of 2.72 mm/s. This maximum PPV value exceeds the screening level for Heritage structures (2.5			

Sydney Metro City & Southwest - Package 5 & 6

					unreinforced or light framed structures)	mm/s). New site specific minimum working distances for using a demo saw established for heritage structures (minimum 0.5m).
		0.5m	1.46	1.78	No	At 0.5 metres away, the concrete saw produced vibration levels that are below the established vibration criteria.
	12 th May 2021	TL927-1-03F	01 HURLSTO	ONE PARK S	STN VIB MON REPOR	
Hurlstone Park Station	96-pound handheld jackhammer	0.5m	1.17	1.35	No	At 0.5 metres away, the 96 pounds handheld jackhammer produced vibration levels that are below the established vibration criteria.
		1m	0.97	1.11	No	At 1 metre away, the 96 pounds handheld jackhammer produced vibration levels that are below the established vibration criteria.
		2m	0.85	1.11	No	At 2 metres away, the 96 pounds handheld jackhammer produced vibration levels that are below the established vibration criteria.
		3m	0.30	0.32	No	At 3 metres away, the 96 pounds handheld jackhammer produced vibration levels that are below the established vibration criteria.
	14 th May 2021	TL927-1-04F	01 WILEY PA	ARK STN VII	B MON REPORT (R1)	
Wiley Park Station	1.7T Kubota excavator with hammer attachment	3m	0.73	1.24	No	At a slant distance of 3 metres away, the 1.7T Kubota excavator with hammer attachment produced vibration levels that are below the established vibration criteria.
		4m	0.23	0.56	No	At a slant distance of 4 metres away, the 1.7T Kubota excavator with hammer attachment produced vibration levels that are below the established vibration criteria.
		5m	0.20	0.24	No	At a slant distance of 5 metres away, the 1.7T Kubota excavator with hammer attachment produced vibration levels that are below the established vibration criteria.
	18 th May 2021	TL927-1-05F	01 PUNCHB	OWL STN V	IB MON REPORT (R1	
Punchbowl Station	80kg plate compactor	1m	2.26	2.38	No	At a distance of 1 metre away, the 80kg plate compactor produced vibration levels that are below the established vibration screening criteria.
		2m	0.85	1.22	No	At a distance of 2 metres away, the 80kg plate compactor produced vibration levels that are below the established vibration screening criteria.
		3m	0.75	0.86	No	At a distance of 3 metres away, the 80kg plate compactor produced vibration levels that are below the established vibration screening criteria.
	20 th May 2021					ON REPORT (R1) - APPENDIXES 15
Belmore Station	10T smooth drum roller	3m - static 3m -	<0.5 1.74	<0.5	No No	During this measurement, vibration signals from the source could not be detected. At a distance of 3 metres away with vibratory
		vibratory				mode, the 10T smooth drum roller produced vibration levels that are below the established vibration screening criteria.
		4m - static	<0.5	<0.5	No	During this measurement, vibration signals from the source could not be detected.
		4m - vibratory	1.26	1.39	No	At a distance of 4 metres away with vibratory mode, the 10T smooth drum roller produced vibration levels that are below the established vibration screening criteria.
		5m – static	<0.5	<0.5	No	During this measurement, vibration signals from the source could not be detected.
		5m - vibratory	0.76	0.85	No	At a distance of 5 metres away with vibratory mode, the 10T smooth drum roller produced vibration levels that are below the established vibration screening criteria.
	28 th May – 29 th May 2021	TL927-1-07F	01 WE48 NC	ISE AND VI	BRATION MONITORI	NG REPORT (R1) - APPENDIXES 6
Wiley Park	Concrete saw	3m, measured at	<0.5	<0.5	No	The vibration monitor was mounted on the North platform building. During the concrete sawing activity, the vibration signals from the

Sydney Metro City & Southwest - Package 5&6

		the affected heritage				concrete saw could not be detected. As a result, the concrete saw was allowed to be
		structure				operated.
	Handheld jackhammer	3m	0.95	1.05	No	At 3m the jackhammer produced vibration levels that are below the established vibration criteria
		7m	0.13	0.26	No	At 7m the jackhammer produced vibration levels that are below the established vibration criteria
	90-pound handheld jackhammer	1m, Measured at the affected heritage structure	0.97	1.12	No	The vibration monitor was mounted on the North platform building. During the jackhammering activity, the 90-pound handheld jackhammer produced vibration levels that are below the established vibration criteria. As a result, the 90-pound handheld jackhammer was allowed to be operated.
Punchbowl	5T excavator	1m	0.35	1.15	No	The 5T excavator with auger attachment
Station	with auger	1.5m	0.29	0.96	No	produced vibration levels that are below the
	attachment	2m	0.26	0.81	No	established vibration criteria at 2 m, 1.5 m and 1 m away. Since the bored piling works are greater than 1 metre away from the platform building, the 5T excavator with auger attachment was allowed to be operated
Hurlstone Park	10T excavator with hammer attachment	2m	3.69	6.06	Yes	At 2 metres away, the 10T excavator with hammer attachment produced a 95th percentile PPV value of 3.69 mm/s. As a result, a new site specific minimum working distance for using a 10T excavator with hammer attachment was established for heritage structures (minimum working distance is 3m from heritage structures).
		3m	1.55	2.40	No	At 4 metres and 3 metres away, the 10T
		4m	0.90	1.20	No	excavator with hammer attachment produced vibration levels that are below the established vibration criteria. As a result, the 10T excavator with hammer attachment can be operated with a minimum working distance of 3 metres for heritage structures.
	2.5T excavator with hammer attachment (hp)	2m, Measured at the affected heritage structure	1.39	1.82	No	The vibration monitor was mounted on the South platform building. During the rockhammering activity, the 2.5T excavator with hammer attachment produced vibration levels that are below the established vibration criteria. As a result, the 2.5T excavator with hammer attachment was allowed to be operated.
	5 th June 2021	TL927-1-08F	01 WE49 NOI	SE AND VIB	RATION MONITORIN	IG REPORT (R2) - APPENDIXES 6
Belmore Station	XD9-1 excavator (piling works)	4m, measured at the affected heritage structure	0.12	0.29	No	The vibration monitor was mounted on the external platform building. During the piling activity, the vibration signals from the XD9-1 excavator produced vibration levels that are below the established vibration criteria. As a result, the XD9-1 excavator was allowed to be operated.
	28 th June – 1 st July 2021	TL927-1-09F	01 WE52-WK ²	1 NOISE AND	VIBRATION MONIT	ORING REPORT (R3) - APPENDIXES 7
Wiley Park Station	14T excavator with bucket attachment	3m, measured at the affected heritage structure	0.55	1.00	No	The vibration monitor was mounted on the platform building. During the excavating activity, the vibration signals from the 14T excavator with bucket attachment produced vibration levels that are below the established vibration criteria. As a result, the 14T excavator with bucket attachment was allowed to be operated.
Belmore Station	3.5T excavator with rockhammer attachment	10m, measured at the affected heritage	0.25	0.45	No	The vibration monitor was mounted on the platform building. During the rockhammering activity, the vibration signals from the 3.5T excavator with rockhammer attachment produced vibration levels that are below the

		structure				established vibration criteria. As a result, the 3.5T excavator with rockhammer attachment was allowed to be operated.
Dulwich Hill Station	6T excavator with rockdrill attachment	15m, measured at the affected heritage structure	< 0.5	1.15	No	The vibration monitor was mounted on the platform building. During the rockdrilling activity, the vibration signals from the 6T excavator with rockdrill attachment produced vibration levels that are below the established vibration criteria. As a result, the 6T excavator with rockdrill attachment was allowed to be operated.
Punchbowl Station	Station (refer to figure A.10) Handheld electric jackhammer	1m	0.90	1.65	No	The vibration monitor was mounted on the platform building. It was understood that the affected wall of the platform building is not heritage. As a result, the screening criterion for unreinforced structures (7.5 mm/s) was used for this measurement. During the jackhammering activity, the vibration signals from the handheld electric jackhammer produced vibration levels that are below the established screening criterion for unreinforced structures (7.5 mm/s). As a result, the handheld electric jackhammer was allowed to be operated.
Hurlstone Park Station	3T roller – static mode	10m, measured at the closest residential structure	< 0.5	< 0.5	No	During the rolling activity, the vibration signals from the 3T roller on static mode produced vibration levels that are below the established screening criterion for unreinforced structures (7.5 mm/s). As a result, the 3T roller on static mode was allowed to be operated.
	8T roller – static mode	5m	0.90	1.50	No	During the rolling activity, the vibration signals from the 8T roller on static mode produced vibration levels that are below the established screening criterion for unreinforced structures (7.5 mm/s). As a result, the 8T roller on static mode can be operated at a minimum distance of 5 metres from unreinforced structures.
	35T piling rig with auger	20m, measured at the closest residential structure	< 0.5	< 0.5	No	During the piling activity, the vibration signals from the 35T piling rig with auger produced vibration levels that are below the established screening criterion for unreinforced structures (7.5 mm/s). As a result, the 35T piling rig with auger was allowed to be operated.
Hurlstone Park Station	8 th July 2021 Vibratory plate compactor	TL927-1-10F 1m, measured at the affected Station building	01 WK52-WE	2 NOISE AND 3.8	VIBRATION MONIT	ORING REPORT (R3) - APPENDIXES 8 The vibration monitor was mounted on the platform building. During the asphalt compacting activity, the vibration signals from the vibratory plate produced vibration levels that are below the established vibration criteria. As a result, the Vibratory plate compactor was allowed to be operated.
Wily Park Station	5T Asphalt Roller (nonvibratory)	1m	<0.5	<0.5	No	The vibration monitor was mounted on the platform. During the asphalt compacting activity, the vibration signals from the 5T non- vibratory roller produced vibration levels that are below the established vibration criteria. As a result, the 5T nonvibratory roller was allowed to be operated.
Wily Park Station	Vibratory plate compactor	1m	3.0	3.2	No	The vibration monitor was mounted on the platform. During the asphalt compacting activity, the vibration signals from the vibratory plate produced vibration levels that are below the established vibration criteria. As a result, the Vibratory plate compactor was allowed to

						be operated.
	7 th October 2021	TL927-1-12F	01 HURLSTO	NE PARK ST	N VIB MON REPORT	(R1) - APPENDIXES 16
Hurlstone Park Station	96 pound handheld jackhammer	1m	3.93	4.05	No	At 1 metre away, the 96 pound handheld jackhammer produced vibration levels that are below the established vibration screening level for unreinforced or light framed structures (including sound heritage structures).
		2m	1.99	2.02	No	At 2 metres away, the 96 pound handheld jackhammer produced vibration levels that are below the establish- APPENDIXES 5ed vibration screening levels.
	7 th October 2021	TL927-1-13F	01 DULWICH	HILL STN VIE	B MON REPORT (R1)) - APPENDIXES 17
Dulwich Hill Station	5T excavator with hammer attachment	7m	1.74	1.78	No	At the affected property boundary, the 5T excavator with hammer attachment produced vibration levels that are below the established vibration screening levels.
	16 th October	TL927-1-15F	01 W16 NOIS	E AND VIBRA	ATION MONITORING	REPORT (R6) - APPENDIXES 9
Image: Station 10 Coubler 2021 2021 Hurlstone Two 5T excavator with bucket attachment 35T ST excavator with hammer attachment	12m	0.03	0.04	No	The accelerometer was mounted on the residential building at 103-105 Duntroon Street, Hurlstone Park. The measured results show that the baseline value did not change during the excavation work. Therefore, the vibration signals from the two 5T excavators with bucket attachment could not be detected at this measurement location. As a result, the 5T excavators with bucket attachment was allowed to be operated.	
	with hammer	12m	0.04	0.09	No	The accelerometer was mounted on the residential building at 103-105 Duntroon Street, Hurlstone Park. The measured results show that the baseline value did not change during the excavation work. Therefore, the vibration signals from the 5T excavator with hammer attachment could not be detected at this measurement location. As a result, the 5T excavator with hammer attachment was allowed to be operated.
Punchbowl Station	2T Excavator with hammer	1m	1.09	2.28	No	The accelerometer was mounted on the station structure at the station building. During the hammering activity, the vibration signals from the hammer produced vibration levels that are below the established vibration criteria. As a result, the 2T excavator with hammer attachment was allowed to be operated.
	23 rd October 2021	TL927-1-16F	01 W17 NOIS	E AND VIBRA	TION MONITORING	REPORT (R3) - APPENDIXES 10
Wiley Park Station, location 1	Handheld jackhammer	10m	0.64	0.88	No	The accelerometer was mounted on the concourse station structure at Wiley Park Station. During the hammering activity, the handheld jackhammer produced vibration levels that were below the established vibration criteria. As a result, the handheld jackhammer was allowed to be operated.
Wiley Park Station, location 2	5T excavator with hammer attachment	10m	0.25	0.56	No	The accelerometer was mounted on the concourse station structure at Wiley Park Station. During the hammering activity, the handheld jackhammer produced vibration levels that were below the established vibration criteria. As a result, the 5T excavator with hammer attachment was allowed to be

						operated.
	6 th November 2021	TL927-1-1	7F01 WK19 N	IOISE AND VI	BRATION MON	ITORING REPORT (R2) - APPENDIXES 11
Dulwich Hill Station	5T excavator with hammer attachment	6m	0.90	0.95	No	At a distance of 6 metres away, the 5T excavator with hammer attachment produced vibration levels that are below the established vibration screening criteria
	5T excavator with hammer attachment	5m	1.08	1.13	No	At a distance of 5 metres away, the 5T excavator with hammer attachment produced vibration levels that are below the established vibration screening criteria.
	5T excavator with hammer attachment	3m	1.60	1.66	No	At a distance of 3 metres away, the 5T excavator with hammer attachment produced vibration levels that are below the established vibration screening criteria.

DISCUSSION – NOISE AND VIBRATION MONITORING

The noise monitoring results did not identify any exceedances of the predicted noise levels. This shows that the provision of construction noise mitigation measures has been appropriate.

The vibration monitoring results have indicated that a majority of the construction activities that have occurred have not caused vibration impacts above the screening levels, however it was noted in TL927-1-07F01 WE48 NOISE AND VIBRATION MONITORING REPORT (R1) that at 2 metres away, a 10T excavator with hammer attachment produced a 95th percentile PPV value of 3.69 mm/s. As a result, 10T excavators with hammer attachment have a minimum working distance of 3m from heritage structures. Also, as noted in report TL927-1-02F02 WE42 Noise and Vibration Monitoring Report (r1), monitoring the use of a demo saw at 0.2m showed maximum PPV parameters were exceed for heritage structures, establishing the use of this equipment to 0.5m, where maximum PPV demonstrated to be within the established parameters.

It should also be noted that Downer conducts regular inspection of the environmental controls, including noise and vibration mitigation measures, across all work sites. These inspections are conducted by the Project Team and the Environmental Team. This proactive approach ensures that environmental controls are functioning properly rather than reactively inspecting the worksite following monitoring and reporting.

Appendix 1 – Surface Water Monitoring Report - Wiley Park Station -4NE30187_R001_SWM_WileyPark_RevA

Surface Water Monitoring Report - Wiley Park Station

Wiley Park Station

4NE30187

Prepared for Downer EDI Works Pty Ltd

20 April 2021

Cardno[®]

Contact Information

Document Information

Cardno (NSW/ACT) Pty Ltd	Prepared for	Downer EDI Works Pty Ltd
ABN 95 001 145 035	Project Name	Wiley Park Station
Level 9 - The Forum 203 Pacific Highway St Leonards NSW 2065	File Reference	4NE30187_R001_SWM_Wil eyPark_RevA.docm
PO Box 19	Job Reference	4NE30187
www.cardno.com	Date	20 April 2021
Phone +61 2 9496 7700 Fax +61 2 9439 5170	Version Number	RevA
Author(s):		
Chong Zeng Environmental Engineer	Effective Date	20/04/2021
Approved By:		

Mike Jorgensen	Date Approved	20/04/2021
Principal Hydrogeologist		

Document History

	fective Date	Description of Revision	Prepared by	Reviewed by
V1 19)/04/2021	Draft for Internal Review	CZ	MJ
RevA 20)/04/2021	Draft for Client Review	CZ	MJ

© Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

Table of Contents

1	Introdu	uction	1
	1.1	Background	1
	1.2	Objectives	1
	1.3	Scope of Works	1
2	Guidel	lines and Legislation	2
3	Monito	pring Locations	2
	3.1	Monitoring Locations	2
4	Quality	y Management	2
	4.2	Data Quality Indicators	4
5	Field In	nvestigation	6
6	Surfac	e Water Assessment Criteria	7
7	Summ	nary of Results	8
	7.1	Summary of Field Observations	8
	7.2	Field Parameters	9
	7.3	Surface Water Analytical Results	10
	7.4	Results Discussion	10
8	Conclu	usion	1
9	Refere	ences	2
10	Limitat	tions	3

Appendices

Appendix A	Figures
Appendix B	Photographs
Appendix C	Field Records
Appendix D	Laboratory Summary tables
Appendix E	Quality Assurance/Quality control
Appendix F	Laboratory reports

Tables

Table 1-1	Wiley Park Water Quality Monitoring Program	1
Table 3-1	Surface Water Monitoring Location Details	2
Table 4-1	Data Quality Objectives	3
Table 4-2	Summary of Data Quality Indicators	4
Table 5-1	Investigation Activity Summary	6
Table 6-1	Water Quality Monitoring Parameters and Adopted Criteria at Wiley Park	7
Table 7-1	Laboratory Physico-chemical Parameters and Field Observations	9

1 Introduction

1.1 Background

Cardno (NSW/ACT) Pty Ltd ("Cardno") was commissioned by Downer EDI Works Pty Ltd ("Downer") to undertake monitoring and reporting of surface water quality of the unnamed channel within proximity to Wiley Park Station Upgrade Site. The proposed upgrade includes the upgrade of the main station and installation of the Metro Services Building (MSB).

Surface water quality of the channel within proximity to Wiley Park Upgrade Site is to be monitored as per the requirements summarised in the **Table 1-1**, which is excerpted from the Southwest Metro – Hurlstone Park, Belmore and Wiley Park Station Upgrades Soil and Water Management Plan (SWMP). The monitoring program are prepared to meet the requirements outlined in *The Sydney Metro City and Southwest – Sydenham to Bankstown Upgrade Conditions of Approval SSi-8256*, specifically Condition 8 to Condition 10. The sampling locations (WP1 – Upstream and WP2 – Downstream) of the water quality monitoring are shown on **Figure 1** in **Appendix A**.

This report represents the surface water monitoring events undertaken by Cardno on 10th March 2021 and 20th March 2021.

The closest Project worksite to an existing watercourse is Wiley Park Station services building, which is located approximately 100m from an unnamed concrete lined channel which forms the upper reaches of Coxs Creek and is identified as a first-order stream.

For the purpose of establishing baseline water quality data within the first order stream at Wiley Park, water quality monitoring was undertaken for a period prior to construction of the Wiley Park services building as outlined in the Table 13 of the SWMP. At a minimum, one dry weather sample and one wet weather sample (weather permitting) were intended to be collected during the pre-construction period. The frequency of pre-construction water quality monitoring within this channel is subject to water being present within the structure.

The monitoring event undertaken on the 10th of March was a pre-construction baseline round during dry weather. Note that during the baseline monitoring period no wet weather events were able to be captured prior to commencement of construction. The event undertaken on the 20th of March was a wet weather event, during possession whilst construction had commenced. This report includes the data obtained from one baseline dry weather round and one mid-construction wet weather round. Data was not obtained from a pre-construction baseline wet weather event due to the lack of rainfall.

Waterway	Sydney Water Cooks River Channel (first order stream)				
Indicative monitoring	WP1 – Upstream				
points	WP2 – Downstream				
Interaction with Project works	Channel within proximity to Wiley Park service building site				
Pre-construction works	Monthly for parameters detailed in Table 11 (including at least one dry weather round of sampling).				
	One wet weather event, if possible, for the parameters detailed in Table 11, subject to event occurrence, safe conditions for monitoring and access being available to conduct monitoring.				
	Note: A wet weather event is when the receiving area has received greater than 20mm of rain in 24 hours. The sampling will be undertaken immediately during construction hours and if it is safe to do so.				
During	Quarterly for parameters detailed in Table 11 (including during dry weather).				
construction of the Wiley Park services building	Four wet weather events per year for the parameters in Table 11, subject to event occurrence, safe conditions for monitoring and access being available to conduct monitoring.				
	Note: A wet weather event is when the receiving area has received >20mm of rain in 24 hours. The sampling will be undertaken immediately during construction hours and if it is safe to do so.				

Table 1-1 Wiley Park Water Quality Monitoring Program

1.2 Objectives

The purpose of the surface water monitoring works is to monitor and record surface water quality within the unnamed channel in accordance with the monitoring program as outlined in the Site's SWMP. The objective of the works is to evaluate whether construction activities are impacting water quality downstream of the project footprint in the unnamed channel.

1.3 Scope of Works

Cardno undertook the following tasks during the March 2021 surface water monitoring event:

- Inspected and sampled the two (2) nominated surface water sampling locations on the 10th March as a dry weather baseline monitoring event;
- Inspected and sampled the two (2) nominated surface water sampling locations on the 20th March as a wet weather mid-construction monitoring event;
- > Recorded field parameters and noted observations of the water bodies during sampling;
- > Collected two (2) primary surface water samples, one field duplicate sample and one field triplicate sample per sampling event for submission to a laboratory accredited by the National Association of Testing Authorities, Australia (NATA) for analytical testing of primary and additional quality assurance/quality control (QA/QC) samples. Samples were submitted for analysis of:
 - Oil & Grease;
 - Total Suspended Solids (TSS);
 - Nutrients (Total Phosphorous, Total Nitrogen);
 - Turbidity; and
 - Chlorophyll-a.

> Review of analytical and field data and preparation of this report.

2 Guidelines and Legislation

There are a range of Guidelines and Legislation and Conditions of Approval (CoA) that are applicable to the surface water monitoring program which are summarised below.

The CoA applicable to this job include:

> The Sydney Metro City and Southwest - Sydenham to Bankstown Upgrade Conditions of Approval SSI-8256, determined 12 December 2018;

The State and Federal legislation and policy and guidelines that apply to the program include:

- > Environmental Planning and Assessment Act 1979 (EP&A Act);
- > Contaminated Land Management Act 1997;
- > Protection of the Environment Operations Act 1997 (POEO Act);
- > Water Management Act 2000 Water Management (General) Regulation 2018;

Additional guidelines and standards to the management of soil and water include:

- > Landcom (2004). Managing Urban Stormwater: Soils and Construction. (Volume 1 of the 'Blue Book');
- DECC (2008). Managing Urban Stormwater: Soils and Construction. Volume 2D: Main Road Construction. (Volume 2D of the 'Blue Book');
- ANZECC (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (collectively known as the 'ANZECC Guidelines');
- ANZECC (2018). Australian and New Zealand Guidelines for Water Quality Monitoring and Reporting (collectively known as the 'ANZECC Guidelines');
- ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (known as 'ANZG Guidelines').

3 Monitoring Locations

Details of the sampling locations are provided in **Table 3-1**. The locations are provided in **Figure 1** in **Appendix A**. Representative photographs are presented in **Appendix B**.

3.1 Monitoring Locations

Table 3-1	Surface	Water	Monitoring	Location	Details

Sample Location	Latitude	Longitude	Description
WP1	-33.924014	151.065315	Immediately south of the Boulevarde and east of 118 the Boulevarde.
WP2	-33.923339	151.064970	Immediately north of the Urunga Parade and west of 4 Urunga Parade.

4 Quality Management

The Data Quality Objective (DQO) process is used to establish a systematic planning approach to setting the type, quantity and quality of data required for making decisions based on the environmental condition of the project area. The DQO process involves the seven steps detailed in **Table 4-1**.

DQO	Description
Step 1 State the Problem	Ongoing surface water monitoring is required to determine if the construction work is impacting the local surface water quality within the unnamed channel.
Step 2	The decisions that need to be made are:
Identify the Decisions	> Are there any impacts to surface water quality from the construction of the site?
Step 3	The primary inputs to the decisions described above are:
Identify Inputs to the Decision	 Assessment of surface water quality of the unnamed channel withir proximity to Wiley Park service building site per the requirements outlined in the site's SWMP, with samples collected from two locations (upstream and downstream of the site);
	> Laboratory analysis of surface water samples for relevant parameters;
	 Assessment of the suitability of the analytical data obtained, against the Data Quality Indicators (DQIs);
	 Assessment of the analytical results against applicable guideline criteria and
	 Aesthetic observations of surface water bodies, including odours, sheer and condition, if encountered.
Step 4 Define the Study Boundaries	The lateral extent of the study area is the channel within proximity to Wiley Park service building site. The temporal boundaries of the study will comprise the duration of the monitoring program, including pre-construction monitoring, construction phase, and post construction monitoring as required.
Step 5	The decision rules for the water quality monitoring sampling events included:
Develop a Decision Rule	> Were primary and QA/QC samples analysed using methods endorsed by relevant regulatory guidelines at laboratories NATA-accredited for the requested analyses?
	Did the field and laboratory QA/QC results indicate that the data set was reliabile and representative of the water quality with Relative Percentage Difference (RPD) values of 30% or less?
	> Were the laboratory limits of reporting (LORs) below the applicable guideline criteria for the analysed parameters?
	> Were guideline criteria sourced from endorsed guidelines?
	> Were surface water aesthetic characteristics evaluated including odours and sheen?
Step 6 Specify Limits on Decision Errors	To ensure the results obtained are reproducible and accurate, a QA/QC plan was incorporated into the sampling and analytical program. DQIs were used to assess the reliability of field procedures and analytical results. In particular, the DQIs within NSW EPA 2017 were used to document and quantify compliance. DQIs are described as follows:
	 Completeness – A measure of the amount of useable data from a data collection activity;
	 Comparability – The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event;
	 Representativeness – The confidence (expressed qualitatively) that data are representative of each media present in the project area;
	 Precision – A quantitative measure of the variability (or reproducibility) of data; and
	 Accuracy (bias) – A quantitative measure of the closeness of reported data to the true value.
Step 7	To achieve the DQOs and DQIs, the following sampling procedures were implemented to optimise the design for obtaining data:

DQO	Description
Optimise the Design for Obtaining Data	 Surface water samples was collected from two (2) sampling locations, as available due to access and water level;
	 Surface water parameters were selected based on project monitoring requirements provided to Cardno;
	 Samples were collected by suitably qualified and experienced environmental scientists;
	 Samples were collected and preserved in accordance with relevant standards/guidelines; and
	 Field and laboratory QA/QC procedures were adopted and reviewed to indicate the reliability of the results obtained.

4.2 Data Quality Indicators

The following DQIs have been adopted for the project. The DQIs outlined in **Table 4-2** assist with decisions regarding the usefulness of the data obtained, including the quality of the laboratory data.

Table 4-2 Summary of Data Quality Indicators

Data Quality Indicator	Frequency	Data Acceptance Criteria
Completeness		
Field documentation correct	All samples	The work was documented in accordance with Cardno SOPs
Suitably qualified and experience sampler	All samples	Person deemed competent by Cardno collecting and logging samples
Appropriate lab methods and limits of reporting (LORs)	All samples	Samples were analysed using methods endorsed by relevant regulatory guidelines at laboratories NATA-accredited for the requested analyses.
Chain of custodies (COCs) completed appropriately	All samples	The work was documented in accordance with Cardno SOPs
Sample holding times complied with	All samples	The samples were extracted and analysed within holding times specified by the project NATA-accredited laboratory
Proposed/critical locations sampled	-	Proposed/critical locations sampled
Comparability		
Consistent standard operating procedures for collection of each sample. Samples should be collected, preserved and handled in a consistent manner	All samples	All works undertaken in accordance with Cardno SOPs
Experienced sampler	All samples	Person deemed competent by Cardno collecting and logging samples
Climatic conditions (temp, rain etc) recorded and influence on samples quantified (if required)	All samples	Climatic conditions documented in field sheets
Consistent analytical methods, laboratories and units	All samples	Sample analysis to be in accordance with NATA approved methods
Representativeness		
Sampling appropriate for media and analytes (appropriate collection, handling and storage)	All samples	Sample analysis to be in accordance with NATA approved methods
Samples homogenous	All samples	All works undertaken in accordance with Cardno SOPs
Detection of laboratory artefacts, e.g. contamination blanks	-	Laboratory artefacts assessed and impact on results determined

Data Quality Indicator	Frequency	Data Acceptance Criteria	
Samples extracted and analysed within holding times	All samples	The samples were extracted and analysed within holding times specified by the laboratory	
Precision			
Blind duplicates (intra-laboratory duplicates)	1 per 20 samples	<30% RPD No Limit RPD Result <10 × LOR	
Split duplicates (inter-laboratory duplicates)	1 per 20 samples	<30% RPD No Limit RPD Result <10 × LOR	
Laboratory duplicates	1 per 20 samples	Results greater than 10 x LOR: <30% RPD Results less than 10 x LOR: No limit on RPD	
Accuracy (Bias)			
Surrogate spikes	All organic samples	50-150%	
Matrix spikes	1 per 20 samples	70-130%	
Laboratory control samples	1 per 20 samples	70-130%	
Method blanks	1 per 20 samples	<lor< td=""></lor<>	

The DQOs and DQIs for the project were met during the monitoring events on 10 and 20 March 2021. Discussion of the Quality Control / Quality Assurance assessment is provided in **Appendix E**.

5 Field Investigation

The scope and method of the surface water monitoring is summarised in **Table 5-1**.

Activity	Details						
Dates of Fieldwork	10 March 2021 and 20 March 2021						
Surface Water Sampling	Cardno inspected two surface water monitoring locations. Primary samples were collected from each of the two locations per sampling event. Cardno undertook the sampling as per the following procedures:						
	<u>Surface Water Body Inspection</u> - The general site condition was observed prior to commencement of field works for signs of any site activities that may have altered the surface water contamination status or require modifications to the field or laboratory works program.						
	Each surface water location was inspected for indicators of contamination and the presence of surface water. This information is recorded on the field sheets presented in Appendix C.						
	<u>Surface water sampling</u> - Field parameters and visual/olfactory observations were recorded prior to sampling at each location. Physio-chemical parameters including pH electrical conductivity (EC), dissolved oxygen (DO), reduction-oxidation potential (redox), and temperature were measured using a calibrated water quality meter. Surface water samples were collected either directly into the sampling bottle or directly from the telescopic scoop. Once field parameters were recorded, the surface water samples were transferred to appropriately preserved sample containers provided by the laboratories. Field observations, and parameters are presented in Appendix C .						
	Surface water samples were placed into an Esky containing ice and maintained at or below 4°C whilst onsite and in transit to the NATA-accredited laboratories for the targeted analyses.						
Surface Water Analysis	Surface water samples from each monitoring event were submitted under standardchain of-custody (CoC) procedures to NATA-accredited Eurofins Environment Testing Australia analysis of the parameters as follows:						
	– Oil & Grease;						
	 Total Suspended Solids (TSS); 						
	 Nutrients (Total Phosphorous, Total Nitrogen); 						
	 Turbidity; and 						
	– Chlorophyll-a.						
	Tabulated laboratory results are presented in Appendix D . The Data QA /QC prog and data quality review including calibration certificates is presented in Appendix E .						
	Copies of the original laboratory reports, NATA-stamped laboratory certificates, and CoC documentation are included in Appendix F .						
Decontamination	In the event of reusable sampling or monitoring equipment (telescopic scoop, wate quality meter) was used decontamination was undertaken. Decontaminated between locations using a standard bucket wash. Equipment was washed in phosphate-free detergent (Liquinox) and rinsed in laboratory supplied rinsate water.						

6 Surface Water Assessment Criteria

The assessment criteria for surface water analytical and field data were adopted from Table 11 of the site's SWMP. The criteria for selected parameters are provided in **Table 6-1** below.

Parameter	ANZECC Criteria – Freshwater ¹	Proposed Triger Values	Proposed Actions
Temperature (°C)	>80% ile; <20% ile		
Dissolved Oxygen (DO)	Lower limit – 85% Upper limit -110%	Downstream results are	
Turbidity (NTU)	6-50 NTU	greater than upstream	
Oil and grease	-	results in rainfall events up to and including the	Environment Manager (or delegate) to re-test to
рН	Lower limit – 6.5 Upper limit – 8.5	significant event threshold of greater than20 mm in 24 hours.	confirm results and undertake an inspection of the adjacent works and
Salinity (as EC)	125 – 2200 µS/cm	Downstream results are >	propose actions where
Total Suspended Solids (TSS)	-	 than upstream results during dry weather sampling. 	required.
Total Phosphorus as P??	25 μg/L		
Total Nitrogen as N??	350 μg/L	_	
Chlorophyll-a	3 µg/L		

 Table 6-1
 Water Quality Monitoring Parameters and Adopted Criteria at Wiley Park

Note to Table

1 ANZECC guideline criteria are included for reference. It is noted that baseline testing will indicate whether this existing water quality within the channel meet ANZECC guidelines, prior to construction of the services building. Sydney Metro's Principal Contractor will comply with Section 120 of the Protection of the Environment Operations Act 1997.

7 Summary of Results

7.1 Summary of Field Observations

The two surface water sampling locations were able to be accessed during both sampling events conducted on 10 March 2021 and 20 March 2021. Photos of each sampling location are included in **Appendix B**. The following observations were made:

7.1.1 Dry Weather Baseline Event – 10 March 2021

- > Sampling Event on 10 March 2021:
 - The sampling event was undertaken in cloudy weather with 0 mm precipitation over the last 24 hours;
 - WP 1 contained low flowing clear water with low turbidity. The estimated depth of the water body was 0.03 m. Visible oil sheen observed at the time of sampling work (refer Photograph 1 in Appendix B); and
 - WP 2 contained low flowing clear water with low turbidity. The estimated depth of the water body was 0.03 m. Visible oil sheen observed at the time of sampling work (refer Photograph 2 in Appendix B);

7.1.2 Wet Weather Mid-Construction Event – 20 March 2021

- > Sampling Event on 20 March 2021:
 - The sampling event was undertaken during a storm event with heavy rain with 92.0 mm precipitation over the last 24 hours;
 - WP 1 contained high flowing brown water with medium turbidity. The estimated depth of the water body was 0.3 m;
 - WP 2 contained high flowing brown water with medium turbidity. The estimated depth of the water body was 0.3 m;

7.2 Field Parameters

The parameters from each location sampled are presented in **Table 7-1**.

 Table 7-1
 Laboratory Physico-chemical Parameters and Field Observations

Location ID	Water Depth (m)	Temperature (°C)	рН	Electrical Conductivity (µS/cm)	Dissolved Oxygen (mg/L)			Condition
10 March 2021								
WP1	0.03	21.3	7.90	543	5.64	63	140.7	Clear Low turbidity Sheen observed
WP2	0.03	21.1	7.61 363		4.09	4.09 45.9		Clear Low turbidity Sheen observed
20 March 2021								
WP1	0.3	20.2	8.10	246.2	4.79	52.87	122.3	Brown Medium turbidity
WP2	0.3	20.0	7.58	133.4	3.92	43.18	135.9	Brown Medium turbidity

7.3 Surface Water Analytical Results

Surface Water Analytical results are presented in **Appendix D**. Copies of the original laboratory reports, NATAstamped laboratory certificates, and Chain of Custody documentation are included in **Appendix F**.

7.3.1 Baseline Dry Weather Event: 10 March 2021

The results of the monitoring event indicates that:

- > Electrical Conductivity (µS/cm) was within the adopted assessment criteria at all sample locations;
- Dissolved Oxygen (%Sat) was reported outside of the target range (85%-110%) with results ranging from 63% saturation upstream at WP1 and 45.9% saturation downstream at WP2;
- > Concentrations of inorganics were reported below the adopted assessment criteria with the exception of nitrogen and phosphorous which exceeded the ANZECC criteria at both sample locations. Upstream concentrations at WP1 were higher then concentrations downstream at WP2;
- > Concentrations of Oil and Grease were reported below laboratory detection limit at all sample locations with the exception of the downstream sample WP2:
- > Concentrations of Chlorophyll-a were reported below the laboratory detection limit and adopted assessment criteria at all sample locations; and
- > Total Suspended Solids (TSS) was not detected above the laboratory limit of reporting in both sample locations; and
- > Turbidity ranged from 2.9 NTU at WP1 and <1 NTU at WP2.

7.3.2 Mid Construction Wet Weather Event: 20 March 2021

The results of the monitoring event indicates that:

- > Electrical Conductivity (µS/cm) was within the adopted assessment criteria at all sample locations;
- > Dissolved Oxygen (%Sat) was reported outside of the target range (85%-110%) with results ranging from 52.9% saturation upstream at WP1 and 43.2% saturation downstream at WP2;
- > Concentrations of inorganics were reported below the adopted assessment criteria with the exception of nitrogen within both the WP1 and WP2 samples, and phosphorous within a triplicate quality assurance sample from WP2 which exceed the ANZECC criteria.
- > Concentrations of Oil and Grease were reported below laboratory detection limit at all sample locations;
- Concentrations of Chlorophyll-a were reported below the laboratory detection limit and adopted assessment criteria at all sample locations;
- > Total Suspended Solids (TSS) concentrations were detected within both WP1 and WP2, with concentrations of 9.2 mg/L at WP1 and 35 mg/L at WP2; and
- > Turbidity ranged from 9.3 NTU at WP1 to 13.2 NTU at WP2.

7.4 Results Discussion

7.4.1 Baseline Monitoring Results

As described above, the baseline dry weather monitoring undertaken shows that generally monitored parameters are within the adopted threshold criteria with the exception of nitrogen, phosphorous, and dissolved oxygen saturation. Generally, downstream results for inorganic analytes were lower than upstream results. Hydrocarbon sheen was observed on at both locations, however oil and grease was only detected above the limit of reporting at the WP1 downstream location.

During the dry weather event, the two inlet points from the rail corridor (eastern and western) slightly upstream from the WP2 downstream sampling point were not observed to be flowing. The eastern inlet point is assumed to collect flow from towards to the construction footprint, and the western inlet from away from the opposite side of the channel. Results are likely representative of natural variability in water quality sampled.

7.4.2 Mid-Construction Wet Weather Event – 20 March

Results for the mid-construction wet weather event sampled on 20 March generally showed monitored parameters were within the adopted threshold criteria, with the exception of nitrogen, phosphorous, and dissolved oxygen saturation consistent with the pre-construction monitoring.

Results for upstream and downstream sampling were comparable, with the exception of TSS and turbidity which were higher in the WP2 downstream location.

It should be noted that wet weather and storm event pre-construction monitoring was not able to be conducted, and therefore baseline data for comparison is not available. During the wet weather sampling event the two inlet points within the rail corridor mentioned above immediately upstream from WP2 were observed to be flowing and contributing to the channel.

8 Conclusion

Cardno was engaged to undertake surface water monitoring of the unnamed channel west of Wiley Park Station in accordance with the SWMP for the project. The objective of the works was to evaluate whether construction activities are impacting water quality downstream of the project footprint in the unnamed channel.

This report presents monitoring data from one pre-construction baseline dry weather event on 10 March 2021, and one mid-construction wet weather event on 20 March 2021.

Baseline dry weather sampling results showed monitored parameters were generally within the adopted ANZECC screening criteria with the exception of nitrogen, phosphorous and dissolved oxygen saturation.

During the wet weather event sampled on 20 March, TSS and turbidity results were observed to be higher in the downstream WP2 sampling point. Although baseline conditions for wet weather are unknown, Cardno recommends the Environment Manager (or delegate) to re-test to confirm results and undertake an inspection of the adjacent works and propose actions where required in accordance with the SMWP.

9 References

- Southwest Metro Hurlstone Park, Belmore and Wiley Park Station Upgrades Soil and Water Management Plan, dated 16th February 2021;
- > The Sydney Metro City and Southwest Sydenham to Bankstown Upgrade Conditions of Approval SSI-8256, determined 12 December 2018;
- > Environmental Planning and Assessment Act 1979 (EP&A Act);
- > Contaminated Land Management Act 1997;
- > Protection of the Environment Operations Act 1997 (POEO Act);
- > Water Management Act 2000 Water Management (General) Regulation 2018;
- > Landcom (2004). Managing Urban Stormwater: Soils and Construction. (Volume 1 of the 'Blue Book');
- DECC (2008). Managing Urban Stormwater: Soils and Construction. Volume 2D: Main Road Construction. (Volume 2D of the 'Blue Book');
- ANZECC (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (collectively known as the 'ANZECC Guidelines');
- > ANZECC (2018). Australian and New Zealand Guidelines for Water Quality Monitoring and Reporting (collectively known as the 'ANZECC Guidelines');
- ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (known as 'ANZG Guidelines').

10 Limitations

This assessment has been undertaken in general accordance with the current industry standards for a surface water monitoring report for the purpose and objectives and scope identified in this report. The agreed scope of this assessment has been limited for the current purposes of the Client. The assessment may not identify contamination occurring in all areas of the site, or occurring after sampling was conducted. Subsurface conditions may vary considerably away from the sample locations where information has been obtained. This Document has been provided by Cardno subject to the following limitations:

- > This Document has been prepared for the particular purpose outlined in Cardno's proposal and Section 1 of this report and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.
- > The scope and the period of Cardno's services are as described in Cardno's proposal, and are subject to restrictions and limitations. Cardno did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Cardno in regards to it.
- > Conditions may exist which were undetectable given the limited nature of the enquiry Cardno was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.
- In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Cardno's opinions are based upon information that existed at the time of the production of the Document. It is understood that the services provided allowed Cardno to form no more than an opinion of the actual conditions of the site at the time this Document was prepared and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.
- > Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.
- > Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Cardno for incomplete or inaccurate data supplied by others.
- Cardno may have retained sub consultants affiliated with Cardno to provide services for the benefit of Cardno. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Cardno's affiliated companies, and their employees, officers and directors.

This assessment report is not any of the following:

- > A Site Audit Report or Site Audit Statement (SAR/SAS) as defined under the Contaminated Land Management Act, 1997 or an assessment sufficient for an Environmental Auditor to be able to conclude a SAR/SAS.
- > A geotechnical report and the bore logs/test pit logs may not be sufficient for geotechnical advice.
- > An assessment of surface water contaminants potentially arising from other sites or sources nearby.
- > A total assessment of the site to determine suitability of the entire parcel of land at the site for one or more beneficial uses of land

APPENDIX

PHOTOGRAPHS

Photograph 1. Condition observed from sampling location of WP1 during the monitoring event – 10 March.

Photograph 2. Condition observed from sampling location of WP2 during the monitoring event – 10 March.

Photograph 3. Condition observed from sampling location of WP1 during the monitoring event – 20 March.

Photograph 4. Condition observed from sampling location of WP2 during the monitoring event – 20 March.

APPENDIX

FIELD RECORDS

LAREMS02.02.04 – Sample Register

Project Det	tails
Project Name: Downe Lp	Job Number: Darne UP
Site Address: L. U. Jah Statur	PP/PM: 🔏🏹
Client Company/Contact:	Date: 10.3.2
Persons Present:	Notes By: 10-

		Sample Register
Sample ID e.g. BH1_0.1	Location	Description e.g. Soil Name / Secondary Component / Consistency / Plasticity/ Colour / Moisture / Other
WPI	0/5	
	· ·	Cler, low tub, visible oil steen
		# Aubbish in canal. Water Socar e, de
		Channel ~ 30 mm deco
		PH: 7.90, SPC: 513, DD: 6904 5.64 /63%
		ORP 140.7 temp 21.7
6/2	PIS	1H: 7.61 SPC: 363, 00: A. 04 5.9%
R400 44200		ORP 181.0 TCmp 21.1
		Some vegetation debris in cong/.
		mater dan for tab, visible sheep
		Late 30cm vide, 30-40 mm deep
		·

Cardno Shaping the Future

Error! Unknown document property

Surface Water Sampling Field Record

Site / Project: Johne	- hileg 1	ah		Sampling	Point: WP1			
Client:	No	wh		Job No.	NES0187			
Person Sampling:					Initials: 1			
		Site Detai	S					
Sampling Equipment - Directly in	nto bottle / Water Sc	oop / Van Dorn Sa	mpler / Other:	Date: 2	0.3.21			
Observations on Site: Last Rair	Event / Repent S	torms / Releases	/ Other: Stor	n duis	Sharphin			
Sample Details, Ob				emical Measur	ements			
Sample ID		ele, record paramet	ers once stable)	32110 35 10 26				
Start Time:	II. AC							
Easting	11.45							
Northing								
Sample Depth (m)	0.1							
Water Body Depth (m)	0.3							
Location – Onsite/Offsite /Inlet/Outlet/ Middle	"pstream Channel							
Flow Rate None/ Low / Med / High	High							
DO (mg/L)	4.79							
EC (µS/Cm)	246-2							
рН	8.10							
Eh (mV)	1223							
Temp (^o C)	20.2							
Water Colour	brown							
Turbidity Low / Med / High	med							
Observations / Notes	N D sheen							
	Sample C	ontainer & Pre	eservation Data					
Number of sample containers:	4							
Container Volume								
Container Type								
Preservation								
Sample Number (for Lab ID):	wp1							
QC Dup Sample No.:								

name.

Surface Water Sampling Field Record

	oundoo mate				1 -
Site / Project:	holes p	Jul		Sampling Po	
Client: Down	r				VEZUPZ
Person Sampling:	W			Initials: 80	N I
		Site Details		The States	
Sampling Equipment - Directly inte	o bottle / Water Scool	o / Van Dom Sample	r / Other:	Date: Zo.3	
Observations on Site: Last Rain	Event / Recent Stor	ms / Releases / O	ther: Storn	duy San	19/3
Sample Details, Obs	orvations, GPS	record parameters	leiu i nyoloon	emical Measure	ments
Sample ID	(II possible.				
Start Time:	12:00				
Easting					
Northing					
Sample Depth (m)	0.(
Water Body Depth (m)	0.7				
Location – Onsite/Offsite /Inlet/Outlet/ Middle	pour steam channel				
Flow Rate None/ Low / Med / High	H194				
DO (mg/L)	3-92	ť			
EC (μS/Cm)	133.4				
рН	7.58				
Eh (mV)	136.9				
Temp (^o C)	20.0				
Water Colour	boun				
Turbidity Low / Med / High	mel				
Observations / Notes	10 Sheen				
	Sample Co	ontainer & Pres	ervation Data		
Number of sample containers:	A				
Container Volume				-	
Container Type				_	
Preservation	1				
Sample Number (for Lab ID):	WPZ	EVIA -			
QC Dup Sample No .:	QA(DO	QAZ	ð 🖻		

C Cardno Shaping the Future

name.

Error! Unknown document property

ŧ

Surface Water Sampling Field Record

Site / Project: Darch	hiles 1	ah		Sampling Point:
Client:	Bure			JOB NO. ANE30 68 2
Person Sampling:	,			Initials: ACI
		Site Detail	S	
Sampling Equipment – Directly in	nto bottle / Water Sce	op / Van Dorn Sar	npler / Other:	Date: 20.3.2/
Observations on Site: Last Rair	1 Event / Recent St	orms / Releases	/ Other: Storm d	in Sampling
Sample Details, Ob		S Coordinates	& Field Physiochem	ical Measurements
Sample ID	WIZA			
Start Time:	12:010		-	
Easting				
Northing				
Sample Depth (m)	0.(
Water Body Depth (m)	0.3			
Location – Onsite/Offsite /Inlet/Outlet/ Middle	outlet, offsitesid	Station		
Flow Rate None/ Low / Med / High	H194			
DO (mg/L)	480			
EC (µS/Cm)	214.1			
рН	9.05			
Eh (mV)	93.5			
Temp (^o C)	20.1			
Water Colour	Brown			
Turbidity Low / Med / High	med			
Observations / Notes	Mo sheen			
	Sample Co	ontainer & Pre	servation Data	
Number of sample containers:	4			
Container Volume	0			
Container Type				
Preservation				
Sample Number (for Lab ID):	LPZA			
QC Dup Sample No.:				

Error! Unknown document property

· ·

Surface Water Sampling Field Record

Site / Project:	- Wiley Donne	Pah		Sampling Point: LP28 Job No. 4NE30187							
Client:	Downe			Job No. 41 83 2/87							
Person Sampling:	BW			Initials: 154							
		Site Details									
Sampling Equipment – Directly in		/		Date: 20-321							
Observations on Site: Last Rain	Event / Recent St	oms / Releases /	Other: Sform C	Leving Sampling							
Sample Details, Observations, GPS Coordinates & Field Physiochemical Measurements (if possible, record parameters once stable)											
Sample ID											
Start Time:	12:05										
Easting											
Northing											
Sample Depth (m)	0.1										
Water Body Depth (m)	0.3										
Location – Onsite/Offsite /Inlet/Outlet/ Middle	Oullet 1 Poste	trach									
Flow Rate None/ Low / Med / High	High										
DO (mg/L)	5.19										
EC (µS/Cm)	193.1										
рН	7.73										
Eh (mV)	142.3										
Temp (^o C)	20.1										
Water Colour	brown										
Turbidity Low / Med / High	red										
Observations / Notes	No Gheen										
	Sample Co	ontainer & Pres	ervation Data								
Number of sample containers:	4										
Container Volume	1										
Container Type											
Preservation	1000										
Sample Number (for Lab ID):	WPLB										
QC Dup Sample No.:											

Revision: 1 Approved: 25/02/2014 LAREMS02.02.03 - Surface Water Sampling Field Sheet.docx This document is current for 24 hours after print date Page 1 of 1 Printed: 19/03/2021

APPENDIX

LABORATORY SUMMARY TABLES

		TPH			Inorg	ganics				Physic	o-Chemical	
	Chlorophyll a	Oil and Grease	Kjeldahl Nitrogen Total	Nitrate & Nitrite (as N)	Nitrogen (Total)	Phosphorus	TSS	Turbidity	На	Temprature	Electrical Conductivity	Dissolved Oxygen
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	NTU	Units	°c	uS/cm	%Sat
EQL	0.005	5	0.1	0.01	0.1	0.01	1	0.1	0.01	0.1	0.1	0.1
ANZECC Criteria - Freshwater	0.003	-	-	-	0.35	0.025	-	<6-50	6.5-8.5	-	125-2200	85% - 110%

Lab Report Number	Field ID	Date												
779437	WP1	10/03/2021	<0.005	<10	1.3	1.2	2.5	0.34	<1	2.9	7.9	21.3	543	63
779437	WP2	10/03/2021	<0.005	29	0.8	0.88	1.68	0.12	<1	<1	7.61	21.1	363	45.9
782225	WP1	20/03/2021	<0.005	<10	0.6	1.7	2.3	<0.5	9.2	9.3	8.1	20	246.2	52.87
782225	WP2	20/03/2021	<0.005	<10	0.8	1.5	2.3	<0.5	35	13	7.58	20.1	133.4	43.18
779437	QA100	10/03/2021	-	28	2.7	0.86	3.56	0.12	4	1.2	-		-	-
782225	QA100	20/03/2021	-	<10	0.9	1.8	2.7	<0.5	25	17	-		-	-
ES2108619	QA200	10/03/2021	-	8	0.6	0.74	1.3	0.09	6	1	-		-	-
ES2110601	QA200	20/03/2021	-	<5	1	1.33	2.3	0.29	31	13.4	-		-	-

Statistics

Maximum Concentration	<0.005	29.00	2.70	1.80	3.56	0.34	35.00	17.00	8.10	543.00	63
* A Non Detect Multiplier of 0.5 has been applied.											

Non Detect Multiplier of 0.5 has been applied.

APPENDIX

QUALITY ASSURANCE/QUALITY CONTROL

Quality Assurance/Quality Control (QA/QC) procedures were implemented to ensure the precision accuracy, representativeness, completeness and comparability of all data gathered. The QA/QC procedures included:

- > Equipment calibration to ensure field measurements obtained are accurate
- > Equipment decontamination to prevent cross contamination
- > Use of appropriate measures (i.e. gloves) to prevent cross contamination
- > Appropriate sample identification
- > Correct sample preservation
- > Sample transport with Chain of Custody (COC) documentation
- > Laboratory analysis in accordance with NATA accredited methods.

Table E1 details the QA/QC procedures and sample collection details undertaken through the surface water elements of the investigation. Copies of all the COCs, along with the Sample Receipt Notifications (SRNs), Interpretive QA/QC Reports are provided in **Appendix F**.

Table E1 Field QA / QC Method Validation

Requirement	Yes / No	Comment	s		
Equipment decontamination	Yes	equipment	ent of involving reusab (water quality meter, tel ith phosphate free deterg	escopic water scoop e	etc.) was undertaken by
Sample collection	Yes	clean pair	vere collected using dispose of gloves was used for of cross-contamination.		
QA/QC sample collection	Yes	collected for practices for duplicate a	urface water duplicate an or intra and inter-lab QA/ or sample collection. Card and triplicate sample per s te sample collection.	QC purposes to monito no based the investiga	or the quality of the field tion around a rate of one
Sample identification	Yes	All sample location, a	s were marked with a uni nd date.	que identifier including	project number, sample
Sample preservation	Yes	Samples v laboratory.	vere placed in a chilled ic	e box with ice for stor	age and transport to the
COC documentation	Yes	date, samp returned to and Samp indicates t	rm was completed by Ca oler and laboratory analys Cardno by the laboratory le Receipt Notification (\$ hat the samples were re- required holding times.	is required. The COC staff upon receipt of all SRN) are provided in	form was signed off and the samples. COC forms Appendix F . The SRN
NATA accredited methods	Yes	with NATA	accredited Eurofins mgt accredited methods. A aboratory results provided	nalytical methods use	
Laboratory Internal QC	No	All Data Q	uality Objectives were me	t by the laboratories.	
Table E2 Field QA/QC Co	llection Sumr	mary			
Environmental Media	a	Date	Primary	Duplicate	Triplicate

Environmental Media	Date	Primary	Duplicate	Triplicate
Surface Water	10/03/2020	WP2	QA100	QA200
Surface Water	20/03/2020	WP2	QA100	QA200

Relative Percentage Difference Determination

Laboratory results for duplicate and triplicate samples are assessed using a determination of the Relative Percentage Difference (RPD). Where a primary sample and a duplicate sample are compared, the RPD provides an indication of the reproducibility of the results, which incorporates the sampling method. Where a primary sample and a split sample are compared, the RPD provides an indication of the accuracy of the primary laboratory results as compared to the secondary laboratory result.

The calculation used to determine the RPD is:

$$RPD = \frac{(Co - Cs)}{\left(\frac{Co + Cs}{2}\right)} x100$$

Where:

Co = Concentration of the original sample

Cs = Concentration of the duplicate sample

In calculating the RPD values the following protocols were adopted:

- > Where both concentrations are above laboratory reporting limits the RPD formula is used;
- > Where both concentrations are below the laboratory reporting limits, no RPD is calculated; and
- > Where one or both sample concentrations are reported to be less than ten times (<10x) the laboratory reporting limit, the RPD is calculated but is not assessed against the adopted criterion.

In accordance with the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended 2013, Cardno adopts an RPD acceptance criterion up to 30% of the mean concentration of the analyte. It should be noted that variations might be higher for organic analysis, due to the volatile nature of the components, and for low concentrations of analytes.

The adopted criterion will not apply to RPDs where one of both concentrations are less than 10 times the reporting limit, as this criterion would otherwise overestimate the significance of minor variations in concentrations at or near the laboratory reporting limit. Large RPDs returned for low concentrations of analytes near the reporting limit is not as indicative of a significant difference in the results as a small RPD is for larger concentrations.

This approach is employed by NATA accredited laboratories when assessing internal duplicate sample RPDs. This approach acknowledges that concentrations at or around the reporting limit are too low for an accurate evaluation of the significance of the RPD.

This approach has been adopted when assessing the relevance (compliance) of RPDs during this investigation. RPDs will be calculated for sample sets where one or both concentrations are less than 10 times the reporting limit for discussion purposes, but will not be assessed as a pass or fail in relation to the criterion.

The RPD results for duplicate samples are presented in this appendix. Although six (6) RPD values were reported to be above the accepted 30% RPD criteria. The breaches in RPDs are not considered to alter the overall outcome of the assessment. It can be concluded that the analytical data can be relied upon for the purposes of this factual report.

Laboratory QC and QCI Report Summary

The laboratories selected for undertaking the analysis (Eurofins mgt and ALS) are NATA accredited for the analysis required, and undertook certain QA/QC requirements to demonstrate the suitability of the data that is obtained. The laboratory is required to undertake and report internal laboratory Quality Control (QC) procedures for all chemical analysis undertaken. The QC testing is required to include:

> Laboratory duplicate sample analysis at the rate of one duplicate analysis per ten samples

- > Method blank at the rate of one method blank analysis per 20 samples
- > Laboratory control sample at the rate of one laboratory control sample analysis per 20 samples
- > Spike recovery analysis at the rate of one spike recovery analysis per 20 samples.

Compliance with the laboratory QA/QC requirements and non-conformance details are discussed in the internal Laboratory QA/QC reports included with the certificates of analysis in **Appendix F**. Laboratory QA/QC requirements were within acceptance limits.

Cardno concludes that the data reported by the NATA accredited Eurofins mgt and ALS as presented in this report is suitable for interpretative purposes and to make conclusions/recommendations regarding water quality.

		Ī	Lab Report Number	779437	779437		779437	ES2108619		782225	782225		782225	ES2110601	
			Field ID	WP2	QA100		WP2	QA200		WP2	QA100		WP2	QA200	
			Matrix Type	water	water										
			Date	10/03/2021	10/03/2021	RPD	10/03/2021	10/03/2021	RPD	20/03/2021	20/03/2021	RPD	20/03/2021	20/03/2021	RPD
	Unit	EQL													
NA															
Chlorophyll a	mg/L	0.005		< 0.005			< 0.005			< 0.005			< 0.005		
ТРН															
Oil and Grease	mg/L	5		29	28	4	29	8	114	<10	<10	0	<10	<5	0
Inorganics															
Kjeldahl Nitrogen Total	mg/L	0.1		0.8	2.7	109	0.8	0.6	29	0.8	0.9	12	0.8	1.0	22
Nitrate & Nitrite (as N)	mg/L	0.01		0.88	0.86	2	0.88	0.74	17	1.5	1.8	18	1.5	1.33	12
Nitrogen (Total)	mg/L	0.1		1.68	3.56	72	1.68	1.3	26	2.3	2.7	16	2.3	2.3	0
Phosphorus	mg/L	0.01		0.12	0.12	0	0.12	0.09	29	<0.5	<0.5	0	<0.5	0.29	0
TSS	mg/L	1		<1	4.0	120	<1	6	143	35	25	33	35	31	12
Turbidity	NTU	0.1		<1	1.2	18	<1	1.0	0	13	17	27	13	13.4	3

*RPDs have only been considered where a concentration is greater than 1 times the EQL. **Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 81 (1 - 10 x EQL); 50 (10 - 30 x EQL); 30 (> 30 x EQL)) ***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

APPENDIX

LABORATORY REPORTS

	Cardno * haping the Future				CHAIN	OF C	USTO	DDY A	AND A			S RE	QUES	Т			Page 1 of
ontact Person:	Ben Withnall	enales tarabanas				Project Na	ime:		Downer S	ydney Metro	Stations						s and the second second second
elephone Number:	0436 687 417	and the state of the state of the				Project Nu	imber:		Downer W	(P							
ternative Contact:	Chong Zheng					PO No.:			Contract of	990 AND 1		a Charles	A Hiller B				
lephone Number:						Project Sp	ecific Quot	e No. :		3 A. 1.18	M. M. Harris	1	90408CDNN_1		The second	TREA LINE	State State State State
	BW					Turnarour	nd Requirem	nents:		Standard TAT							
nail Address (results an		ben.withnall@cardno	o.com.au; ContamNSW	/@cardno.com.au		Lab:			Eurofins	Unit F3, B	uilding F, 16	6 Mars Rd,	Lane Cove Wes	st NSW2066	120.5 112	Sec. A good	
	rum, 203 Pacific Highway, St L					Attn:	1.12.10.1.10	1.	Sample R	eceipt	UNITE UNIT						
		Sample information									Analysis F	Required			1 7 UT :	2.5.8	Comments
			ALT BE ALT ALL A	Real Las													
Cardno Sample ID	Laboratory Sample ID	No. Containers	Preservation	Date sampled	Matrix	Chlorophyll-a	TSS	Turbidity	Oil and Grease	Total Phosphorus	Total Nitrogen						
WP1	AND DESCRIPTION OF THE OWNER OWNE	4	ICE	10/03/2021	Water	1	1	1	1	1	1						
WP2	Charles (School Park)	4	ICE	10/03/2021	Water	1	1	1	1	1	1						
QA100		3	ICE	10/03/2021	Water		1	1	1	1	1						
QA200	和中国的中国 的特别的中国	3	ICE	10/03/2021	Water	No. Con	1	1	1	1	1	1000					Please send to ALS
						1.000											
				Mars 1995				1.000	Sale select			10000					
			Charles and and and a	1. Martine Street		1.		1	1			12					
				A STATISTICS						-		-					
					1					-							
		The self-self-self-	And Distances						-			1					
all second and							1	100 B 100		Constant of							
												14,015,010					
							and the second	distanti i									A CONTRACTOR OF THE OWNER
										12100000							
								in the			States 7						
								- Anno									
linguished by:	Ben Withnall	Received by:	A BIRKET	T	Relinquished by	:				Received	by:				Relinqui	shed by:	
ame / company)	Cardno ACT/NSW Pty Ltd	(name / company)	EUROF	INS	(name / compan	y ii				(name / c	ompany)	-	AN BARAN		(name /	company)	
te & Time:	10/03/2021	Date & Time: 10	03/21 3:	55pm	Date & Time:					Date & Ti					Date & T	ime:	
	NAME OF TAXABLE AND ADDRESS OF TAXABLE ADDRESS OF T		up	F	Signature:					Signature					Signatur		
ignature: BW Signature: CO eceived by: Relinquished by:			7		Received by:					Relinquished by: Lab use:							
name / company) (name / company)				(name / compan	у			1999 - S.	(name / company) Samples Receiv					Received:	Cool or Ambient (circle one)		
					Date & Time:									ture Receiv	ved at;20-5 (if applicable)		
ate & Time:		Date & Time: Signature:			Signature:										nd delivered / courier		

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

New Zealand

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone : +61 3 8564 5000 Lane Cove We NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F Brisbane NATA # 1261 Site # 18217

 Muraris Road
 Muraris QLD 4172

 Lane Cove West NSW 2066
 Phone : +61 7 3902 4600

 Phone : +61 2 9900 8400
 NATA # 1261 Site # 10017
 1/21 Smallwood Place NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:	Cardno (NSW/ACT) Pty Ltd
Contact name:	Ben Kortlever
Project name:	DOWNER SYDNEY METRO STATIONS
Project ID:	DOWNER WP
Turnaround time:	5 Day
Date/Time received	Mar 10, 2021 3:55 PM
Eurofins reference	779437

Sample Information

- 1 A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab. 1
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

QA200(oil and grease jar, unpreserved 500ml bottle and nutrients bottle) forwarded to ALS.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager: Ursula Long on phone : or by email: UrsulaLong@eurofins.com Results will be delivered electronically via email to Ben Kortlever - benjamin.kortlever@cardno.com. Note: A copy of these results will also be delivered to the general Cardno (NSW/ACT) Pty Ltd email address.

Global Leader - Results you can trust

	eurofi	ns I			Australia										New Zealand	
	curori		ironment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500	U 175 1 D La		Road /e West	NSW 2	1/ M 066 PI	lurarrie hone :	allwood Place QLD 4172 +61 7 3902 4600	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450
ABN: 5	i0 005 085 521 web: v	www.eurofins.com.au	ı email: EnviroSale		NATA # 1261 Site # 1254 & 14271				900 840 e # 182		AIA #	1261 Site # 20794	NATA # 1261 Site # 23736	Phone : +61 2 4968 8448	IANZ # 1327	IANZ # 1290
	mpany Name: dress:	•	W/ACT) Pty Lt Pacific Highw				R	rder I eport hone: ax:	#:	C		87 967700 99 3902		Received: Due: Priority: Contact Name:	Mar 10, 2021 3:55 Mar 17, 2021 5 Day Ben Kortlever	РМ
	oject Name: oject ID:										Eurofins Analytical	Services Manager : l	Jrsula Long			
		Sa	Imple Detail			Chlorophyll a	Oil & Grease (HEM)	Phosphate total (as P)	Total Suspended Solids Dried at 103–105°C	Turbidity	Total Nitrogen Set (as N)					
	ourne Laborato			.71		Х	X	Х	X	Х	Х	_				
	ney Laboratory											4				
	bane Laboratory h Laboratory - N											4				
	field Laboratory		50									-				
	rnal Laboratory											1				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							1				
1	WP1	Mar 10, 2021		Water	S21-Ma20129	Х	Х	Х	Х	Х	Х					
2	WP2	Mar 10, 2021		Water	S21-Ma20130	Х	Х	х	Х	х	Х					
3	QA100	Mar 10, 2021		Water	S21-Ma20131		х	х	Х	х	Х					
Test	Counts					2	3	3	3	3	3					

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway St Leonards NSW 2065

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Ben Withnall

Report
Project name
Project ID
Received Date

779437-W DOWNER SYDNEY METRO STATIONS DOWNER WP Mar 10, 2021

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			WP1 Water S21-Ma20129 Mar 10, 2021	WP2 Water S21-Ma20130 Mar 10, 2021	QA100 Water S21-Ma20131 Mar 10, 2021
Test/Reference	LOR	Unit			
Chlorophyll a	5	ug/L	< 5	< 5	-
Nitrate & Nitrite (as N)	0.05	mg/L	1.2	0.88	0.86
Oil & Grease (HEM)	10	mg/L	< 10	29	28
Phosphate total (as P)	0.01	mg/L	0.34	0.12	0.12
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	1.3	0.8	2.7
Total Nitrogen (as N)*	0.2	mg/L	2.5	1.68	3.56
Total Suspended Solids Dried at 103–105°C	1	mg/L	< 1	< 1	4.0
Turbidity	1	NTU	2.9	< 1	1.2

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chlorophyll a	Melbourne	Mar 13, 2021	2 Days
- Method: LTM-INO-4340 Chlorophyll a in Waters			
Oil & Grease (HEM)	Melbourne	Mar 13, 2021	28 Days
- Method: LTM-INO-4180 Oil and Grease (APHA 5520B)			
Phosphate total (as P)	Melbourne	Mar 13, 2021	28 Days
- Method: LTM-INO-4040 Phosphate by CFA			
Total Suspended Solids Dried at 103–105°C	Melbourne	Mar 13, 2021	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Turbidity	Melbourne	Mar 15, 2021	2 Days
- Method: Turbidity by classical using APHA 2130B (LTM-INO-4140)			
Total Nitrogen Set (as N)			
Nitrate & Nitrite (as N)	Melbourne	Mar 13, 2021	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Total Kjeldahl Nitrogen (as N)	Melbourne	Mar 13, 2021	7 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			

	eurofi	ns			Australia										New Zealand	
	curon		ironment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261	U 175 16 D La	Mars I ane Cov	ve West		1/ M 066 PI	urarrie hone : ·	e allwood Place QLD 4172 +61 7 3902 4600 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
ABN: 5	0 005 085 521 web:	www.eurofins.com.au	email: EnviroSale		Site # 1254 & 14271				e # 182		NIA#	1201 Sile # 20734	Site # 23736	Filone . 101 2 4900 0440	IANZ # 1327	IANZ # 1290
	mpany Name: dress:		N/ACT) Pty Lt Pacific Highw				Re	rder N eport none: ax:	#:	C		7 67700 99 3902		Received: Due: Priority: Contact Name:	Mar 10, 2021 3:55 Mar 17, 2021 5 Day Ben Kortlever	РМ
	oject Name: oject ID:	DOWNER S DOWNER W		RO STATIONS										Eurofins Analytical	Services Manager : L	Jrsula Long
		Sa	mple Detail			Chlorophyll a	Oil & Grease (HEM)	Phosphate total (as P)	Total Suspended Solids Dried at 103–105°C	Turbidity	Total Nitrogen Set (as N)					
		ory - NATA Site		71		Х	X	Х	X	Х	Х	-				
		- NATA Site # 1 y - NATA Site #										4				
		NATA Site # 237										1				
	ield Laboratory]				
	rnal Laboratory	1										4				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	WP1	Mar 10, 2021		Water	S21-Ma20129	Х	Х	Х	Х	Х	Х	1				
2	WP2	Mar 10, 2021		Water	S21-Ma20130	Х	Х	Х	X	Х	Х	4				
3		Mar 10, 2021		Water	S21-Ma20131		Х	Х	X	Х	Х	4				
Test	Counts					2	3	3	3	3	3					

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Nitrate & Nitrite (as N)				< 0.05			0.05	Pass	
Oil & Grease (HEM)			mg/L	< 10			10	Pass	
Phosphate total (as P)			mg/L	< 0.01			0.01	Pass	
Total Kjeldahl Nitrogen (as N)			mg/L	< 0.2			0.2	Pass	
Total Suspended Solids Dried at 103–105°C			mg/L	< 1			1	Pass	
LCS - % Recovery									
Nitrate & Nitrite (as N)				98			70-130	Pass	
Oil & Grease (HEM)				80			70-130	Pass	
Phosphate total (as P)			%	106			70-130	Pass	
Total Kjeldahl Nitrogen (as N)				118			70-130	Pass	
Total Suspended Solids Dried at 103–105°C			%	108			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Nitrate & Nitrite (as N)	M21-Ma24781	NCP	%	99			70-130	Pass	
Phosphate total (as P)	M21-Ma20268	NCP	%	93			70-130	Pass	
Total Kjeldahl Nitrogen (as N)	M21-Ma20374	NCP	%	126			70-130	Pass	
Total Suspended Solids Dried at 103–105°C	B21-Ma24277	NCP	%	91			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Nitrate & Nitrite (as N)	M21-Ma21606	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Oil & Grease (HEM)	M21-Ma10714	NCP	mg/L	650	630	3.0	30%	Pass	
Phosphate total (as P)	M21-Ma20267	NCP	mg/L	0.03	0.03	3.0	30%	Pass	
Total Kjeldahl Nitrogen (as N)	S21-Ma24829	NCP	mg/L	0.3	0.3	19	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Total Suspended Solids Dried at 103–105°C	S21-Ma20131	СР	mg/L	4.0	2.4	6.0	30%	Pass	
Turbidity	S21-Ma20131	CP	NTU	1.2	1.2	2.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

Ursula Long Scott Beddoes Analytical Services Manager Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CERTIFICATE OF ANALYSIS

Work Order	: ES2108619	Page	: 1 of 2
Client	: CARDNO (NSW/ACT) PTY LTD	Laboratory	: Environmental Division Sydney
Contact	MR BEN WITHNALL	Contact	: Shane Ellis
Address	: Level 9 The Forum 203 Pacific Highway	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	St Leonards NSW 2065 : +61 2 9495 8188	Telephone	: +61 2 8784 8555
Project	: Downer Sydney Metro Stations	Date Samples Received	: 11-Mar-2021 12:30
Order number	:	Date Analysis Commenced	: 12-Mar-2021
C-O-C number	:	Issue Date	: 18-Mar-2021 11:58
Sampler	: BW		INATA
Site	:		
Quote number	: EN/024/20		Accreditation No. 82
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ashesh Patel	Senior Chemist	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QA200	 	
		Sampli	ng date / time	10-Mar-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2108619-001	 	
				Result	 	
EA025: Total Suspended Solids drie	ed at 104 ± 2°C					
Suspended Solids (SS)		5	mg/L	6	 	
EA045: Turbidity						
Turbidity		0.1	NTU	1.0	 	
EK059G: Nitrite plus Nitrate as N (N	NOx) by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	0.74	 	
EK061G: Total Kjeldahl Nitrogen By	Discrete Analyser					
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.6	 	
EK062G: Total Nitrogen as N (TKN ·	+ NOx) by Discrete Ar	nalyser				
^ Total Nitrogen as N		0.1	mg/L	1.3	 	
EK067G: Total Phosphorus as P by	Discrete Analyser					
Total Phosphorus as P		0.01	mg/L	0.09	 	
EP020: Oil and Grease (O&G)						-
Oil & Grease		5	mg/L	8	 	

QUALITY CONTROL REPORT

Work Order	: ES2108619	Page	: 1 of 3	
Client	: CARDNO (NSW/ACT) PTY LTD	Laboratory	: Environmental Division	Sydney
Contact	: MR BEN WITHNALL	Contact	: Shane Ellis	
Address	: Level 9 The Forum 203 Pacific Highway St Leonards NSW 2065	Address	: 277-289 Woodpark Ro	ad Smithfield NSW Australia 2164
Telephone	: +61 2 9495 8188	Telephone	: +61 2 8784 8555	
Project	: Downer Sydney Metro Stations	Date Samples Received	: 11-Mar-2021	ANUID.
Order number	:	Date Analysis Commenced	: 12-Mar-2021	
C-O-C number	:	Issue Date	: 18-Mar-2021	
Sampler	: BW			Hac-MRA NATA
Site	:			
Quote number	: EN/024/20			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Ashesh Patel

Senior Chemist

Position

Accreditation Category

Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EA025: Total Suspe	nded Solids dried a	t 104 ± 2°C (QC Lot: 3567779)									
ES2108507-013	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	24	23	0.00	No Limit		
ES2108619-001	QA200	EA025H: Suspended Solids (SS)		5	mg/L	6	<5	18.2	No Limit		
EA045: Turbidity (C	QC Lot: 3561275)										
ES2108520-006	Anonymous	EA045: Turbidity		0.1	NTU	0.2	0.2	0.00	No Limit		
EK059G: Nitrite plu	s Nitrate as N (NOx)) by Discrete Analyser (QC Lot: 3565269)									
ES2108143-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.32	0.32	0.00	0% - 20%		
ES2108624-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.03	0.03	0.00	No Limit		
EK061G: Total Kjelo	lahl Nitrogen By Dis	screte Analyser (QC Lot: 3565264)									
ES2108143-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	1.8	1.3	32.3	No Limit		
ES2108612-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.3	0.3	0.00	No Limit		
EK067G: Total Phos	sphorus as P by Dis	crete Analyser (QC Lot: 3565265)									
ES2108143-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.62	0.48	25.5	0% - 50%		
ES2108612-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.00	No Limit		

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report			
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound CAS Nu	mber LOR	Unit	Result	Concentration	LCS	Low	High
EA025: Total Suspended Solids dried at 104 ± 2°C(QCLot: 3567779)						
EA025H: Suspended Solids (SS)	5	mg/L	<5	150 mg/L	100	83.0	129
			<5	1000 mg/L	93.8	82.0	110
			<5	463 mg/L	94.6	83.0	118
EA045: Turbidity (QCLot: 3561275)							
EA045: Turbidity	0.1	NTU	<0.1	40 NTU	101	91.0	105
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCL	.ot: 3565269)						
EK059G: Nitrite + Nitrate as N	0.01	mg/L	<0.01	0.5 mg/L	101	91.0	113
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 356	5264)						
EK061G: Total Kjeldahl Nitrogen as N	0.1	mg/L	<0.1	10 mg/L	80.5	69.0	101
			<0.1	1 mg/L	90.6	70.0	118
			<0.1	5 mg/L	85.4	70.0	130
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 3565	5265)						
EK067G: Total Phosphorus as P	0.01	mg/L	<0.01	4.42 mg/L	87.3	71.0	101
			<0.01	0.442 mg/L	100	72.0	108
			<0.01	1 mg/L	94.4	70.0	130
EP020: Oil and Grease (O&G) (QCLot: 3562835)							
EP020: Oil & Grease	5	mg/L	<5	5000 mg/L	91.8	81.0	121

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER		Matrix Spike (MS) Report						
		Spike	SpikeRecovery(%)	Acceptable	Limits (%)			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EK059G: Nitrite pl	K059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 3565269)							
ES2108143-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	99.5	70.0	130	
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 3565264)							
ES2108143-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		25 mg/L	82.9	70.0	130	
EK067G: Total Pho	EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 3565265)							
ES2108143-002	Anonymous	EK067G: Total Phosphorus as P		5 mg/L	93.2	70.0	130	

	QA/QC Compliance Assessment to assist with Quality Review								
Work Order	: ES2108619	Page	: 1 of 4						
Client	: CARDNO (NSW/ACT) PTY LTD	Laboratory	: Environmental Division Sydney						
Contact	MR BEN WITHNALL	Telephone	: +61 2 8784 8555						
Project	: Downer Sydney Metro Stations	Date Samples Received	: 11-Mar-2021						
Site	:	Issue Date	: 18-Mar-2021						
Sampler	: BW	No. of samples received	: 1						
Order number	:	No. of samples analysed	: 1						

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = With	n holding time
Method	Sample Date	Ex	traction / Preparation				
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA025: Total Suspended Solids dried at 104 ± 2°C							
Clear Plastic Bottle - Natural (EA025H) QA200	10-Mar-2021				16-Mar-2021	17-Mar-2021	✓
EA045: Turbidity							
Clear Plastic Bottle - Natural (EA045) QA200	10-Mar-2021				12-Mar-2021	12-Mar-2021	✓
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) QA200	10-Mar-2021				16-Mar-2021	07-Apr-2021	✓
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G) QA200	10-Mar-2021	16-Mar-2021	07-Apr-2021	1	16-Mar-2021	07-Apr-2021	~
EK067G: Total Phosphorus as P by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK067G) QA200	10-Mar-2021	16-Mar-2021	07-Apr-2021	1	16-Mar-2021	07-Apr-2021	✓
EP020: Oil and Grease (O&G)							
Miscellaneous Sulfuric Preserved - glass (EP020) QA200	10-Mar-2021				15-Mar-2021	07-Apr-2021	1

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Oil and Grease	EP020	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	18	16.67	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Oil and Grease	EP020	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Turbidity	EA045	WATER	In house: Referenced to APHA 2130 B. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)
Oil and Grease	EP020	WATER	In house: Referenced to APHA 5520 B. Oil & grease is a gravimetric procedure to determine the amount of oil & grease residue in an aqueous sample. The sample is serially extracted three times n-hexane. The resultant extracts are combined, dehydrated and concentrated prior to gravimetric determination. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)

CHAIN OF CUSTODY AND ANALYSIS REQUEST

Page 1 of

C Cardno

S	haping the Future					Durlast No.			Downer Sy	dnev Metro	Stations							
ontact Person:	Ben Withnall		Project Name: Downer Sydney Metro Stations Project Number: Downer WP															
	0436 687 417						PO No.:											
ternative Contact:	400408CDNN 1																	
elephone Number:		Project Specific Quote No. : Stondard TAT																
Samler BW								Turnaround Requirements:										
mail Address (results an	d involce):	ben.withnall@cardno				Lab:			Sample Re									
ddress: Level 9 - The Fo	orum, 203 Pacific Highway, St L	eonards, New South	Wales 2065 Australia	1		Attn:		-	Campio In		Analysis F	Required						Comments
		Sample information																
Cardno Sample ID	Laboratory Sample ID	No. Containers	Preservation	Date sampled	Matrix	Chlorophyll-a	TSS	T urbidity	Oil and Grease	Total Phosphorus	L Total Nitrogen							
WP1		4	ICE	20/03/2021	Water	1	1	1	. 1	1	1	-						
		4	ICE	20/03/2021	Water	1	1	1	1	1	1	-						
WP2 WP2a		4	ICE	20/03/2021	Water	1	1	1	1	1	-	-						
WP2b		4	ICE	20/03/2021	Water	1	1	1	1	1	1							
		3	ICE	20/03/2021	Water	_	1	1	1	1	1	-			1			Please send to A
QA100 QA200		3	ICE	20/03/2021	Water		1	1	1	1		-	-					
QA200									-									
												-	_					
										+								
										-			-					
						_						-						
										-								
												-						
						_		+										
						_	-	_	-		-							
						_	_	_	_									
						_				_		-						
									_					-	1			
	-							-					+					
							_		_	-				_		Relinquis	had by:	
		Received by:	NO.		Relinquished	d by:				Receive	ed by:							
Relinguished by:	Ben Withnall	Received by.	ELIZOFINK	2	(name / com	pany				(name /	/ company)					(name / c		
(name / company)	Cardno ACT/NSW Pty Lt	d (name / company	ENROFIN	6:48PN						Date &	Time:					Date & Ti	me:	
Date & Time:	22/03/2021	Date & Time: 🚽	213121	Jo. 101 10						Signat	ure:					Signature		
Signature:	BW	Signature:	1 Ic	200	Signature: Received by	<i>p</i> .					uished by:					Lab use:		
Received by:		Relinquished by:	0,000	.3°C # 78222	in courted by					(name	/ company)		_				Cool or Ambient (circle one)
(name / company)		(name / company	N KEPOKIA	F TOdda	1					Date &							ture Receiv	
Date & Time:		Date & Time:			Date & Time	:			_	-						Transpor	ted by: Ha	nd delivered / courier
		Signature:			Signature:					Signat	ure:							
Signature:																		

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

New Zealand

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone : +61 3 8564 5000 Lane Cove We NATA # 1261 Site # 1254 & 14271

Sydney Unit F3. Building F Brisbane NATA # 1261 Site # 18217

 Muraris Road
 Muraris QLD 4172

 Lane Cove West NSW 2066
 Phone : +61 7 3902 4600

 Phone : +61 2 9900 8400
 NATA # 1261 Site # 10017
 1/21 Smallwood Place NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:	Cardno (NSW/ACT) Pty Ltd
Contact name:	Ben Withnall
Project name:	DOWNER SYDNEY METRO STATIONS
Project ID:	DOWNER WP
Turnaround time:	5 Day
Date/Time received	Mar 22, 2021 6:48 PM
Eurofins reference	782225

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table. 1
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab. 1
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Sample QA200 forwarded to ALS for analysis. Samples received by the laboratory after 5.30pm are deemed to have been received the following working day.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Ursula Long on phone : or by email: UrsulaLong@eurofins.com

Results will be delivered electronically via email to Ben Withnall - ben.withnall@cardno.com.au.

Note: A copy of these results will also be delivered to the general Cardno (NSW/ACT) Pty Ltd email address.

Global Leader - Results you can trust

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway St Leonards NSW 2065

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention:		
Report		

Project name

Received Date

Project ID

782225-W-V2 DOWNER SYDNEY METRO STATIONS DOWNER WP Mar 22, 2021

Ben Withnall

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			WP1 Water S21-Ma41856 Mar 20, 2021	WP2 Water S21-Ma41857 Mar 20, 2021	QA100 Water S21-Ma41860 Mar 20, 2021
Test/Reference	LOR	Unit			
Chlorophyll a	5	ug/L	< 5	< 5	-
Nitrate & Nitrite (as N)	0.05	mg/L	1.7	1.5	1.8
Oil & Grease (HEM)	10	mg/L	< 10	< 10	< 10
Phosphate total (as P)	0.01	mg/L	< 0.5	< 0.5	< 0.5
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.6	0.8	0.9
Total Nitrogen (as N)*	0.2	mg/L	2.3	2.3	2.7
Total Suspended Solids Dried at 103–105°C	1	mg/L	9.2	35	25
Turbidity	1	NTU	9.3	13	17

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chlorophyll a	Melbourne	Mar 24, 2021	2 Days
- Method: LTM-INO-4340 Chlorophyll a in Waters			
Oil & Grease (HEM)	Melbourne	Mar 24, 2021	28 Days
- Method: LTM-INO-4180 Oil and Grease (APHA 5520B)			
Phosphate total (as P)	Melbourne	Mar 24, 2021	28 Days
- Method: LTM-INO-4040 Phosphate by CFA			
Total Suspended Solids Dried at 103–105°C	Melbourne	Mar 24, 2021	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Turbidity	Melbourne	Mar 29, 2021	2 Days
- Method: Turbidity by classical using APHA 2130B (LTM-INO-4140)			
Total Nitrogen Set (as N)			
Nitrate & Nitrite (as N)	Melbourne	Mar 24, 2021	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Total Kjeldahl Nitrogen (as N)	Melbourne	Mar 24, 2021	7 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			

	eurofi	ns			Australia										New Zealand	
	conorn		ronment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261	U 175 16 D La		Road e West		1/ M 066 P	lurarri hone :	ne nallwood Place e QLD 4172 : +61 7 3902 4600 ! 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
ABN: 5	0 005 085 521 web: v	www.eurofins.com.au	email: EnviroSale		Site # 1254 & 14271				e # 182				Site # 23736			
	mpany Name: dress:		N/ACT) Pty Lt Pacific Highw				Re Pl	der N eport none: ix:	#:	(25 967700 199 3902		Received: Due: Priority: Contact Name:	Mar 22, 2021 6:48 Mar 30, 2021 5 Day Ben Withnall	РМ
	oject Name: oject ID:	DOWNER S DOWNER W		RO STATIONS	;									Furofins Analytical	Services Manager : I	Irsula Long
						0	0	σ	-	-	-			Euronn's Analytical	oervices manager .	
		Sa	mple Detail			Chlorophyll a	Oil & Grease (HEM)	Phosphate total (as P)	Total Suspended Solids Dried at 103–105°C	Turbidity	Total Nitrogen Set (as N)					
	ourne Laborato			271		х	х	Х	х	Х	Х	_				
	ney Laboratory										-	4				
	bane Laboratory										-	4				
	Perth Laboratory - NATA Site # 23736										-					
	field Laboratory										-					
Exte No	rnal Laboratory Sample ID	Sample Date	Sampling	Matrix	LAB ID							-				
110		_	Time									_				
1	WP1	Mar 20, 2021		Water	S21-Ma41856	Х	х	х	Х	Х	Х	-				
2	WP2	Mar 20, 2021		Water	S21-Ma41857	Х	Х	Х	Х	Х	Х	_				
3	QA100	Mar 20, 2021		Water	S21-Ma41860		х	Х	Х	Х	Х					
Test	Counts					2	3	3	3	3	3					

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

First Reported: Mar 31, 2021 Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Date Reported: Apr 08, 2021 ABN : 50 005 085 521 Telephone: +61 2 9900 8400

Quality Control Results

Test	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
Method Blank									
Chlorophyll a			ug/L	< 5			5	Pass	
Nitrate & Nitrite (as N)			mg/L	< 0.05			0.05	Pass	
Total Kjeldahl Nitrogen (as N)			mg/L	< 0.2			0.2	Pass	
Turbidity			NTU	< 1			1	Pass	
LCS - % Recovery								-	
Nitrate & Nitrite (as N)			%	99			70-130	Pass	
Phosphate total (as P)			%	80			70-130	Pass	
Total Kjeldahl Nitrogen (as N)			%	102			70-130	Pass	
Total Suspended Solids Dried at 10	3–105°C		%	106			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							•		
				Result 1					
Total Kjeldahl Nitrogen (as N)	B21-Ma42195	NCP	%	90			70-130	Pass	
Total Suspended Solids Dried at 103–105°C	M21-Ma40162	NCP	%	116			70-130	Pass	
Test	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code	
Duplicate									
				Result 1	Result 2	RPD			
Phosphate total (as P)	B21-Ma42194	NCP	mg/L	< 0.5	< 0.5	<1	30%	Pass	
Total Suspended Solids Dried at 103–105°C	M21-Ma43729	NCP	mg/L	21	20	6.0	30%	Pass	
Turbidity	S21-Ma41856	CP	NTU	9.3	9.0	3.0	30%	Pass	

Comments

This report has been revised (V2) to exclude samples Ma41858 & Ma41859.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

Ursula Long Scott Beddoes Analytical Services Manager Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CERTIFICATE OF ANALYSIS

Work Order	: ES2110601	Page	: 1 of 2
Client	: CARDNO (NSW/ACT) PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR BEN WITHNALL	Contact	: Shane Ellis
Address	: Level 9 The Forum 203 Pacific Highway St Leonards NSW 2065	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	: +61 2 9495 8188	Telephone	: +61 2 8784 8555
Project	: Downer Sydney Metro Stations	Date Samples Received	: 24-Mar-2021 13:05
Order number	:	Date Analysis Commenced	: 26-Mar-2021
C-O-C number	:	Issue Date	: 31-Mar-2021 13:19
Sampler	: BEN WITHNALL		Iac-MRA NATA
Site	:		
Quote number	: EN/024/20		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QA200	 	
		Sampli	ng date / time	20-Mar-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2110601-001	 	
				Result	 	
EA025: Total Suspended Solids drie	d at 104 ± 2°C					
Suspended Solids (SS)		5	mg/L	31	 	
EA045: Turbidity						
Turbidity		0.1	NTU	13.4	 	
EK059G: Nitrite plus Nitrate as N (N	Ox) by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	1.33	 	
EK061G: Total Kjeldahl Nitrogen By	Discrete Analyser					
Total Kjeldahl Nitrogen as N		0.1	mg/L	1.0	 	
EK062G: Total Nitrogen as N (TKN +	NOx) by Discrete Ar	alyser				
^ Total Nitrogen as N		0.1	mg/L	2.3	 	
EK067G: Total Phosphorus as P by	Discrete Analyser					
Total Phosphorus as P		0.01	mg/L	0.29	 	
EP020: Oil and Grease (O&G)						
Oil & Grease		5	mg/L	<5	 	

QUALITY CONTROL REPORT

Work Order	: ES2110601	Page	: 1 of 3	
Client	: CARDNO (NSW/ACT) PTY LTD	Laboratory	: Environmental Division	Sydney
Contact	: MR BEN WITHNALL	Contact	: Shane Ellis	
Address	: Level 9 The Forum 203 Pacific Highway St Leonards NSW 2065	Address	: 277-289 Woodpark Ro	ad Smithfield NSW Australia 2164
Telephone	: +61 2 9495 8188	Telephone	: +61 2 8784 8555	
Project	: Downer Sydney Metro Stations	Date Samples Received	: 24-Mar-2021	
Order number	:	Date Analysis Commenced	: 26-Mar-2021	
C-O-C number	:	Issue Date	: 31-Mar-2021	
Sampler	: BEN WITHNALL			Hac-MRA NATA
Site	:			
Quote number	: EN/024/20			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Ankit Joshi

Inorganic Chemist

Position

Accreditation Category

Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER	p-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EA025: Total Suspe	nded Solids dried at 104 ± 2	°C (QC Lot: 3589785)									
ES2109905-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	304	332	9.04	0% - 20%		
ES2110767-002	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	902	814	10.2	0% - 20%		
EA045: Turbidity (C	C Lot: 3590212)										
ES2110277-001	Anonymous	EA045: Turbidity		0.1	NTU	2.4	2.2	8.55	0% - 20%		
ES2110807-003	Anonymous	EA045: Turbidity		0.1	NTU	396	395	0.253	0% - 20%		
EK059G: Nitrite plu	s Nitrate as N (NOx) by Dise	crete Analyser (QC Lot: 3590324)									
ES2110562-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.22	0.22	0.00	0% - 20%		
ES2110678-005	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	3.31	3.21	3.03	0% - 20%		
EK061G: Total Kjeld	lahl Nitrogen By Discrete Ar	alyser (QC Lot: 3590327)									
ES2110581-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.6	0.6	0.00	No Limit		
ES2110678-004	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	5.9	5.6	5.60	No Limit		
EK067G: Total Phos	phorus as P by Discrete An	alyser (QC Lot: 3590328)									
ES2110581-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.24	0.25	0.00	0% - 20%		
ES2110678-004	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	3.19	3.18	0.00	0% - 20%		

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound CAS	CAS Number LOR		Unit	Result	Concentration	LCS	Low	High	
EA025: Total Suspended Solids dried at 104 ± 2°C (QCLot: 3589)	785)								
EA025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	100	83.0	129	
				<5	1000 mg/L	94.0	82.0	110	
				<5	463 mg/L	114	83.0	118	
EA045: Turbidity (QCLot: 3590212)									
EA045: Turbidity		0.1	NTU	<0.1	40 NTU	100	91.0	105	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser(C	QCLot: 3590	0324)							
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	101	91.0	113	
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 3	3590327)								
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	87.0	69.0	101	
				<0.1	1 mg/L	79.0	70.0	118	
				<0.1	5 mg/L	89.6	70.0	130	
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 3	590328)								
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	84.6	71.0	101	
				<0.01	0.442 mg/L	80.6	72.0	108	
				<0.01	1 mg/L	90.2	70.0	130	
EP020: Oil and Grease (O&G) (QCLot: 3593123)									
EP020: Oil & Grease		5	mg/L	<5	5000 mg/L	94.4	81.0	121	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER		Matrix Spike (MS) Report							
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 3590324)									
ES2110562-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	103	70.0	130		
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 3590327)								
ES2110601-001	QA200	EK061G: Total Kjeldahl Nitrogen as N		10 mg/L	94.2	70.0	130		
EK067G: Total Pho	EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 3590328)								
ES2110601-001	QA200	EK067G: Total Phosphorus as P		2 mg/L	97.3	70.0	130		

QA/QC Compliance Assessment to assist with Quality Review						
: ES2110601	Page	: 1 of 4				
: CARDNO (NSW/ACT) PTY LTD	Laboratory	: Environmental Division Sydney				
MR BEN WITHNALL	Telephone	: +61 2 8784 8555				
: Downer Sydney Metro Stations	Date Samples Received	: 24-Mar-2021				
:	Issue Date	: 31-Mar-2021				
: BEN WITHNALL	No. of samples received	: 1				
:	No. of samples analysed	: 1				
	ES2110601 CARDNO (NSW/ACT) PTY LTD MR BEN WITHNALL Downer Sydney Metro Stations C BEN WITHNALL	ES2110601 Page CARDNO (NSW/ACT) PTY LTD Laboratory MR BEN WITHNALL Telephone Downer Sydney Metro Stations Date Samples Received Issue Date BEN WITHNALL No. of samples received	ES2110601Page: 1 of 4: CARDNO (NSW/ACT) PTY LTDLaboratory: Environmental Division Sydney: MR BEN WITHNALLTelephone: +61 2 8784 8555: Downer Sydney Metro StationsDate Samples Received: 24-Mar-2021:Issue Date: 31-Mar-2021: BEN WITHNALLNo. of samples received: 1			

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Outliers : Analysis Holding Time Compliance

Matrix: WATE	R	

Method	Extraction / Preparation				Analysis	
Container / Client Sample ID(s)	Date extracted Due for extraction		Days	Date analysed	Due for analysis	Days
			overdue			overdue
EA045: Turbidity						
Clear Plastic Bottle - Natural						
QA200				27-Mar-2021	22-Mar-2021	5

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER				Evaluation	: × = Holding time	breach ; 🗸 = With	n holding time
Method	Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA025: Total Suspended Solids dried at 104 ± 2°C							
Clear Plastic Bottle - Natural (EA025H) QA200	20-Mar-2021				26-Mar-2021	27-Mar-2021	~
EA045: Turbidity							
Clear Plastic Bottle - Natural (EA045) QA200	20-Mar-2021				27-Mar-2021	22-Mar-2021	×
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) QA200	20-Mar-2021				28-Mar-2021	17-Apr-2021	✓
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G) QA200	20-Mar-2021	28-Mar-2021	17-Apr-2021	1	28-Mar-2021	17-Apr-2021	✓
EK067G: Total Phosphorus as P by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK067G) QA200	20-Mar-2021	28-Mar-2021	17-Apr-2021	4	28-Mar-2021	17-Apr-2021	~
EP020: Oil and Grease (O&G)							
Amber Jar - Sulfuric Acid or Sodium Bisulfate (EP020) QA200	20-Mar-2021				30-Mar-2021	17-Apr-2021	1

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

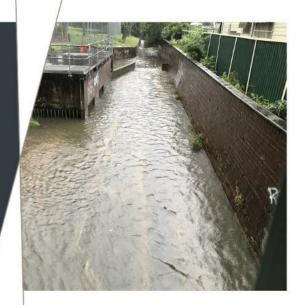
Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; 🗸 = Quality Control frequency within specification.
Quality Control Sample Type		С	ount	Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Oil and Grease	EP020	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	3	20	15.00	15.00	1	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Oil and Grease	EP020	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Turbidity	EA045	WATER	In house: Referenced to APHA 2130 B. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)
Oil and Grease	EP020	WATER	In house: Referenced to APHA 5520 B. Oil & grease is a gravimetric procedure to determine the amount of oil & grease residue in an aqueous sample. The sample is serially extracted three times n-hexane. The resultant extracts are combined, dehydrated and concentrated prior to gravimetric determination. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)

Appendix 2 – Surface Water Monitoring Report -4NE30187_R002_SWM_WileyPark_RevA


Surface Water Monitoring Report - Wiley Park Station

Wiley Park Station

4NE30187

Prepared for Downer EDI Works Pty Ltd

2 June 2021

) Cardno°

Contac	t Information		Document Inform	ation			
-	NSW/ACT) Pty I	_td	Prepared for	Downer EDI Works Pty Ltd			
ABN 95 0	001 145 035		Project Name	Wiley Park Station			
203 Pacif	The Forum ic Highway rds NSW 2065		File Reference	4NE30187_R002_SWM_Wil eyPark_RevA.docm			
PO Box 1	9		Job Reference	4NE30187			
www.card	dno.com		Date	2 June 2021			
	61 2 9496 7700 61 2 9439 5170		Version Number RevA				
Author(s)	:						
Chong Ze Environm	eng nental Engineer		Effective Date	2/06/2021			
Approvec	d By:						
	gensen Hydrogeologist e nt History		Date Approved	2/06/2021			
Version	Effective Date	Description of Revision	Prepared by	Reviewed by			
V1	2/06/2021	Draft for Internal Review	CZ	MJ			
RevA	2/06/2021	Draft for Client Review	CZ	MJ			

© Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

Table of Contents

1 Introduction		1	
	1.1	Background	1
	1.2	Objectives	1
	1.3	Scope of Works	1
2	Guideli	ines and Legislation	2
3	Monito	ring Locations	3
	3.1	Monitoring Locations	3
4	Quality	/ Management	3
	4.1	Data Quality Indicators	5
5	Field Ir	nvestigation	7
6	Surface Water Assessment Criteria		
7	Summa	ary of Results	ç
	7.1	Summary of Field Observations	ç
	7.2	Field Parameters	10
	7.3	Surface Water Analytical Results	11
	7.4	Results Discussion	11
8	Conclusion		1
9	References		
10	Limitati	ions	3

Appendices

Appendix A	Figures	
Appendix B	Photographs	
Appendix C	Field Records	
Appendix D	Laboratory Summary tables	
Appendix E	Quality Assurance/Quality control	
Appendix F	Laboratory reports	

Tables

Table 1-1	Wiley Park Water Quality Monitoring Program	2
Table 3-1	Surface Water Monitoring Location Details	3
Table 4-1	Data Quality Objectives	3
Table 4-2	Summary of Data Quality Indicators	5
Table 5-1	Investigation Activity Summary	7
Table 6-1	Water Quality Monitoring Parameters and Adopted Criteria at Wiley Park	8
Table 7-1	Laboratory Physico-chemical Parameters and Field Observations	10

1 Introduction

1.1 Background

Cardno (NSW/ACT) Pty Ltd ("Cardno") was commissioned by Downer EDI Works Pty Ltd ("Downer") to undertake monitoring and reporting of surface water quality of the unnamed channel within proximity to Wiley Park Station Upgrade Site. The proposed upgrade includes the upgrade of the main station and installation of the Metro Services Building (MSB).

Surface water quality of the channel within proximity to Wiley Park Upgrade Site is to be monitored as per the requirements summarised in the **Table 1-1**, which is excerpted from the Southwest Metro – Hurlstone Park, Belmore and Wiley Park Station Upgrades Soil and Water Management Plan (SWMP). The monitoring program are prepared to meet the requirements outlined in *The Sydney Metro City and Southwest – Sydenham to Bankstown Upgrade Conditions of Approval SSi-8256*, specifically Condition 8 to Condition 10. The sampling locations (WP1 – Upstream and WP2 – Downstream) of the water quality monitoring are shown on **Figure 1** in **Appendix A**.

The closest Project worksite to an existing watercourse is Wiley Park Station services building, which is located approximately 100 m from an unnamed concrete-lined channel, which forms the upper reaches of Coxs Creek and is identified as a first-order stream.

For the purpose of establishing baseline water quality data within the first-order stream at Wiley Park, water quality monitoring was undertaken for a period prior to construction of the Wiley Park services building as outlined in the Table 13 of the SWMP. At a minimum, one dry-weather sample and one wet weather sample (weather permitting) were intended to be collected during the pre-construction period. The frequency of pre-construction water quality monitoring within this channel was subject to water being present within the structure. Note that during the baseline monitoring period no wet-weather events were able to be captured prior to commencement of construction.

This report presents the findings from the third surface water monitoring event, which was undertaken by Cardno on 5th May 2021. The event undertaken was a mid-construction wet-weather event.

1.2 Objectives

The purpose of the surface water monitoring works is to monitor and record surface water quality within the unnamed channel in accordance with the monitoring program as outlined in the Site's SWMP. The objective of the works is to evaluate whether construction activities are impacting water quality downstream of the project footprint in the unnamed channel.

1.3 Scope of Works

Cardno undertook the following tasks during the surface water monitoring event:

- Inspected and sampled the two (2) nominated surface water sampling locations on the 5th May 2021 as a wet weather mid-construction monitoring event;
- > Recorded field parameters and noted observations of the water bodies during sampling;
- > Collected two (2) primary surface water samples, one (1) field duplicate sample and one (1) field triplicate sample per sampling event for submission to a laboratory accredited by the National Association of Testing Authorities, Australia (NATA) for analytical testing of primary and additional quality assurance/quality control (QA/QC) samples. Samples were submitted for analysis of:
 - Oil & Grease;
 - Total Suspended Solids (TSS);
 - Nutrients (Total Phosphorous, Total Nitrogen);
 - Turbidity; and

- Chlorophyll-a.
- > Review of analytical and field data and preparation of this report.

Details of the monitoring program are shown in shown below.

Table 1-1 Wiley Park Water Quality Monitoring Program

Wiley Park Water Quality Monitoring Program		
Waterway	Sydney Water Cooks River Channel (first-order stream)	
Indicative monitoring	WP1 – Upstream	
points	WP2 – Downstream	
Interaction with Project works	Channel within proximity to Wiley Park service building site	
Pre-construction works	Monthly for parameters detailed in Table 11 (including at least one dry-weather round of sampling).	
	One wet-weather event, if possible, for the parameters detailed in Table 11, subject to event occurrence, safe conditions for monitoring and access being available to conduct monitoring.	
	Note: A wet-weather event is when the receiving area has received greater than 20mm of rain in 24 hours. The sampling will be undertaken immediately during construction hours and if it is safe to do so.	
During	Quarterly for parameters detailed in Table 11 (including during dry weather).	
construction of the Wiley Park services building	Four wet-weather events per year for the parameters in Table 11, subject to event occurrence, safe conditions for monitoring and access being available to conduct monitoring.	
	Note: A wet-weather event is when the receiving area has received >20mm of rain in 24 hours. The sampling will be undertaken immediately during construction hours and if it is safe to do so.	

2 Guidelines and Legislation

There are a range of Guidelines and Legislation and Conditions of Approval (CoA) that are applicable to the surface water monitoring program which are summarised below.

The CoA applicable to this job include:

 The Sydney Metro City and Southwest - Sydenham to Bankstown Upgrade Conditions of Approval SSI-8256, determined 12 December 2018;

The State and Federal legislation and policy and guidelines that apply to the program include:

- > Environmental Planning and Assessment Act 1979 (EP&A Act);
- > Contaminated Land Management Act 1997;
- > Protection of the Environment Operations Act 1997 (POEO Act); and
- > Water Management Act 2000 Water Management (General) Regulation 2018;

Additional guidelines and standards to the management of soil and water include:

> Landcom (2004). Managing Urban Stormwater: Soils and Construction. (Volume 1 of the 'Blue Book');

- DECC (2008). Managing Urban Stormwater: Soils and Construction. Volume 2D: Main Road Construction. (Volume 2D of the 'Blue Book');
- ANZECC (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (collectively known as the 'ANZECC Guidelines');
- > ANZECC (2018). Australian and New Zealand Guidelines for Water Quality Monitoring and Reporting (collectively known as the 'ANZECC Guidelines'); and
- > ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (known as 'ANZG Guidelines').

3 Monitoring Locations

Details of the sampling locations are provided in **Table 3-1**. The locations are provided on **Figure 1** in **Appendix A**. Representative photographs are presented in **Appendix B**.

3.1 Monitoring Locations

Table 3-1	Surface Water Monitoring Location Details		
Sample Location	Latitude	Longitude	Description
WP1	-33.924014	151.065315	Immediately south of the Boulevarde and east of 118 the Boulevarde.
WP2	-33.923339	151.064970	Immediately north of the Urunga Parade and west of 4 Urunga Parade.

4 Quality Management

The Data Quality Objective (DQO) process is used to establish a systematic planning approach to setting the type, quantity and quality of data required for making decisions based on the environmental condition of the project area. The DQO process involves the seven steps detailed in **Table 4-1**.

Table 4-1 Data Quality Objectives			
DQO	Description		
Step 1 State the Problem	Ongoing surface water monitoring is required to determine if the construction work is impacting the local surface water quality within the unnamed channel.		
Step 2	The decision that needs to be made are:		
Identify the Decisions	> Are there any impacts to surface water quality from construction activities at the site?		
Step 3	The primary inputs to the decisions described above are:		
Identify Inputs to the Decision	> Assessment of surface water quality of the unnamed channel within proximity to Wiley Park service building site per the requirements outlined in the site's SWMP, with samples collected from two locations (upstream and downstream of the site);		
	> Laboratory analysis of surface water samples for relevant parameters;		
	 Assessment of the suitability of the analytical data obtained, against the Data Quality Indicators (DQIs); 		
	 Assessment of the analytical results against applicable guideline criteria; and 		
	 Aesthetic observations of surface water bodies, including odours, sheen and condition, if encountered. 		

DQO	Description			
Step 4 Define the Study Boundaries	The lateral extent of the study area is the channel within proximity to Wiley Park service building site. The temporal boundaries of the study will comprise the duration of the monitoring program, including pre-construction monitoring, construction phase, and post-			
	construction monitoring as required.			
Step 5 Develop a Decision Rule	 The decision rules for the water quality monitoring sampling events included: Were primary and QA/QC samples analysed using methods endorsed by relevant regulatory guidelines at laboratories NATA-accredited for the requested analyses? Did the field and laboratory QA/QC results indicate that the data set was reliable and representative of the water quality with Relative Percentage 			
	Difference (RPD) values of 30% or less?			
	> Were the laboratory limits of reporting (LORs) below the applicable guideline criteria for the analysed parameters?			
	> Were guideline criteria sourced from endorsed guidelines?			
	> Were surface water aesthetic characteristics evaluated including odours and sheen?			
	> Were the monitoring results obtained from the downstream sample collected during construction phase greater than the upstream sample collected during the same monitoring event? If so, then the adverse impact to the quality of water in the unnamed channel is considered to may have occurred.			
Step 6 Specify Limits on Decision	In accordance with the relevant guidelines as endorsed under the Contaminated Land Management Act 1997.			
Errors	Specific limits for this project are in accordance with the appropriate guidance made or endorsed by state and national regulations, appropriate indicators of data quality, and standard procedures for field sampling and handling.			
	This step also examines the certainty of conclusive statements based on the available new Site data collected. This should include the following points to quantify tolerable limits:			
	 A decision can be made based on a certainty assumption of 95% confidence in any given data set (excluding asbestos). A limit on the decision error will be 5% that a conclusive statement may be a false positive or false negative. 			
	A decision error in the context of the decision rule presented above would lead to either underestimation or overestimation of the risk level associated with a particular sampling area. Decision errors may include:			
	 Sampling errors may occur when the sampling program does not adequately detect the variability of a contaminant from point to point across the Site. To address this, minimum numbers of samples are proposed to be collected from each media. As such, there may be limitations in the data if aspects of the sampling plan cannot be implemented. Some examples of this scenario include but not limited to: 			
	 Proposed samples are not collected due to access being restricted to a given location. 			
	 Limitations in ability to acquire useful and representative information from the data collected. The data are proposed to be collected from multiple locations and sample media. 			
	 Measurement errors can occur during sample collection, handling, preparation, analysis and data reduction. To address this the following measures are proposed: 			
	 Field staff to follow a standard procedure when undertaking samples, including decontamination of tools, removal of adhered soil to avoid false positives in results, collection of representative samples and use of appropriate sample containers and preservation methods. 			

DQO	Description		
	 Laboratories to follow a standard procedure when preparing samples for analysis and undertaking analysis. 		
	 Laboratories to report quality assurance/ quality control data for comparison with the DQIs established for the project 		
Step 7 Optimise the Design for	To achieve the DQOs and DQIs, the following sampling procedures were implemented to optimise the design for obtaining data:		
Obtaining Data	 Surface water samples was collected from two (2) sampling locations, as available due to access and water level; 		
	 Surface water parameters were selected based on project monitoring requirements provided to Cardno; 		
	 Samples were collected by suitably qualified and experienced environmental scientists; 		
	 Samples were collected and preserved in accordance with relevant standards/guidelines; and 		
	> Field and laboratory QA/QC procedures were adopted and reviewed to indicate the reliability of the results obtained.		

4.1 Data Quality Indicators

The following DQIs have been adopted for the project. The DQIs outlined in **Table 4-2** assist with decisions regarding the usefulness of the data obtained, including the quality of the laboratory data.

Table 4-2	Summary of Data	a Quality Indicators
-----------	-----------------	----------------------

Data Quality Indicator	Frequency	Data Acceptance Criteria	
Completeness			
Field documentation correct	All samples	The work was documented in accordance with Cardno SOPs	
Suitably qualified and experience sampler	All samples	Person deemed competent by Cardno collecting and logging samples	
Appropriate lab methods and limits of reporting (LORs)	All samples	Samples were analysed using methods endorsed by relevant regulatory guidelines at laboratories NATA-accredited for the requested analyses.	
Chain of custodies (COCs) completed appropriately	All samples	The work was documented in accordance with Cardno SOPs	
Sample holding times complied with	All samples	The samples were extracted and analysed within holding times specified by the project NATA-accredited laboratory	
Proposed/critical locations sampled	-	Proposed/critical locations sampled	
Comparability			
Consistent standard operating procedures for collection of each sample. Samples should be collected, preserved and handled in a consistent manner	All samples	All works undertaken in accordance with Cardno SOPs	
Experienced sampler	All samples	Person deemed competent by Cardno collecting and logging samples	
Climatic conditions (temp, rain etc) recorded and influence on samples quantified (if required)	All samples	Climatic conditions documented in field sheets	
Consistent analytical methods, laboratories and units	All samples	Sample analysis to be in accordance with NATA-approved methods	
Representativeness			

Data Quality Indicator	Frequency	Data Acceptance Criteria
Sampling appropriate for media and analytes (appropriate collection, handling and storage)	All samples	Sample analysis to be in accordance with NATA-approved methods
Samples homogenous	All samples	All works undertaken in accordance with Cardno SOPs
Detection of laboratory artefacts, e.g. contamination blanks	-	Laboratory artefacts assessed and impact on results determined
Samples extracted and analysed within holding times	All samples	The samples were extracted and analysed within holding times specified by the laboratory
Precision		
Blind duplicates (intra-laboratory duplicates)	1 per 20 samples	<30% RPD No Limit RPD Result <10 × LOR
Split duplicates (inter-laboratory duplicates)	1 per 20 samples	<30% RPD No Limit RPD Result <10 × LOR
Laboratory duplicates	1 per 20 samples	Results greater than 10 x LOR: <30% RPD Results less than 10 x LOR: No limit on RPD
Accuracy (Bias)		
Surrogate spikes	All organic samples	50-150%
Matrix spikes	1 per 20 samples	70-130%
Laboratory control samples	1 per 20 samples	70-130%
Method blanks	1 per 20 samples	<lor< td=""></lor<>

The DQOs and DQIs for the project were met during the monitoring events. Discussion of the Quality Control / Quality Assurance assessment is provided in **Appendix E**.

Field Investigation 5

The scope and method of the surface water monitoring is summarised in Table 5-1.

Activity	Details
Dates of Fieldwork	05 May 2021
Surface Water Sampling	Cardno inspected two surface water monitoring locations. Primary samples were collected from the two locations during the sampling event. Cardno undertook the sampling as per the following procedures:
	<u>Surface Water Body Inspection</u> - The general site condition was observed prior to commencement of field works for signs of any site activities that may have altered the surface water contamination status or require modifications to the field or laboratory works program.
	Each surface water location was inspected for indicators of contamination and the presence of surface water. This information is recorded on the field sheets presented in Appendix C.
	<u>Surface water sampling</u> - Field parameters and visual/olfactory observations were recorded prior to sampling at each location. Physico-chemical parameters including pH electrical conductivity (EC), dissolved oxygen (DO), reduction-oxidation potential (redox) and temperature were measured using a calibrated water quality meter. Surface water samples were collected either directly into the sampling bottle or directly from the telescopic scoop. Once field parameters were recorded, the surface water samples were transferred to appropriately preserved sample containers provided by the laboratories Field observations, and parameters are presented in Appendix C .
	Surface water samples were placed into an Esky containing ice and maintained at o below 4°C whilst onsite and in transit to the NATA-accredited laboratories for the targeter analyses.
Surface Water Analysis	Surface water samples from the monitoring event were submitted under standard chain of-custody (CoC) procedures to NATA-accredited Eurofins Environment Testing Australia analysis of the parameters as follows:
	– Oil & Grease;
	 Total Suspended Solids (TSS);
	 Nutrients (Total Phosphorous, Total Nitrogen);
	 Turbidity; and
	– Chlorophyll-a.
	Tabulated laboratory results are presented in Appendix D . The Data QA /QC program and data quality review including calibration certificates is presented in Appendix E .
	Copies of the original laboratory reports, NATA-stamped laboratory certificates, and Co documentation are included in Appendix F .
Decontamination	In the event of reusable sampling or monitoring equipment (telescopic scoop, wate quality meter) was used decontamination was undertaken. Decontaminated between locations using a standard bucket wash. Equipment was washed in phosphate-free detergent (Liquinox) and rinsed in laboratory supplied rinsate water.

6 Surface Water Assessment Criteria

The assessment criteria for surface water analytical and field data were adopted from Table 11 of the site's SWMP. The criteria for selected parameters are provided in **Table 6-1** below.

Parameter	ANZECC Criteria – Freshwater ¹	Proposed Triger Values	Proposed Actions
Temperature (°C)	>80% ile; <20% ile		
Dissolved Oxygen (DO)	Lower limit – 85% Upper limit -110%	Downstream results are	
Turbidity (NTU)	6-50 NTU	greater than upstream	
Oil and grease	-	 results in rainfall events up to and including the 	Environment Manager (or delegate) to re-test to
рН	Lower limit – 6.5 Upper limit – 8.5	significant event threshold of greater than 20 mm in 24 hours.	confirm results and undertake an inspection of the adjacent works and
Salinity (as EC)	125 – 2200 µS/cm	Downstream results are	propose actions where
Total Suspended Solids (TSS)	-	greater than upstream results during dry-weather sampling.	required.
Total Phosphorus as P	25 μg/L		
Total Nitrogen as N	350 μg/L		
Chlorophyll-a	3 µg/L		

Table 6-1 Water Quality Monitoring Parameters and Adopted Criteria at Wiley Park

Note to Table

1 ANZECC guideline criteria are included for reference. It is noted that baseline testing will indicate whether this existing water quality within the channel meet ANZECC guidelines, prior to construction of the services building. Sydney Metro's Principal Contractor will comply with Section 120 of the Protection of the Environment Operations Act 1997.

7 Summary of Results

7.1 Summary of Field Observations

The two (2) surface water sampling locations were able to be accessed during the sampling events conducted on 5 May 2021. Photos of each sampling location are included in **Appendix B**. The following observations were made:

7.1.1 Wet Weather Mid-Construction Event – 5 May 2021

- > Sampling Event on 5 May 2021:
 - The sampling event was undertaken during a rain event with 25.2 mm precipitation over the last 24 hours (rainfall data was obtained from the closest Bureau of Meteorology weather station, i.e. Canterbury Racecourse AWS station ID: 066194);
 - WP 1 (upstream of work area) contained medium flowing clear water with low to medium turbidity. The estimated depth of the water body was 0.05 m;
 - WP 2 (downstream of work area) contained medium to high flowing clear water with low to medium turbidity. The estimated depth of the water body was 0.3 m; and
 - During the wet-weather sampling event the two discharge points (including the one connecting the construction site and the unnamed channel) within the rail corridor immediately upstream / south from WP2 were observed to be not flowing and not contributing to the channel. Refer to photos of the discharge points taken during the monitoring event included in **Appendix B**.

7.2 Field Parameters

The parameters from each location sampled are presented in **Table 7-1**.

 Table 7-1
 Laboratory Physico-chemical Parameters and Field Observations

Location ID	Water Depth (m)	Temperature (°C)	рН	Electrical Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)	Redox Potential (mV)	Condition
5 May 2021								
WP1 (upstream of work area)	0.05	18.6	7.80	2,500	6.35	65.3	164.6	Clear Low to medium turbidity Sheen observed
WP2(downstream of work area)	0.3	18.2	7.73	92.9	5.95	62.8	109.2	Clear Low to medium turbidity

7.3 Surface Water Analytical Results

Surface Water Analytical results are presented in **Appendix D**. Copies of the original laboratory reports, NATA-stamped laboratory certificates, and Chain of Custody documentation are included in **Appendix F**.

7.3.1 Mid Construction Wet-weather Event: 5 May 2021

The results of the monitoring event indicate that:

- Electrical Conductivity (µS/cm) was reported outside of the target range (125-2,200 µS/cm) with results ranging from 2,500 µS/cm upstream at WP1 and 92.9 µS/cm downstream at WP2;
- > Dissolved Oxygen (%Sat) was reported outside of the target range (85%-110%) with results ranging from 65.3% saturation upstream at WP1 and 62.8% saturation downstream at WP2;
- Concentrations of inorganics were reported above the adopted assessment criteria with the total nitrogen concentration within both the WP1 and WP2 samples, and the total phosphorous concentration within both the WP1 and WP2 samples;
- > Concentrations of Oil and Grease were reported below laboratory detection limit at all sample locations;
- Concentrations of Chlorophyll-a were reported below the laboratory detection limit and adopted assessment criteria at all sample locations;
- > Total Suspended Solids (TSS) concentrations were detected within both WP1 and WP2, with concentrations of 4 mg/L at WP1 and 21 mg/L at WP2; and
- > Turbidity ranged from 4.3 NTU at WP1 to 21 NTU at WP2.

7.4 Results Discussion

7.4.1 Mid-Construction Wet-weather Event – 5 May 2021

Results for the mid-construction wet-weather event sampled on 5 May 2021 generally showed monitored parameters were within the adopted threshold criteria, with the exception of nitrogen, phosphorous, electrical conductivity and dissolved oxygen saturation.

Results for upstream and downstream sampling were comparable, with the exception of TSS and turbidity which were higher in the WP2 downstream location.

It should be noted that wet weather and storm event pre-construction monitoring was not able to be conducted, and therefore baseline data for comparison is not available. During the wet-weather sampling event the two discharge points (including the one connecting the construction site and the unnamed channel) within the rail corridor immediately upstream / south from WP2 were observed to be not flowing and not contributing to the channel.

Observed water flow and volume were higher at the downstream sampling point i.e. WP2, however the downstream discharge points were not flowing as described above, additional inspection of potential other inlet points is required in the next round.

8 Conclusion

Cardno was engaged to undertake surface water monitoring of the unnamed channel west of Wiley Park Station in accordance with the SWMP for the project. The objective of the works was to evaluate whether construction activities are impacting water quality downstream of the project footprint in the unnamed channel that receives in part stormwater from the construction area.

This report presents monitoring data from one mid-construction wet-weather event on 5 May 2021.

During the wet-weather event sampled on 5 May 2021, sampling results showed monitored parameters were generally within the adopted ANZECC screening criteria with the exception of nitrogen, phosphorous, electrical conductivity, and dissolved oxygen saturation. The results are generally consistent with the data obtained from previous monitoring events with the only exception of electrical conductivity results observed outside of the target range during this round of monitoring. TSS and turbidity results were observed to be higher in the downstream WP2 sampling point. Although baseline conditions for wet weather are unknown and no stormwater in-flow was observed at the two water discharge points located immediately upstream / south of the downstream sampling location, Cardno makes following recommendations to the Environment Manager (or delegate):

- > Undertake an inspection of the adjacent works and controls within the current worksite area and propose actions where required in accordance with the SMWP; and
- > Assess the area downstream of sampling point WP1 to confirm whether there are additional discharge points downstream of WP1 which may contribute the stormwater in-flow to the unnamed channel during the rainfall events.

9 References

- Southwest Metro Hurlstone Park, Belmore and Wiley Park Station Upgrades Soil and Water Management Plan, dated 16th February 2021;
- > The Sydney Metro City and Southwest Sydenham to Bankstown Upgrade Conditions of Approval SSI-8256, determined 12 December 2018;
- > Environmental Planning and Assessment Act 1979 (EP&A Act);
- > Contaminated Land Management Act 1997;
- > Protection of the Environment Operations Act 1997 (POEO Act);
- > Water Management Act 2000 Water Management (General) Regulation 2018;
- > Landcom (2004). Managing Urban Stormwater: Soils and Construction. (Volume 1 of the 'Blue Book');
- DECC (2008). Managing Urban Stormwater: Soils and Construction. Volume 2D: Main Road Construction. (Volume 2D of the 'Blue Book');
- > ANZECC (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (collectively known as the 'ANZECC Guidelines');
- > ANZECC (2018). Australian and New Zealand Guidelines for Water Quality Monitoring and Reporting (collectively known as the 'ANZECC Guidelines');
- ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (known as 'ANZG Guidelines').

10 Limitations

This assessment has been undertaken in general accordance with the current industry standards for a surface water monitoring report for the purpose and objectives and scope identified in this report. The agreed scope of this assessment has been limited for the current purposes of the Client. The assessment may not identify contamination occurring in all areas of the site, or occurring after sampling was conducted. Subsurface conditions may vary considerably away from the sample locations where information has been obtained. This Document has been provided by Cardno subject to the following limitations:

- > This Document has been prepared for the particular purpose outlined in Cardno's proposal and Section 1 of this report and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.
- > The scope and the period of Cardno's services are as described in Cardno's proposal, and are subject to restrictions and limitations. Cardno did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Cardno in regards to it.
- > Conditions may exist which were undetectable given the limited nature of the enquiry Cardno was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.
- In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Cardno's opinions are based upon information that existed at the time of the production of the Document. It is understood that the services provided allowed Cardno to form no more than an opinion of the actual conditions of the site at the time this Document was prepared and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.
- > Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.
- > Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Cardno for incomplete or inaccurate data supplied by others.
- > Cardno may have retained sub consultants affiliated with Cardno to provide services for the benefit of Cardno. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Cardno's affiliated companies, and their employees, officers and directors.

This assessment report is not any of the following:

- > A Site Audit Report or Site Audit Statement (SAR/SAS) as defined under the Contaminated Land Management Act, 1997 or an assessment sufficient for an Environmental Auditor to be able to conclude a SAR/SAS.
- > A geotechnical report and the bore logs/test pit logs may not be sufficient for geotechnical advice.
- > An assessment of surface water contaminants potentially arising from other sites or sources nearby.
- > A total assessment of the site to determine suitability of the entire parcel of land at the site for one or more beneficial uses of land

APPENDIX

PHOTOGRAPHS

Photograph 1. Condition observed from sampling location of WP1 during the monitoring event – 5 May.

Photograph 2. Condition observed from sampling location of WP2 during the monitoring event – 5 May.

Photograph 3. No water flow observed from the discharge (the one connecting the construction site and the unnamed channel) which is located within the rail corridor and immediately upstream / south from WP2 during the monitoring event -5 May.

Photograph 4. No water flow observed from the discharge point which is located within the rail corridor and immediately upstream / south from WP2 during the monitoring event -5 May.

FIELD RECORDS

CD Cardno Shaping the Future

name.

Error! Unknown document property

10 14

Surface Water Sampling Field Record

Site / Project: Willy Client: Jour	Parke S	station		Sampling Point:	2/
Client: Jour)			Job No. ANE3VE	87
Person Sampling:	W			Initials: 64	
		Site Detail	B		
Sampling Equipment – Directly in	nto bottle /Water So	coop / Van Dorn Sar	npler / Other:	Date: 5-5-24	
Observations on Site: Last Rain	Event / Recent S	Storms / Releases	/ Other : Necent 1	ain.720mim	
Sample Details, Ob		S Coordinates		emical Measurements	
Sample ID	WP1	ple, record paramete	as once atable)		
Start Time:	16:56				
Easting					
Northing					
Sample Depth (m)	0-0				
Water Body Depth (m)	0.05				
Location — Onsite/Offsite /Iniet/Outlet/ Middle	upsteam				
Flow Rate None/ Low / Med / High	med				
DO (mg/L)	6.35				
DO (%Sat)	65.3				
EC (µS/Cm)	2500				
pН	7.80				
Eh (mV)	164%				
Temp (^o C)	18.6				
Water Colour	Clear				
Turbidity Low / Med / High	L-m				
Observations / Notes	Some				
	Sample G	Container & Pre	servation Data		
Number of sample containers:	4				
Container Volume					
Container Type					
Preservation					
Sample Number (for Lab ID):	WPI				
QC Dup Sample No .:					

Revision: 1 Approved: 25/02/2014 LAREMS02.02.03 - Surface Water Sampling Field Sheet.docx This document is current for 24 hours after print date Page 1 of 1 Printed: 5/05/2021 Cardno Shaping the Future

name.

Error! Unknown document property

a.	Surface Water Sampling Fie	ld Record
Site / Project: W. (s Park Station	Sampling Point: ムタン
Client: Dourer		JOB NO. ANE32187
Person Sampling:		Initials: BU
	Site Details	
Sampling Equipment – Directly i	nto bottle / Water Scoop / Van Dorn Sampler / O	ther: Date: 5.5-2(
Observations on Site: Last Rain	Event / Recent Storms / Releases / Other	
	servations, GPS Coordinates & Field (if possible, record parameters once	d Physiochemical Measurements
Sample ID	WPZ	
Start Time:	17:30	
Easting		
Northing		
Sample Depth (m)	0.0	
Water Body Depth (m)	0.3	
Location – Onsite/Offsite /Inlet/Offsite Middle	offste downsteam	
Flow Rate None/ Low / Med / High	med - High -	
DO (mg/L)	5.95	
DO (%Sat)	62.8	
EC (μS/Cm)	92.9	
рН	7.73	4
Eh (mV)	100.2	
Temp (^o C)	18.2	
Water Colour	clear LG	
Turbidity Low / Med / High	K-M	
Observations / Notes	trach laters Not flowing	
	Sample Container & Preservat	ion Data
Number of sample containers:	10	
Container Volume		
Container Type		
Preservation		
Sample Number (for Lab ID):	874 WPZ	
QC Dup Sample No.:	QA100 0A200	

APPENDIX

LABORATORY SUMMARY TABLES

		TPH		-	Inorg	anics	-			Physi	o-Chemical	
Cardno	Chlorophyll a	Oil and Grease	Kjeldahl Nitrogen Total	Nitrate & Nitrite (as N)	Nitrogen (Total as N)	Phosphorus (Total as P)	TSS	Turbidity	Hq	Temprature	Electrical Conductivity	Dissolved Oxygen
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	NTU	Units	°C	uS/cm	%Sat
EQL	0.005	5	0.1	0.01	0.1	0.01	1	0.1	0.01	0.1	0.1	0.1
ANZECC Criteria - Freshwater	0.003	-	-	-	0.35	0.025	-	<6-50	6.5-8.5	-	125-2200	85% - 110%

Lab Report Number	Field ID	Date												
793825	WP1	5/05/2021	< 0.005	<10	NT	NT	5	0.21	4	4.3	7.80	18.6	2500	65.3
793825	WP2	5/05/2021	< 0.005	<10	NT	NT	1	0.15	47	21	7.73	18.2	92.9	62.8
793825	QA100	5/05/2021	NT	<10	NT	NT	1	0.14	36	19	-	-	-	-
EM2108617	QA200	5/05/2021	NT	<5	0.8	0.62	1.4	0.11	58	35.1	-	-	-	-

Statistics

Maximum Concentration	<0.005	<10	0.8	0.62	5.0	0.21	58	35.1	7.80	-	2500.0	65.3
* A Non Dotost Multiplier of 0 E has been applied												

* A Non Detect Multiplier of 0.5 has been applied.

Project Number: 4NE30187 Site Identification: Wiley Park Station Report Title: Surface Water Monitoring

APPENDIX

QUALITY ASSURANCE/QUALITY CONTROL

Quality Assurance/Quality Control (QA/QC) procedures were implemented to ensure the precision accuracy, representativeness, completeness and comparability of all data gathered. The QA/QC procedures included:

- > Equipment calibration to ensure field measurements obtained are accurate
- > Equipment decontamination to prevent cross contamination
- > Use of appropriate measures (i.e. gloves) to prevent cross contamination
- > Appropriate sample identification
- > Correct sample preservation
- > Sample transport with Chain of Custody (COC) documentation
- > Laboratory analysis in accordance with NATA accredited methods.

Table E1 details the QA/QC procedures and sample collection details undertaken through the surface water elements of the investigation. Copies of all the COCs, along with the Sample Receipt Notifications (SRNs), Interpretive QA/QC Reports are provided in Appendix F.

Table E1 Field QA / QC Method Validation

Requirement	Yes / No	Comments										
Equipment decontamination	Yes	equipment (water	In the event of involving reusable equipment. Decontamination of sa equipment (water quality meter, telescopic water scoop etc.) was underta washing with phosphate free detergent (Liquinox) followed by a rinse with water.									
Sample collection	Yes		ves was used for		elescopic water scoop. A ng collected to limit the							
QA/QC sample collection	Yes	collected for intra practices for sam	and inter-lab QA/ ple collection. Card licate sample per s	QC purposes to monito no based the investigat	r triplicate sample were or the quality of the field tion around a rate of one equirement for duplicate							
Sample identification	Yes	All samples were location, and date		que identifier including	project number, sample							
Sample preservation	Yes	Samples were pla laboratory.	aced in a chilled ic	e box with ice for stora	age and transport to the							
COC documentation	Yes	date, sampler and returned to Cardn and Sample Rec	d laboratory analys o by the laboratory eipt Notification (S samples were rec	is required. The COC t staff upon receipt of all SRN) are provided in	identification, collection form was signed off and the samples. COC forms Appendix F . The SRN y intact and chilled and							
NATA accredited methods	Yes	with NATA accre		nalytical methods use	samples in accordance ad are indicated in the							
Laboratory Internal QC	No	All Data Quality C	bjectives were met	by the laboratories.								
Table E2 Field QA/QC Co	llection Summ	nary										
Environmental Media	a	Date	Primary	Duplicate	Triplicate							
Surface Water		05/05/2021	WP2	QA100	QA200							

Relative Percentage Difference Determination

Laboratory results for duplicate and triplicate samples are assessed using a determination of the Relative Percentage Difference (RPD). Where a primary sample and a duplicate sample are compared, the RPD provides an indication of the reproducibility of the results, which incorporates the sampling method. Where a primary sample and a split sample are compared, the RPD provides an indication of the accuracy of the primary laboratory results as compared to the secondary laboratory result.

The calculation used to determine the RPD is:

$$RPD = \frac{(Co - Cs)}{\left(\frac{Co + Cs}{2}\right)} x100$$

Where:

Co = Concentration of the original sample

Cs = Concentration of the duplicate sample

In calculating the RPD values the following protocols were adopted:

- > Where both concentrations are above laboratory reporting limits the RPD formula is used;
- > Where both concentrations are below the laboratory reporting limits, no RPD is calculated; and
- > Where one or both sample concentrations are reported to be less than ten times (<10x) the laboratory reporting limit, the RPD is calculated but is not assessed against the adopted criterion.

In accordance with the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended 2013, Cardno adopts an RPD acceptance criterion up to 30% of the mean concentration of the analyte. It should be noted that variations might be higher for organic analysis, due to the volatile nature of the components, and for low concentrations of analytes.

The adopted criterion will not apply to RPDs where one of both concentrations are less than 10 times the reporting limit, as this criterion would otherwise overestimate the significance of minor variations in concentrations at or near the laboratory reporting limit. Large RPDs returned for low concentrations of analytes near the reporting limit is not as indicative of a significant difference in the results as a small RPD is for larger concentrations.

This approach is employed by NATA accredited laboratories when assessing internal duplicate sample RPDs. This approach acknowledges that concentrations at or around the reporting limit are too low for an accurate evaluation of the significance of the RPD.

This approach has been adopted when assessing the relevance (compliance) of RPDs during this investigation. RPDs will be calculated for sample sets where one or both concentrations are less than 10 times the reporting limit for discussion purposes, but will not be assessed as a pass or fail in relation to the criterion.

The RPD results for duplicate samples are presented in this appendix. Although three (3) RPD values were reported to be above the accepted 30% RPD criteria. The breaches in RPDs are not considered to alter the overall outcome of the assessment. It can be concluded that the analytical data can be relied upon for the purposes of this factual report.

Laboratory QC and QCI Report Summary

The laboratories selected for undertaking the analysis (Eurofins mgt and ALS) are NATA accredited for the analysis required, and undertook certain QA/QC requirements to demonstrate the suitability of the data that is obtained. The laboratory is required to undertake and report internal laboratory Quality Control (QC) procedures for all chemical analysis undertaken. The QC testing is required to include:

- > Laboratory duplicate sample analysis at the rate of one duplicate analysis per ten samples
- > Method blank at the rate of one method blank analysis per 20 samples

- > Laboratory control sample at the rate of one laboratory control sample analysis per 20 samples
- > Spike recovery analysis at the rate of one spike recovery analysis per 20 samples.

Compliance with the laboratory QA/QC requirements and non-conformance details are discussed in the internal Laboratory QA/QC reports included with the certificates of analysis in **Appendix F**. Laboratory QA/QC requirements were within acceptance limits.

Cardno concludes that the data reported by the NATA accredited Eurofins mgt and ALS as presented in this report is suitable for interpretative purposes and to make conclusions/recommendations regarding water quality.

			Lab Report Number	793825	793825		793825	EM2108617	
			Field ID	WP2	QA100		WP2	QA200	
			Matrix Type	water	water		water	water	
			Date	5/05/2021	5/05/2021	RPD	5/05/2021	5/05/2021	RPD
	Unit	EQL							
NA									
Chlorophyll a	μg/L	5		<5			<5		
ТРН									
Oil and Grease	mg/L	5		<10	<10	0	<10	<5	0
Inorganics									
Kjeldahl Nitrogen Total	mg/L	0.1						0.8	
Nitrate & Nitrite (as N)	mg/L	0.01						0.62	
Nitrogen (Total)	mg/L	0.1		1.0	1.0	0	1.0	1.4	33
Phosphorus	μg/L	10		150	140	7	150	110	31
TSS	mg/L	1		47	36	27	47	58	21
Turbidity	NTU	0.1		21	19	10	21	35.1	50

*RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: (1 - 10 x EQL); 30 (10 - 30 x EQL); 30 (> 30 x EQL))

Project Number: 4NE30187 Site Identification: Wiley Park Station Report Title: Surface Water Monitoring

APPENDIX

LABORATORY REPORTS

	Cardno [*] Shaping the Future				CHAIN			ODY /	AND	ANA	LYS	IS RE	EQUES	Т			Page 1	of
ontact Person:	Ben Withnalf					Project N	ame:		Downer a	Sydney Met	ro Stations						1	
elephone Number:	0436 687 417					Project N	umber:		4NE3018	37 Wiley Par	rk						1	
Iternative Contact:	Chong Zheng					PO No.:											1	
elephone Number:						Project S	pecific Quo	te No. :					190408CDNN_1				1	
impler:	BW					Turnarou	nd Requirer	ments:					Standard TAT	-			1	
nail Address (results a	nd invoice):	ben.withnall@cardn	o.com.au; ContamNSV	@cardno.com.a	11	Lab:			Eurofins	l Unit F3. F	Building F		, Lane Cove We	et NSW2066			1	
idress: Level 9 - The F	orum, 203 Pacific Highway, St L					Attn:			Sample I		3.,		,					
1 (1 1 1 × 1 1		Sample information				-	100				Analysis	Required				-		
Cardno Sample ID	Laboratory Sample ID	No. Containers	Preservation	Date	Matrix				0	Lus								Comments
				sampled	NUUTA	Chlorophyli-a	TSS	Turbidity	Oil and Grease	Total Phosphorus	Total Nitrogen							
WP1		4	ICE	5/5/2021	Water	1	1	1	1	1	1				-	-		
WP2		4	ICE	5/5/2021	Water	1	1	1	1	1	1							
QA100		3	ICE	5/5/2021	Water		1	1	1	1	1							
QA200	(°.	3	IÇE	5/5/2021	Water		1	1	1	1	1		1		-	1	Plea	se send to ALS
te & Time: ynature: ceived by: me / company)	Ben Withnail Cardno ACT/NSW Pty Ltd 5/05/2021 BW	Received by: JC (name / company) Date & Time: 6/ Signature: Relinquished by: (name / company)	the EF		Relinquished by: (name / compan Date & Time: Signature: Received by: (name / compan	/				Received (name) / cc Date & Tir Signature: Relinquist (name / cc	ompany) ne: : : :ed by:					ompany} ne: Received: Co	pol or Ambient (cir	cle one)
e & Time:		Date & Time:			Date & Time:				- + +	Date & Tin	ne:	1			Temperat	ure Received	lat: (ifaı	oplicable)
ature:		Signature: Signature:								Signature:							delivered / courie	

ť,

793825 Jake

Contact Person:	Ben Withnall					-									
						Project Na			Downer	Sydney Metr	o Stations				0
elephone Number:	0436 687 417					Project N	amber:		4NE3018	87 Wiley Par	k				
ternative Contact:	Chong Zheng					PO No.:									
lephone Number:	-					Project Sp	ecific Quot	e No. :	W. A.	1	1.1	190408CDNM	U		- 15/
mpler:	BW					Turnarour	nd Requirer	nents:				Standard TA	т		
ail Address (results a		ben.withnall@cardn	a.com.au; ContamNSV	/@cardno.com.	<u>au</u>	Lab:			Eurofins	Unit F3, B	uilding F, 16	Mars Rd, Lane Cove	West NSW2066		
dress: Level 9 - The F	orum, 203 Pacific Highway, St I	eonards, New South	Wales 2065 Australia	3		Attn:			Sample						
		Sample information					Comments								
10 A											Analysis Re				Conversites
Cardno Sample ID	Laboratory Sample ID	No. Containers	Preservation	Date sampled	Matrix	Chlorophyll-a	TSS	Turbidity	Oil and Grease	Total Phosphorus	Total Nitrogen				
WP1		4	ICE	5/5/2021	Water	1	1	1	1	1	1				
WP2		4	ICE	5/5/2021	Water	1	1	1	1	1	1				
QA100		3	ICE	5/5/2021	Water		1	1	1	1	1				
QA200		3	IÇE	5/5/2021	Water		1	1	1.	1	1				Please send to ALS
															6
															-(o)
									1	· · · ·					
															- 40
					1										
		Received by: Ja (name / company)	1												
	Ben Withnall	Received by:	ke		Relinquished by:					Received b	y:			Relinquished b	10.
ne / company)	Cardno ACT/NSW Pty Ltd	(name / company)	EF		(name / company	2				(name [*] / co					-
≥& Time:		Date & Time: 6/			Date & Time:					Date & Tim				(name / compa	ny)
ature:											0,	1.0		Date & Time:	
eived by:	vari hug									Signature:				Signature:	
ne / comranu				Received by:					Relinquish	ed by:			Lab use:		
(name / comp				(name / company	8	_	h		(name / con	npany)	4		Samples Recei	ved: Cool or Ambient (circle one)	
		Date & Time:			Date & Time:				+ 2	Date & Tim	e:	eceived at: (if applicable)			
nature:		Signature:			Signature;					Signature:		/: Hand delivered / courier			

ą

.

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

New Zealand

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone : +61 3 8564 5000 Lane Cove We NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F Brisbane NATA # 1261 Site # 18217

 Muraris Road
 Muraris QLD 4172

 Lane Cove West NSW 2066
 Phone : +61 7 3902 4600

 Phone : +61 2 9900 8400
 NATA # 1261 Site # 10017
 1/21 Smallwood Place NATA # 1261 Site # 20794

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:	Cardno (NSW/ACT) Pty Ltd
Contact name:	Ben Withnall
Project name:	DOWNER SYDNEY METRO STATIONS
Project ID:	4NE30187 WILEY PARK
Turnaround time:	5 Day
Date/Time received	May 6, 2021 11:28 AM
Eurofins reference	793825

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table. 1
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab. 1
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Ursula Long on phone : or by email: UrsulaLong@eurofins.com

Results will be delivered electronically via email to Ben Withnall - ben.withnall@cardno.com.au.

Note: A copy of these results will also be delivered to the general Cardno (NSW/ACT) Pty Ltd email address.

Global Leader - Results you can trust

🛟 eurofi	ns			Australia										New Zealand			
v • curon		ironment	Testing	Melbourne 5 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261	U 175 10 D La	ydney Init F3, I 6 Mars ane Cov hone : -	Road /e West	NSW 2	1, N 2066 P	lurarri hone	ne nallwood Place e QLD 4172 +61 7 3902 4600 1261 Site # 20794	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290		
ABN: 50 005 085 521 web:	www.eurofins.com.au	ı email: EnviroSale		Site # 1254 & 14271		ATA #					1201 010 # 20104	Site # 23736	NATA # 1261 Site # 25079				
Company Name: Address:		W/ACT) Pty Lt Pacific Highw				R Pl	rder I eport hone: ax:	#:	(25 967700 199 3902		Received: Due: Priority: Contact Name:	May 6, 2021 11:28 AM May 13, 2021 5 Day Ben Withnall			
Project Name: Project ID:		YDNEY METF VILEY PARK	RO STATIONS										Eurofins Analytical	Services Manager : I	Jrsula Long		
	Sa	Imple Detail			Chlorophyll a	Oil & Grease (HEM)	Phosphate total (as P)	Total Nitrogen (as N)	Total Suspended Solids Dried at 103–105°C	Turbidity							
Melbourne Laborat			271		Х	X	х	x	X	X	_						
Sydney Laboratory											4						
Brisbane Laborator											-						
Perth Laboratory -											-						
Mayfield Laboratory		23079								-	-						
No Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							-						
1 WP1	May 05, 2021		Water	M21-My16605	Х	Х	х	Х	Х	Х							
2 WP2	May 05, 2021		Water	M21-My16606	Х	Х	х	Х	х	Х							
3 QA100	May 05, 2021		Water	M21-My16607		Х	х	Х	Х	Х							
Test Counts					2	3	3	3	3	3							

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway St Leonards NSW 2065

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention:	
Report	

Project name

Received Date

Project ID

Ben Withnall

793825-W DOWNER SYDNEY METRO STATIONS 4NE30187 WILEY PARK May 06, 2021

Client Sample ID Sample Matrix			WP1 Water	WP2 Water	QA100 Water
Eurofins Sample No.			M21-My16605	M21-My16606	M21-My16607
Date Sampled			May 05, 2021	May 05, 2021	May 05, 2021
Test/Reference	LOR	Unit			
Chlorophyll a	5	ug/L	< 5	< 5	-
Oil & Grease (HEM)	10	mg/L	< 10	< 10	< 10
Phosphate total (as P)	0.01	mg/L	0.21	0.15	0.14
Total Nitrogen (as N)	0.2	mg/L	5.0	1.0	1.0
Total Suspended Solids Dried at 103–105°C	1	mg/L	4.0	47	36
Turbidity	1	NTU	4.3	21	19

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chlorophyll a	Melbourne	May 11, 2021	2 Days
- Method: LTM-INO-4340 Chlorophyll a in Waters			
Oil & Grease (HEM)	Melbourne	May 10, 2021	28 Days
- Method: LTM-INO-4180 Oil and Grease (APHA 5520B)			
Phosphate total (as P)	Melbourne	May 10, 2021	28 Days
- Method: LTM-INO-4040 Phosphate by CFA			
Total Suspended Solids Dried at 103–105°C	Melbourne	May 10, 2021	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Turbidity	Melbourne	May 12, 2021	2 Days

- Method: Turbidity by classical using APHA 2130B (LTM-INO-4140)

🔅 eur	ofin	s			Australia										New Zealand	
	01111		ronment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261	U 175 16 D La		Road e West		1/ M 066 Pl	urarrie hone : +	e allwood Place QLD 4172 +61 7 3902 4600 1261 Site # 20794	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
ABN: 50 005 085 52	21 web: www	w.eurofins.com.au	email: EnviroSale		Site # 1254 & 14271				e # 182		AIA #	1201 Sile # 20794	Site # 23736	NATA # 1261 Site # 25079	IANZ # 1327	IANZ # 1250
Company Na Address:		Cardno (NSV Level 9, 203 St Leonards NSW 2065	V/ACT) Pty Lt Pacific Highw				Re Pl	der N eport none: ix:	#:	C		5 67700 99 3902		Received: Due: Priority: Contact Name:	May 6, 2021 11:28 May 13, 2021 5 Day Ben Withnall	АМ
Project Nam Project ID:	ne:	DOWNER SY 4NE30187 W		RO STATIONS										Eurofins Analytical	Services Manager : l	Jrsula Long
Sample Detail						Chlorophyll a	Oil & Grease (HEM)	Phosphate total (as P)	Total Nitrogen (as N)	Total Suspended Solids Dried at 103–105°C	Turbidity					
Melbourne La	boratory	- NATA Site	# 1254 & 142	71		Х	Х	Х	х	Х	Х	-				
Sydney Labor												-				
Brisbane Lab												4				
Perth Laborat												-				
Mayfield Labo		NATA Site # 2	25079									-				
External Labo		Sample Date	Sampling	Matrix	LAB ID							-				
NU Sampi	5 UI 9		Time	watrix												
1 WP1	М	lay 05, 2021		Water	M21-My16605	х	х	Х	х	Х	Х					
2 WP2	1	lay 05, 2021		Water	M21-My16606	х	х	Х	Х	Х	Х	-				
3 QA100	М	lay 05, 2021		Water	M21-My16607		Х	Х	Х	Х	Х					
Test Counts						2	3	3	3	3	3					

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Те	est		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Phosphate total (as P)			mg/L	< 0.01			0.01	Pass	
Total Nitrogen (as N)			mg/L	< 0.2			0.2	Pass	
Turbidity			NTU	< 1			1	Pass	
LCS - % Recovery									
Phosphate total (as P)			%	103			70-130	Pass	
Total Nitrogen (as N)			%	97			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Phosphate total (as P)	P21-My10650	NCP	%	106			70-130	Pass	
Total Nitrogen (as N)	P21-My10650	NCP	%	83			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Chlorophyll a	M21-My16605	CP	ug/L	< 5	< 5	<1	30%	Pass	
Phosphate total (as P)	M21-My16605	CP	mg/L	0.21	0.21	1.0	30%	Pass	
Total Nitrogen (as N)	M21-My16605	CP	mg/L	5.0	5.0	1.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Turbidity	M21-My16607	CP	NTU	19	16	16	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

John Nguyen Scott Beddoes Analytical Services Manager Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

	Cardno [*] Shaping the Future				CHAIN	IN OF CUSTODY AND ANALYSIS REQUEST												Page	1	of	1
intact Person:	Ben Withnall					Project N	iame:		Downer	Sydney Metr	The Station							+			
lephone Number:	0436 687 417					Project N				30187 Wiley Park									1		
emative Contact:	Chong Zheng					PO No.:											-	$/\tau$	— I		
ephone Number:						Project Specific Quote No, ; 190408CDNN_1									Section 1	al I	(L	_ /			
npler:	BW					Turnarou	ind Require	ments:	<u>1996-1996-</u>	<u></u>		1. C.	andard TA	<u>2010 - 100</u>	9248 C-006			4		7/-	
ail Address (results a		ben.withnall@cardr	o.com.au: ContamNSV	N@cardno.com.:	au	Lab:			Eurofins	Unit F3, B	ullding F, 1	6 Mars Rd, La	ne Cove	West NS	W2066			-	\sim		
dress: Level 9 - The F	orum, 203 Pacific Highway, St I			a		Attn:			Sample						······			-			
	T	Sample information		internet and an anti- ternet and an anti-state and an anti-state and a state and a st				5.a.			Analysia	Required							c	omments	
ardno Sample ID	Laboratory Sample ID	No. Containers	Preservation	Date sampled	Matrix	-40			Grease	phorus	den		Me	lboui Work (r ne Order R	al Divis	9			<u>_</u>	
		4	ICE	F/F/2024		Chlarophyll-	TSS	Turbidity	Oil and	Total Phosphorus	Total Nitrogen		I		127) W 51	086 ⊾₩₽					
WP2		4	ICE	5/5/2021 5/5/2021	Water Vater	1 8.4	1	1	4	1	1										
QA100	~	3	ICE	5/5/2021	Water		ant spens	<u>ter</u> 1	<u>1</u>	1	1				69 ())	<u>o w co</u>			·····		
QA200	- (V	3	ICE	5/5/2021	Water		1	1	10	<u></u>	1			0		786			Blanci	send to A	<u></u>
·	Ben Withnal!	Received by:		mpies (icro Niti oleur for Ti ate	Relinquished by:					Received	Xi:		ved: f		, Seal:		ALS hed by:			·····	
: / company) & Time:		(name / company) Date & Time: 6/	EF		(name / company			·····		(name / coi	mpany}	par				(name / co		SF_			
	BW	Signature:	den		Date & Time:					Date & Tim	8:	1. K.W.				Date & Ti	<u>ne: // ()</u>	Ø	8:0	10-	
red by: Relinquished by: Received by:									Signature: Relinquishe	ed by:					Signature Lab use:	pop		<u> </u>			
/ company)		(name / company)		¥.,	(name / company			<u> </u>		(name / cor						Samples I	Received: Co	ool or Ambie	ant (circle	one)	
& Time:		Date & Time:			Date & Time:			[<u> </u>	Date & Tim	e:	<u>,</u> *				1 1 1 1 1	ire Received		(if applic		
ture:		Signature:			Signature:			×		Signature:						1		delivered /			

CERTIFICATE OF ANALYSIS

Work Order	EM2108617	Page	: 1 of 2	
Client	: CARDNO (NSW/ACT) PTY LTD	Laboratory	: Environmental Division N	lelbourne
Contact	: MR BEN WITHNALL	Contact	: Customer Services EM	
Address	: Level 9 The Forum 203 Pacific Highway	Address	: 4 Westall Rd Springvale	VIC Australia 3171
	St Leonards NSW 2065			
Telephone	: +61 2 9495 8188	Telephone	: +61-3-8549 9600	
Project	: 4NE30187 Wiley Park	Date Samples Received	: 11-May-2021 10:10	ANUTUR.
Order number	:	Date Analysis Commenced	12-May-2021	
C-O-C number	:	Issue Date	: 18-May-2021 11:30	
Sampler	: BW			Hac-MRA NATA
Site	:			
Quote number	: EN/222 - Secondary Work			Accreditation No. 825
No. of samples received	:1			Accreditation No. 825
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QA200	 	
		Sampli	ng date / time	05-May-2021 00:00	 	
Compound	CAS Number	LOR	Unit	EM2108617-001	 	
				Result	 	
EA025: Total Suspended Solids drie	ed at 104 ± 2°C					
Suspended Solids (SS)		5	mg/L	58	 	
EA045: Turbidity						
Turbidity		0.1	NTU	35.1	 	
EK059G: Nitrite plus Nitrate as N (N	IOx) by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	0.62	 	
EK061G: Total Kjeldahl Nitrogen By	Discrete Analyser					
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.8	 	
EK062G: Total Nitrogen as N (TKN +	⊦ NOx) by Discrete Ar	nalyser				
^ Total Nitrogen as N		0.1	mg/L	1.4	 	
EK067G: Total Phosphorus as P by	Discrete Analyser					
Total Phosphorus as P		0.01	mg/L	0.11	 	
EP020: Oil and Grease (O&G)						
Oil & Grease		5	mg/L	<5	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EP020: Oil and Grease (O&G)

QUALITY CONTROL REPORT

Work Order	: EM2108617	Page	: 1 of 3	
Client	: CARDNO (NSW/ACT) PTY LTD	Laboratory	: Environmental Division M	lelbourne
Contact	MR BEN WITHNALL	Contact	: Customer Services EM	
Address	: Level 9 The Forum 203 Pacific Highway St Leonards NSW 2065	Address	: 4 Westall Rd Springvale	VIC Australia 3171
Telephone	: +61 2 9495 8188	Telephone	: +61-3-8549 9600	
Project	: 4NE30187 Wiley Park	Date Samples Received	: 11-May-2021	SMIIII.
Order number	:	Date Analysis Commenced	: 12-May-2021	
C-O-C number	:	Issue Date	18-May-2021	
Sampler	BW			Hac-MRA NATA
Site	:			
Quote number	: EN/222 - Secondary Work			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA025: Total Suspe	nded Solids dried at 1	04 ± 2°C (QC Lot: 3674919)							
EM2108514-005	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	62	48	24.0	0% - 50%
EM2108634-002	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	13	10	23.2	No Limit
EA045: Turbidity (C	C Lot: 3673594)								
EM2108565-001	Anonymous	EA045: Turbidity		0.1	NTU	89.3	89.4	0.1	0% - 20%
EM2108565-011	Anonymous	EA045: Turbidity		0.1	NTU	30.3	30.6	1.0	0% - 20%
EK059G: Nitrite plu	s Nitrate as N (NOx) b	by Discrete Analyser (QC Lot: 3674855)							
EM2108565-010	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
EM2108587-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.30	0.30	0.0	0% - 20%
EK061G: Total Kjeld	lahl Nitrogen By Discr	ete Analyser (QC Lot: 3674020)							
EM2002273-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.5	0.6	0.0	No Limit
EM2002273-029	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	5.9	6.8	14.4	0% - 20%
EK067G: Total Phos	phorus as P by Discre	ete Analyser (QC Lot: 3674019)							
EM2002273-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.09	0.11	15.6	0% - 50%
EM2002273-029	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	1.03	1.18	13.5	0% - 20%

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound CAS Num	ber LOR	Unit	Result	Concentration	LCS	Low	High
EA025: Total Suspended Solids dried at 104 ± 2°C (QCLot: 3674919)							
EA025H: Suspended Solids (SS)	5	mg/L	<5	150 mg/L	98.7	91.0	109
			<5	1000 mg/L	99.1	90.3	109
EA045: Turbidity (QCLot: 3673594)							
EA045: Turbidity -	0.1	NTU	<0.1	40 NTU	105	88.1	110
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLo	t: 3674855)						
EK059G: Nitrite + Nitrate as N	0.01	mg/L	<0.01	0.5 mg/L	113	90.0	117
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 36740	20)						
EK061G: Total Kjeldahl Nitrogen as N	0.1	mg/L	<0.1	5 mg/L	93.3	70.0	117
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 36740	19)						
EK067G: Total Phosphorus as P -	0.01	mg/L	<0.01	2.21 mg/L	84.9	71.9	114
EP020: Oil and Grease (O&G) (QCLot: 3679869)							
EP020: Oil & Grease	5	mg/L	<5	5000 mg/L	87.8	81.0	121

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	ub-Matrix: WATER			Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EK059G: Nitrite pl	EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 3674855)							
EM2108565-011	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	91.9	70.0	130	
EK061G: Total Kje	dahl Nitrogen By Discrete Analyser (QCLot: 3674020)							
EM2002273-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	96.8	70.0	130	
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 3674019)								
EM2002273-002	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	97.8	70.0	130	

	QA/QC Compliance Assessment to assist with Quality Review						
Work Order	: EM2108617	Page	: 1 of 4				
Client	: CARDNO (NSW/ACT) PTY LTD	Laboratory	: Environmental Division Melbourne				
Contact	MR BEN WITHNALL	Telephone	: +61-3-8549 9600				
Project	: 4NE30187 Wiley Park	Date Samples Received	: 11-May-2021				
Site	:	Issue Date	: 18-May-2021				
Sampler	: BW	No. of samples received	:1				
Order number	:	No. of samples analysed	: 1				

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Outliers : Analysis Holding Time Compliance

Matrix:	WATER	

Method	Extraction / Preparation Analysis			Analysis		
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
			overdue			overdue
EA025: Total Suspended Solids dried at 104 ± 2°C						
Clear Plastic Bottle - Natural						
QA200				13-May-2021	12-May-2021	1
EA045: Turbidity						
Clear Plastic Bottle - Natural						
QA200				12-May-2021	07-May-2021	5

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: × = Holding time bre	each ; \checkmark = Within holding time.
----------------------------------	--

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Extraction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA025: Total Suspended Solids dried at 104 ± 2°C							
Clear Plastic Bottle - Natural (EA025H) QA200	05-May-2021				13-May-2021	12-May-2021	×
EA045: Turbidity							
Clear Plastic Bottle - Natural (EA045) QA200	05-May-2021				12-May-2021	07-May-2021	×
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) QA200	05-May-2021				13-May-2021	02-Jun-2021	~
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G) QA200	05-May-2021	12-May-2021	02-Jun-2021	1	13-May-2021	02-Jun-2021	1
EK067G: Total Phosphorus as P by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK067G) QA200	05-May-2021	12-May-2021	02-Jun-2021	1	13-May-2021	02-Jun-2021	~
EP020: Oil and Grease (O&G)							
Amber Glass Bottle - Sulfuric Acid (EP020) QA200	05-May-2021				17-May-2021	02-Jun-2021	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; 🖌 = Quality Control frequency within specification
Quality Control Sample Type			ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Oil and Grease	EP020	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Oil and Grease	EP020	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Turbidity	EA045	WATER	In house: Referenced to APHA 2130 B. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)
Oil and Grease	EP020	WATER	In house: Referenced to APHA 5520 B. Oil & grease is a gravimetric procedure to determine the amount of oil & grease residue in an aqueous sample. The sample is serially extracted three times n-hexane. The resultant extracts are combined, dehydrated and concentrated prior to gravimetric determination. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)

Appendix 3 – Surface Water Monitoring Report – Wiley Park Station NE30161_R003_SWM_Wile yPark_Rev0_R1

Surface Water Monitoring Report - Wiley Park Station

Wiley Park Station

NE30161

Prepared for Downer EDI Works Pty Ltd

3 November 2021

Cardno[®]

Contact Information

Document Information

Cardno (NSW/ACT) Pty Ltd	Prepared for	Downer EDI Works Pty Ltd
ABN 95 001 145 035	Project Name	Wiley Park Station
Level 9 - The Forum 203 Pacific Highway St Leonards NSW 2065	File Reference	NE30161_R003_SWM_Wile yPark_Rev0.docm
PO Box 19	Job Reference	NE30161
www.cardno.com	Date	3 November 2021
Phone +61 2 9496 7700 Fax +61 2 9439 5170	Version Number	Rev0
Author(s):		
Chong Zeng Environmental Engineer	Effective Date	3/11/2021

Approved By:

Mike Jorgensen	Date Approved	3/11/2021
Principal Hydrogeologist		

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
RevA	11/08/2021	Draft for Client Review	CZ	MJ
Rev0	03/11/2021	Final Report	CZ/BW	MJ

© Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

Table of Contents

1	Introdu	iction	1
	1.1	Background	1
	1.2	Purpose and Objective	1
	1.3	Scope of Works	1
2	Guideli	ines and Legislation	2
3	Monito	ring Locations	3
	3.1	Monitoring Locations	3
4	Quality	/ Management	3
	4.1	Data Quality Indicators	5
5	Field Ir	nvestigation	7
6	Surface	e Water Assessment Criteria	8
7	Summa	ary of Results	9
	7.1	Summary of Field Observations	9
	7.2	Field Parameters	10
	7.3	Surface Water Analytical Results	11
	7.4	Results Discussion	13
8	Conclu	ision	13
9	Refere	nces	14
10	Limitati	ions	15

Appendices

Appendix A	Figures
Appendix B	Photographs
Appendix C	Field Records
Appendix D	Laboratory Summary tables
Appendix E	Quality Assurance/Quality control
Appendix F	Laboratory reports

Tables

Table 1-1	Wiley Park Water Quality Monitoring Program	2
Table 3-1	Surface Water Monitoring Location Details	3
Table 4-1	Data Quality Objectives	3
Table 4-2	Summary of Data Quality Indicators	5
Table 5-1	Investigation Activity Summary	7
Table 6-1	Water Quality Monitoring Parameters and Adopted Criteria at Wiley Park	8
Table 7-1	Laboratory Physico-chemical Parameters and Field Observations - 1 July 2021	10

1 Introduction

1.1 Background

Cardno (NSW/ACT) Pty Ltd ("Cardno") was commissioned by Downer EDI Works Pty Ltd ("Downer") to undertake monitoring and reporting of surface water quality of the unnamed channel within proximity to Wiley Park Station Upgrade Site. The proposed upgrade includes the upgrade of the main station and installation of the Metro Services Building (MSB).

Surface water quality of the channel within proximity to Wiley Park Upgrade Site is to be monitored as per the requirements summarised in the **Table 1-1**, which is excerpted from the Southwest Metro – Hurlstone Park, Belmore and Wiley Park Station Upgrades Soil and Water Management Plan (SWMP). The monitoring program are prepared to meet the requirements outlined in *The Sydney Metro City and Southwest – Sydenham to Bankstown Upgrade Conditions of Approval SSi-8256*, specifically Condition 8 to Condition 10. The sampling locations (WP1 – Upstream and WP2 – Downstream) of the water quality monitoring are shown on **Figure 1** in **Appendix A**.

The closest Project worksite to an existing watercourse is Wiley Park Station services building, which is located approximately 100 m from an unnamed concrete-lined channel, which forms the upper reaches of Coxs Creek and is identified as a first-order stream.

For the purpose of establishing baseline water quality data within the first-order stream at Wiley Park, water quality monitoring was intended to be undertaken for a period prior to construction of the Wiley Park services building as outlined in the Table 13 of the SWMP. At a minimum, one dry-weather sample and one wet weather sample (weather permitting) were intended to be collected during the pre-construction period. The frequency of pre-construction water quality monitoring within this channel was subject to water being present within the structure. However, during the baseline monitoring period no wet-weather events were able to be captured prior to commencement of construction. A dry-weather baseline monitoring event was undertaken on 10 March 2021.

This report presents the findings from the fourth surface water monitoring event, which was undertaken by Cardno on 1 July 2021. The event undertaken was a quarterly mid-construction event.

1.2 Purpose and Objective

The purpose of the surface water monitoring works is to monitor and record surface water quality within the unnamed channel in accordance with the monitoring program as outlined in the Site's SWMP. The objective of the works is to evaluate whether construction activities are impacting water quality downstream of the project footprint in the unnamed channel.

1.3 Scope of Works

Cardno undertook the following tasks during the surface water monitoring event:

- Inspected and sampled the two (2) nominated surface water sampling locations (WP1 Upstream and WP2 Downstream) on 1 July 2021 as a quarterly mid-construction monitoring event.
- > Recorded field parameters and noted observations of the water bodies during sampling.
- Collected two (2) primary surface water samples, one (1) intra-lab duplicate sample and one (1) inter-lab duplicate sample per sampling event for submission to a laboratory accredited by the National Association of Testing Authorities, Australia (NATA) for analytical testing of primary and additional quality assurance/quality control (QA/QC) samples. Samples were submitted for analysis of:
 - Oil & Grease;
 - Total Suspended Solids (TSS);
 - Nutrients (Total Phosphorous, Total Nitrogen);
 - Turbidity; and

- Chlorophyll-a.
- > Reviewed the analytical and field data and prepared this report.

Details of the monitoring program are shown below.

 Table 1-1
 Wiley Park Water Quality Monitoring Program

	Wiley Park Water Quality Monitoring Program				
Waterway	Sydney Water Cooks River Channel (first-order stream)				
Indicative	WP1 – Upstream				
monitoring points	WP2 – Downstream				
Interaction with Project works	Channel within proximity to Wiley Park service building site				
Pre-construction works	Monthly for parameters detailed in Table 11 (including at least one dry-weather round of sampling).				
	One wet-weather event, if possible, for the parameters detailed in Table 11, subject to event occurrence, safe conditions for monitoring and access being available to conduct monitoring.				
	Note: A wet-weather event is when the receiving area has received greater than 20 mm of rain in 24 hours. The sampling was undertaken immediately during construction hours and if it is safe to do so.				
During construction of the Wiley Park services building	Quarterly for parameters detailed in Table 11 (including during dry weather). Four wet-weather events per year for the parameters in Table 11, subject to event occurrence, safe conditions for monitoring and access being available to conduct monitoring. Note: A wet-weather event is when the receiving area has received >20mm of rain in 24 hours. The sampling was undertaken immediately during construction hours and if it is safe to do so.				

2 Guidelines and Legislation

There are a range of Guidelines and Legislation and Conditions of Approval (CoA) that are applicable to the surface water monitoring program which are summarised below.

The CoA applicable to this job include:

 The Sydney Metro City and Southwest - Sydenham to Bankstown Upgrade Conditions of Approval SSI-8256, determined 12 December 2018;

The State and Federal legislation and policy and guidelines that apply to the program include:

- > Environmental Planning and Assessment Act 1979 (EP&A Act);
- > Contaminated Land Management Act 1997;
- > Protection of the Environment Operations Act 1997 (POEO Act); and
- > Water Management Act 2000 Water Management (General) Regulation 2018;

Additional guidelines and standards to the management of soil and water include:

- > Landcom (2004). Managing Urban Stormwater: Soils and Construction. (Volume 1 of the 'Blue Book');
- DECC (2008). Managing Urban Stormwater: Soils and Construction. Volume 2D: Main Road Construction. (Volume 2D of the 'Blue Book');
- ANZECC (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (collectively known as the 'ANZECC Guidelines');
- > ANZECC (2018). Australian and New Zealand Guidelines for Water Quality Monitoring and Reporting (collectively known as the 'ANZECC Guidelines'); and
- > ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (known as 'ANZG Guidelines').

3 Monitoring Locations

Details of the sampling locations are provided in **Table 3-1**. The locations are provided on **Figure 1** in **Appendix A**. Representative photographs are presented in **Appendix B**.

3.1 Monitoring Locations

 Table 3-1
 Surface Water Monitoring Location Details

Sample Location	Latitude	Longitude	Description
WP1 (up-stream)	-33.924014	151.065315	Immediately south of the Boulevarde and east of 118 the Boulevarde.
WP2 (down-stream)	-33.923339	151.064970	Immediately north of the Urunga Parade and west of 4 Urunga Parade.

4 Quality Management

The Data Quality Objective (DQO) process is used to establish a systematic planning approach to setting the type, quantity and quality of data required for making decisions based on the environmental condition of the project area. The DQO process involves the seven steps detailed in **Table 4-1**.

Table 4-1 Data Quality Objective	res
DQO	Description
Step 1 State the Problem	Construction work may adversely impact the local surface water quality within the unnamed channel near the site.
Step 2 Identify the Decisions	Are there any impacts to surface water quality from construction activities at the site?
Step 3	The primary inputs to the decisions described above are:
Identify Inputs to the Decision	 Assessment of surface water quality of the unnamed channel within proximity to Wiley Park service building site per the requirements outlined in the site's SWMP, with samples collected from two locations (upstream and downstream of the site);
	> Laboratory analysis of surface water samples for relevant parameters;
	 Assessment of the suitability of the analytical data obtained, against the Data Quality Indicators (DQIs);
	 Assessment of the analytical results against applicable guideline criteria; and
	> Aesthetic observations of surface water bodies, including odours, sheen and condition, if encountered.
Step 4 Define the Study Boundaries	The lateral extent of the study area is the channel near the Wiley Park service building site.
,	The temporal boundaries of the study comprises the duration of the monitoring program, including pre-construction monitoring, construction phase, and post-construction monitoring as required.
Step 5	The decision rules for the water quality monitoring sampling events included:
Develop a Decision Rule	> Were primary and QA/QC samples analysed using methods endorsed by relevant regulatory guidelines at laboratories NATA-accredited for the requested analyses?
	> Did the field and laboratory QA/QC results indicate that the data set was reliable and representative of the water quality with Relative Percentage Difference (RPD) values of 30% or less?

DQO	Description
	> Were the laboratory limits of reporting (LORs) below the applicable guideline criteria for the analysed parameters?
	> Were guideline criteria sourced from endorsed guidelines?
	> Were surface water aesthetic characteristics evaluated including odours and sheen?
	> Were the monitoring results obtained from the downstream sample collected during construction phase greater than the upstream sample collected during the same monitoring event? If so, then the adverse impact to the quality of water in the unnamed channel is considered to have potentially occurred.
Step 6 Specify Limits on Decision	In accordance with the relevant guidelines as endorsed under the <i>Contaminated Land Management Act</i> 1997.
Error	Specific limits for this project are in accordance with the appropriate guidance made or endorsed by state and national regulations, appropriate indicators of data quality, and standard procedures for field sampling and handling.
	This step also examines the certainty of conclusive statements based on the available new Site data collected. This should include the following points to quantify tolerable limits:
	 A decision can be made based on a certainty assumption of 95% confidence in any given data set (excluding asbestos). A limit on the decision error will be 5% that a conclusive statement may be a false positive or false negative.
	A decision error in the context of the decision rule presented above would lead to either underestimation or overestimation of the risk level associated with a particular sampling area. Decision errors may include:
	 Sampling errors may occur when the sampling program does not adequately detect the variability of a contaminant from point to point across the Site. To address this, minimum numbers of samples are proposed to be collected from each media. As such, there may be limitations in the data if aspects of the sampling plan cannot be implemented. Some examples of this scenario include but not limited to:
	 Proposed samples are not collected due to lack of water flow or access being restricted to a given location.
	 Limitations in ability to acquire useful and representative information from the data collected. The data are proposed to be collected from multiple locations and sample media.
	 Measurement errors can occur during sample collection, handling, preparation, analysis and data reduction. To address this the following measures are proposed:
	 Field staff to follow a standard procedure when undertaking samples, including decontamination of tools, removal of adhered soil to avoid false positives in results, collection of representative samples and use of appropriate sample containers and preservation methods.
	 Laboratories to follow a standard procedure when preparing samples for analysis and undertaking analysis.
	 Laboratories to report quality assurance/ quality control data for comparison with the DQIs established for the project
Step 7 Optimise the Design for	To achieve the DQOs and DQIs, the following sampling procedures were implemented to optimise the design for obtaining data:
Obtaining Data	 Surface water samples was collected from two (2) sampling locations, as available due to access and water level;
	 Surface water parameters were selected based on project monitoring requirements provided to Cardno;
	 Samples were collected by suitably qualified and experienced environmental scientists;

DQO

Description

- Samples were collected and preserved in accordance with relevant standards/guidelines; and
- > Field and laboratory QA/QC procedures were adopted and reviewed to indicate the reliability of the results obtained.

4.1 Data Quality Indicators

The following DQIs have been adopted for the project. The DQIs outlined in **Table 4-2** assist with decisions regarding the usefulness of the data obtained, including the quality of the laboratory data.

Table 4-2 Summary of Data Quality mulcat		
Data Quality Indicator	Frequency	Data Acceptance Criteria
Completeness		
Field documentation correct	Field documentation correct All samples The work was documented in accordance with SOPs	
Suitably qualified and experience sampler	All samples	Person deemed competent by Cardno collecting and logging samples
Appropriate lab methods and limits of reporting (LORs)	All samples	Samples were analysed using methods endorsed by relevant regulatory guidelines at laboratories NATA-accredited for the requested analyses.
Chain of custodies (COCs) completed appropriately	All samples	The work was documented in accordance with Cardno SOPs
Sample holding times complied with	All samples	The samples were extracted and analysed within holding times specified by the project NATA-accredited laboratory
Proposed/critical locations sampled	-	Proposed/critical locations sampled
Comparability		
Consistent standard operating procedures for collection of each sample. Samples should be collected, preserved and handled in a consistent manner	All samples	All works undertaken in accordance with Cardno SOPs
Experienced sampler	All samples	Person deemed competent by Cardno collecting and logging samples
Climatic conditions (temp, rain etc) recorded and influence on samples quantified (if required)	All samples	Climatic conditions documented in field sheets
Consistent analytical methods, laboratories and units	All samples	Sample analysis to be in accordance with NATA-approved methods
Representativeness		
Sampling appropriate for media and analytes (appropriate collection, handling and storage)	All samples	Sample analysis to be in accordance with NATA-approved methods
Samples homogenous	All samples	All works undertaken in accordance with Cardno SOPs
Detection of laboratory artefacts, e.g. contamination blanks	-	Laboratory artefacts assessed and impact on results determined
Samples extracted and analysed within holding times	All samples	The samples were extracted and analysed within holding times specified by the laboratory
Precision		
Blind duplicates (intra-laboratory duplicates)	1 per 20 samples	<30% RPD No Limit RPD Result <10 × LOR
Split duplicates (inter-laboratory duplicates)	1 per 20 samples	<30% RPD No Limit RPD Result <10 × LOR

Data Quality Indicator	Frequency	Data Acceptance Criteria
Laboratory duplicates	1 per 20 samples	Results greater than 10 x LOR: <30% RPD Results less than 10 x LOR: No limit on RPD
Accuracy (Bias)		
Surrogate spikes	All organic samples	50-150%
Matrix spikes	1 per 20 samples	70-130%
Laboratory control samples	1 per 20 samples	70-130%
Method blanks	1 per 20 samples	<lor< td=""></lor<>

The DQOs and DQIs for the project were met during the monitoring events. Discussion of the Quality Control / Quality Assurance assessment is provided in **Appendix E**.

5 Field Investigation

The scope and method	of the surface wate	r monitoring is sum	marised in Table 5-1 .
The coope and mound	or the ourrade wate	i mornioring io oann	

Activity	Details
Dates of Fieldwork	1 July 2021
Surface Water Sampling	Cardno inspected two surface water monitoring locations (WP1 – Upstream and WP2 – Downstream). Primary samples were collected from the two locations during the sampling event. Cardno undertook the sampling as per the following procedures:
	<u>Surface Water Body Inspection</u> - The general site condition was observed prior to commencement of field works for signs of any site activities that may have altered the surface water contamination status or require modifications to the field or laborator works program.
	Each surface water location was inspected for indicators of contamination and the presence as well as the flow of surface water. This information is recorded on the field sheets presented in Appendix C.
	<u>Surface water sampling</u> - Field parameters and visual/olfactory observations were recorded prior to sampling at each location. Physico-chemical parameters including phelectrical conductivity (EC), dissolved oxygen (DO), reduction-oxidation potential (redox) and temperature were measured using a calibrated water quality meter. Surface water samples were collected either directly into the sampling bottle or directly from the telescopic scoop. Once field parameters were recorded, the surface water samples were transferred to appropriately preserved sample containers provided by the laboratories Field observations, and parameters are presented in Appendix C .
	Surface water samples were placed into an Esky containing ice and maintained at o below 4°C whilst onsite and in transit to the NATA-accredited laboratories for the targeter analyses.
Surface Water Analysis	Surface water samples from the monitoring event were submitted under standard chain of-custody (CoC) procedures to NATA-accredited Eurofins Environment Testing Australia analysis of the parameters as follows:
	– Oil & Grease;
	 Total Suspended Solids (TSS);
	 Nutrients (Total Phosphorous, Total Nitrogen);
	 Turbidity; and
	– Chlorophyll-a.
	Tabulated laboratory results are presented in Appendix D . The Data QA /QC program and data quality review including calibration certificates is presented in Appendix E . Copies of the original laboratory reports, NATA-stamped laboratory certificates, and Coord documentation are included in Appendix F .
Decontamination	
	In the event of reusable sampling or monitoring equipment (telescopic scoop, wate quality meter) was used decontamination was undertaken. Decontaminated betwee locations using a standard bucket wash. Equipment was washed in phosphate-fre detergent (Liquinox) and rinsed in laboratory supplied rinsate water.

Table 6-1

6 Surface Water Assessment Criteria

Water Quality Monitoring Parameters and Adopted Criteria at Wiley Park

The assessment criteria for surface water analytical and field data were adopted from Table 11 of the site's SWMP. The criteria for selected parameters are provided in **Table 6-1** below.

	0		
Parameter	ANZECC Criteria – Freshwater ¹	Proposed Triger Values	Proposed Actions
Temperature (°C)	>80% ile; <20% ile		
Dissolved Oxygen (DO)	Lower limit – 85% Upper limit -110%	Downstream results are	
Turbidity (NTU)	6-50 NTU	greater than upstream	
Oil and grease	-	to and including the	Environment Manager (or delegate) to re-test to
рН	Lower limit – 6.5 Upper limit – 8.5	significant event threshold of greater than 20 mm in 24 hours.	confirm results and undertake an inspection of the adjacent works and
Salinity (as EC)	125 – 2200 µS/cm	Downstream results are	propose actions where
Total Suspended Solids (TSS)	-	greater than upstream results during dry-weather sampling.	required.
Total Phosphorus as P	25 μg/L		
Total Nitrogen as N	350 μg/L		
Chlorophyll-a	3 µg/L		
Note to Table			

ANZECC guideline criteria are included for reference. It is noted that for dry weather events baseline testing comparison will indicate whether this existing water quality within the channel meet ANZECC guidelines, prior to construction of the services building. For wet weather events where no baseline data is available a direct comparison to upstream and downstream results is undertaken. Sydney Metro's Principal Contractor will comply with Section 120 of the Protection of the Environment Operations Act 1997.

7 Summary of Results

7.1 Summary of Field Observations

The two (2) surface water sampling locations (WP1 – Upstream and WP2 – Downstream) were able to be accessed during the sampling events conducted on 1 July 2021. Photos of each sampling location are included in **Appendix B**. The following observations were made:

7.1.1 Quarterly Mid-Construction Event – 1 July 2021

- > The sampling event was undertaken during a rain event with 0.6 mm precipitation over the last 24 hours prior to the field sampling (rainfall data was obtained from the closest Bureau of Meteorology weather station, i.e. Canterbury Racecourse AWS - station ID: 066194);
- > Observation of water body:
 - WP 1 (upstream of work area) contained low flowing clear water with low turbidity. The estimated depth of the water body was 0.05 m;
 - WP 2 (downstream of work area) contained low to medium flowing clear water with low turbidity. The estimated depth of the water body was 0.1 m;
- > Additional observation:
 - WP1 (upstream of work area):
 - Routine maintenance cleaning of the gross pollutant trap (GPT) was undertaken at the time of sampling via a vacuum truck. The GPT is located approximately 10 m south / upstream of the sampling location.
 - Minor visible sheen observed during the sampling work. Refer to **Appendix B**.
 - Inspection of area immediately downstream of the sampling point WP1 to confirm if there is any
 additional discharge point(s) downstream of WP1 was undertaken as per the recommendation from
 the last round of monitoring report. One additional discharge point (WP1-DP1) was observed
 immediately downstream / north of WP1, however, no flow contribution was observed at the time of
 sampling. Refer to Appendix A for approximate location of WP1-DP1. Refer to Appendix B for a
 detailed photo.
 - WP2 (downstream of work area):
 - During the sampling event, the two discharge points (WP2-DP1 and WP2-DP2) within the rail corridor immediately upstream / south from WP2 were observed. No flow contribution from the discharge point WP2-DP1 was observed at the time of sampling, however, flow contribution from the discharge point WP2-DP2 was observed at the time of sampling. Refer to **Appendix A** for approximate location of WP2-DP1 and WP2-DP2. Refer to **Appendix B** for detailed photos.

7.2 **Field Parameters**

The parameters from each location sampled are presented in Table 7-1.

Table 7-1 Laboratory Physico-chemical Parameters and Field Observations - 1 July 2021

Location ID	WP1 (upstream of work area)	WP2 (downstream of work area)
Water Depth (m)	0.05	0.1
Estimated Flow Rate	Low	Low - Medium
Temperature (°C)	14.1	14.6
рН	9.01	8.83
Electrical Conductivity (µS/cm)	910	530.3
Dissolved Oxygen (mg/L)	11.21	7.92
Dissolved Oxygen (%)	108.8	77.9
SHE ¹ Redox Potential (mV)	53.7	122.4
Condition	Clear	Clear
	Minor sheen observed	Low turbidity

Note to Table 1 SHE – Standard Hydrogen Electrode

7.3 Surface Water Analytical Results

Surface Water Analytical results are presented in **Appendix D**. Copies of the original laboratory reports, NATA-stamped laboratory certificates, and Chain of Custody documentation are included in **Appendix F**.

7.3.1 Quarterly Mid-Construction Event – 1 July 2021

The results of the monitoring event indicate that:

- > Field measurements physio-chemical parameters:
 - pH was reported outside of the target range (6.5-8.5) with results ranging from 9.01 upstream at WP1 and 8.83 downstream at WP2.
 - Electrical Conductivity (µS/cm) was reported within of the target range (125-2,200 µS/cm) at both sampling locations with results ranging from 910 µS/cm upstream at WP1 and 530.3 µS/cm downstream at WP2;
 - Dissolved Oxygen (%Sat) was reported outside of the target range (85%-110%) at downstream sampling point WP2. The results are ranging from 108.8% saturation upstream at WP1 and 77.9% saturation downstream at WP2;
- > Laboratory analytical results:
 - Concentrations of Chlorophyll-*a* were reported below the laboratory detection limit and adopted assessment criteria at all sample locations;
 - Concentrations of Oil and Grease were reported below laboratory detection limit at all sample locations;
 - Concentrations of inorganics were reported above the adopted assessment criteria with the total nitrogen concentration within both the WP1 and WP2 samples, and the total phosphorous concentration within both the WP1 and WP2 samples;
 - Total Suspended Solids (TSS) concentrations were detected within both WP1 and WP2, with concentrations of 4 mg/L at WP1 and 4.4 mg/L at WP2; and
 - Turbidity ranged from 4.1 NTU at WP1 to 6.3 NTU at WP2.

7.3.2 Baseline Results Comparison

One sampling event during the pre-construction period (baseline event) was undertaken on 10 March 2021. This event has been used for comparison of mid-construction monitoring events under similar conditions (i.e. not triggering the wet-weather event criteria). It should be noted that the baseline water quality monitoring represents a single sampling event, and may not be representative of the range of water quality within the channel prior to construction starting.

The parameters from each location sampled are presented in **Table 7-2** compared with the baseline preconstruction event undertaken on 10 March 2021. Overall, conditions are similar in the pre-construction results and the mid-construction sampling event on 1 July 2021. These baseline conditions have been taken into account in interpretation in **Section 7.4** below.

Cardno[®]

Comparison of current sampling results to baseline results. Table 7-2

Location ID	Assessment Criteria	WP1 Baseline Results	WP2 Baseline Results	WP1 1 July Results	WP2 1 July Results
Temperature (°C)	N/A	21.3	21.1	14.1	14.6
рН	6.5 - 8.5	7.90	7.61	9.01	8.83
Electrical Conductivity (µS/cm)	125 – 2,200	543	363	910	530.3
Dissolved Oxygen (mg/L)	<6	5.64	4.09	11.21	7.92
Dissolved Oxygen (%)	85% - 110%	63	45.9	108.8	77.9
SHE ¹ Redox Potential (mV)	N/A	140.7	181.0	53.7	122.4
Chlorophyll a (µg/L)	0.003	<0.005	<0.005	<0.001	<0.001
Oil and Grease (mg/L)	Comparison	<10	29	<10	<10
Kjeldahl Nitrogen Total (mg/L)	N/A	1.3	0.8	<0.2	2.2
Nitrate & Nitrite (as N) (mg/L)	N/A	1.2	0.88	1.3	0.9
Nitrogen (Total) (mg/L)	0.35	2.5	1.68	1.3	3.1
Phosphorus (mg/L)	0.025	0.34	0.12	0.18	0.13
TSS (mg/L)	N/A	<1	<1	4	4.4
Turbidity (NTU)	6 - 50	2.9	<1	4.1	6.3

Note to Table 1 SHE – Standard Hydrogen Electrod

7.4 Results Discussion

7.4.1 Comparison to ANZG 2018 / ANZECC 2000 Criteria

Results for the quarterly mid-construction event sampled on 1 July 2021 generally showed monitored parameters were within the adopted threshold criteria, with the exception of nitrogen, phosphorous, pH and dissolved oxygen saturation.

7.4.2 Comparison of Upstream and Downstream Results

Results for upstream and downstream sampling were comparable, with the exception of:

- > Total nitrogen was higher in the WP2 downstream location compared to the upstream WP1 location; however, it is noted that this predominantly reflects the contribution of the TKN result (likely a function of organic matter), whereas nitrate and nitrite concentrations were similar between the upstream and downstream locations, and consistent with the pre-construction monitoring event undertaken.
- > Turbidity was marginally higher (6.3 NTU) in the WP2 downstream location compared to the upstream WP1 location (4.1 NTU); it is noted that whilst this does exceed the direct comparison criteria for upstream versus downstream results, the sample results were only 2 NTU higher downstream, and at the lower limit of expected Lowland River criteria (6 – 50 NTU) and therefore do not indicate a significant risk to water quality.
- > Dissolved oxygen saturation was below the adopted threshold at WP2 but within range at WP1. This is not considered to be a significant issue, due to the pre-construction monitoring results showing saturations of 63% and 45.9% for WP1 and WP2 respectively indicating mid-construction results are closer to the adopted thresholds than the pre-construction event.
- > pH results were above the adopted threshold in both sampling locations, with the downstream result at WP2 being lower (and therefore closer to the adopted range) than the upstream WP1 location.

Refer to Appendix D for details.

8 Conclusion

Cardno was engaged to undertake surface water monitoring of the unnamed channel west of Wiley Park Station in accordance with the SWMP for the project. The objective of the works was to evaluate whether construction activities are impacting water quality downstream of the project footprint in the unnamed channel that receives in part stormwater from the construction area.

This report presents monitoring data from one quarterly mid-construction event on 1 July 2021. Samples were collected from two locations. Sampling point WP1 is located up-stream from the work site while sampling point WP2 is located down-stream of the work site. During this monitoring event, sampling results showed monitored parameters were generally within the adopted ANZG 2018 / ANZECC 2000 screening criteria with the exception of nitrogen, phosphorous, pH, and dissolved oxygen saturation. The results are generally consistent with the data obtained from previous monitoring events with the only exception of pH results observed outside of the target range during this round of monitoring at both sampling locations.

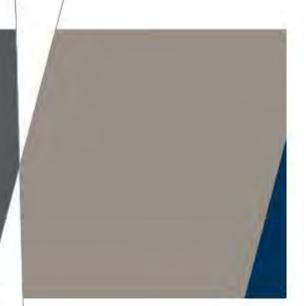
Nitrogen and turbidity results within the samples were observed to be higher in the downstream WP2 sampling point. In addition dissolved oxygen saturation was below the adopted range within WP2. Based on comparison to the criteria, and pre-construction monitoring event, these results are not considered to reflect an adverse impact to water quality due to construction activities.

9 References

- Southwest Metro Hurlstone Park, Belmore and Wiley Park Station Upgrades Soil and Water Management Plan, dated 16th February 2021;
- > The Sydney Metro City and Southwest Sydenham to Bankstown Upgrade Conditions of Approval SSI-8256, determined 12 December 2018;
- > Environmental Planning and Assessment Act 1979 (EP&A Act);
- > Contaminated Land Management Act 1997;
- > Protection of the Environment Operations Act 1997 (POEO Act);
- > Water Management Act 2000 Water Management (General) Regulation 2018;
- > Landcom (2004). Managing Urban Stormwater: Soils and Construction. (Volume 1 of the 'Blue Book');
- DECC (2008). Managing Urban Stormwater: Soils and Construction. Volume 2D: Main Road Construction. (Volume 2D of the 'Blue Book');
- ANZECC (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (collectively known as the 'ANZECC Guidelines');
- > ANZECC (2000). Australian and New Zealand Guidelines for Water Quality Monitoring and Reporting (collectively known as the 'ANZECC Guidelines');
- > ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (known as 'ANZG Guidelines').

10 Limitations

This assessment has been undertaken in general accordance with the current industry standards for a surface water monitoring report for the purpose and objectives and scope identified in this report. The agreed scope of this assessment has been limited for the current purposes of the Client. The assessment may not identify contamination occurring in all areas of the site, or occurring after sampling was conducted. Subsurface conditions may vary considerably away from the sample locations where information has been obtained. This Document has been provided by Cardno subject to the following limitations:


- > This Document has been prepared for the particular purpose outlined in Cardno's proposal and Section 1 of this report and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.
- > The scope and the period of Cardno's services are as described in Cardno's proposal, and are subject to restrictions and limitations. Cardno did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Cardno in regards to it.
- > Conditions may exist which were undetectable given the limited nature of the enquiry Cardno was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.
- In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Cardno's opinions are based upon information that existed at the time of the production of the Document. It is understood that the services provided allowed Cardno to form no more than an opinion of the actual conditions of the site at the time this Document was prepared and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.
- > Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.
- > Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Cardno for incomplete or inaccurate data supplied by others.
- > Cardno may have retained sub consultants affiliated with Cardno to provide services for the benefit of Cardno. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Cardno's affiliated companies, and their employees, officers and directors.

This assessment report is not any of the following:

- > A Site Audit Report or Site Audit Statement (SAR/SAS) as defined under the Contaminated Land Management Act, 1997 or an assessment sufficient for an Environmental Auditor to be able to conclude a SAR/SAS.
- > A geotechnical report and the bore logs/test pit logs may not be sufficient for geotechnical advice.
- > An assessment of surface water contaminants potentially arising from other sites or sources nearby.
- > A total assessment of the site to determine suitability of the entire parcel of land at the site for one or more beneficial uses of land

FIGURES

(Þ	F
+		_
<u>'</u>		

PHOTOGRAPHS

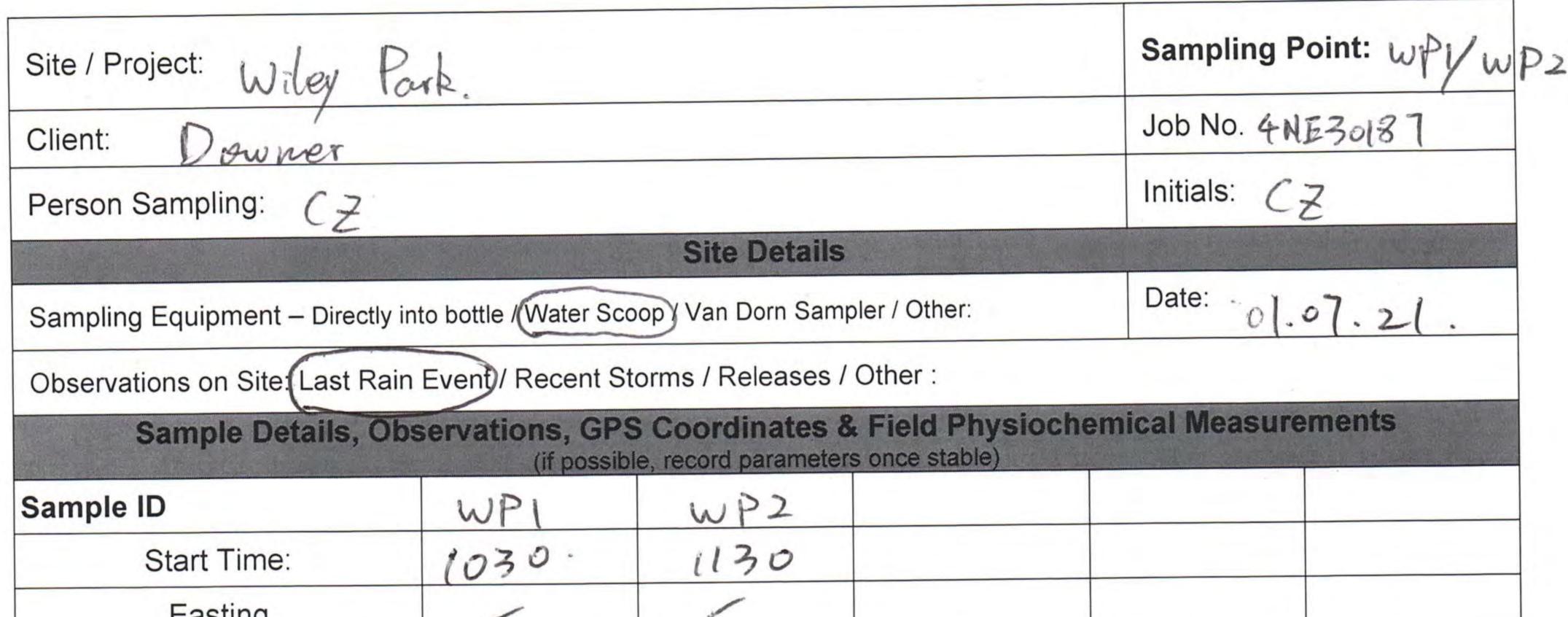
Photograph 1. Condition observed from sampling location of WP1 during the monitoring event – 1 July.

Photograph 2. Condition observed from sampling location of WP2 during the monitoring event – 5 May.

Photograph 3. No stormwater in-flow observed from the discharge point WP1-DP1 which is located within the rail corridor and immediately downstream / north from WP1 during the monitoring event – 1 July.

Photograph 4. No stormwater in-flow observed from the discharge point WP2-DP1 which is located within the rail corridor and immediately upstream / south from WP2 during the monitoring event – 1 July.

Photograph 5. Stormwater in-flow observed from the discharge point WP2-DP2 which is located within the rail corridor and immediately upstream / south from WP2 during the monitoring event – 1 July.



Error! Unknown document property

name.

Surface Water Sampling Field Record

/	/			
0.0-0.05	0.0-0.1			
A 0.05	9.1			
upstream	dounstream			
lou.	* higher than	upstream poi	int	
11.21/108.8	4 1 0 0	1		
910	530.3			
9.01	8.83			
53.7	122.4			
14.1	14.6			
	chear			
low , 1	How			
GPT currently being cleane rubbish pre	Dinlet flog ad Dinlet on sent on the	the other si	ide - flow con doublet	ntribution to m
Sample C	ontainer & Pres	servation Data	channel.	
4	4			
one inlet dir	ecely downstere	cam a		
		rved		
but no fl	ou.			
	Con . Upstream Low . 11.21/108.8 910 9.01 53.7 14.1 Chear. Low walls dividing GPT currently being cleane rubbish. pre Sample Co Sample Co Sample Co Sample Co Sample Co Sample Co Sample Co Sample Co	CADOS O.1 UPStream downstream 1.21/108.8 8-24+84.9 910 530.3 9.01 8.83 53.7 122.4 14.1 14.6 chear. chean GPT currently Dinlet flog being cleaned Dinlet on rubbish. Present on the Sample Container & Present 4 4 4 4 one inlet directly downstream of WPI has been obsent	Con	12 0.05 0.1 upstream downstream low - * higher than upstream point 11.21/108.8 8-24/84.7 7.92/77.9 910 530.3 9.01 8.83 53.7 122.4 14.1 14.6 chear - chean low wills dividing than wills dividing than under dividing than wills dividing than wills dividing than wills dividing than wills dividing than under dividing than 12.4 14.1 14.6 chear - chean Upstream Upstream Upstream Upstream Upstream Upstream Chear - chean Upstream Upstrea

- QA200

Revision: 1 Approved: 25/02/2014 LAREMS02.02.03 - Surface Water Sampling Field Sheet This document is current for 24 hours after print date Page 1 of 1 Printed: 30/06/2021

APPENDIX

LABORATORY SUMMARY TABLES

Project Number: NE30161 Site Identification: Wiley Park Station Report Title: Surface Water Monitoring

100		4		ТРН			Inorg	ganics				Physi	o-Chemical	
C) C	ardn	0	Chlorophyll a	Oil and Grease	Kjeldahl Nitrogen Total	Nitrate & Nitrite (as N)	Nitrogen (Total as N)	Phosphorus (Total as P)	TSS	Turbidity	На	Temprature	Electrical Conductivity	Dissolved Oxygen
			mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	NTU	Units	°C	uS/cm	%Sat
	EQL		0.001	5	0.1	0.01	0.1	0.01	1	0.1	0.01	0.1	0.1	0.1
	ANZECC Criteria -	Freshwater	0.003	-	-	-	0.35	0.025	-	<6-50	6.5-8.5	-	125-2200	85% - 110%
Lab Report Number	Field ID	Date												
807266	WP1	1/07/2021	< 0.001	<10	<0.2	1.3	1.3	0.18	4	4.1	9.01	14.1	910	108.8
807266	WP2	1/07/2021	< 0.001	<10	2.2	0.9	3.1	0.13	4.4	6.3	8.83	14.6	530.3	77.9
807266	QA100	1/07/2021	NT	<10	0.3	0.87	1.17	0.12	5.8	4.6	-	-	-	-
ES2124553	QA200	1/07/2021	NT	<5	0.9	0.75	1.6	0.12	6	5.8	-	-	-	-

Statistics

Maximum Concentration	<0.000005	<10	2.2	1.30	3.1	0.18	6	6.3	9.01	-	910.0	108.8
 * A Non Detect Multiplier of 0.5 bas been applied												

* A Non Detect Multiplier of 0.5 has been applied.

APPENDIX

QUALITY ASSURANCE/QUALITY CONTROL

Quality Assurance/Quality Control (QA/QC) procedures were implemented to ensure the precision accuracy, representativeness, completeness and comparability of all data gathered. The QA/QC procedures included:

- > Equipment calibration to ensure field measurements obtained are accurate
- > Equipment decontamination to prevent cross contamination
- > Use of appropriate measures (i.e. gloves) to prevent cross contamination
- > Appropriate sample identification
- > Correct sample preservation
- > Sample transport with Chain of Custody (COC) documentation
- > Laboratory analysis in accordance with NATA accredited methods.

Table E1 details the QA/QC procedures and sample collection details undertaken through the surface water elements of the investigation. Copies of all the COCs, along with the Sample Receipt Notifications (SRNs), Interpretive QA/QC Reports are provided in **Appendix F**.

Table E1 Field QA / QC Method Validation

Requirement	Yes / No	Comments			
Equipment decontamination	Yes	equipment (w	ater quality meter, tel	escopic water scoop e	tamination of sampling etc.) was undertaken by I by a rinse with potable
Sample collection	Yes	clean pair of			elescopic water scoop. A ng collected to limit the
QA/QC sample collection	Yes	collected for i practices for s duplicate and	ntra and inter-lab QA/0 ample collection. Card	QC purposes to monito no based the investiga	er triplicate sample were or the quality of the field tion around a rate of one equirement for duplicate
Sample identification	Yes	All samples w location, and o		que identifier including	project number, sample
Sample preservation	Yes	Samples were laboratory.	e placed in a chilled ic	e box with ice for stora	age and transport to the
COC documentation	Yes	date, sampler returned to Ca and Sample indicates that	and laboratory analys ardno by the laboratory Receipt Notification (S	is required. The COC staff upon receipt of all RN) are provided in	identification, collection form was signed off and the samples. COC forms Appendix F . The SRN y intact and chilled and
NATA accredited methods	Yes	with NATA a		nalytical methods use	e samples in accordance ed are indicated in the
Laboratory Internal QC	No	All Data Quali	ty Objectives were met	by the laboratories.	
able E2 Field QA/QC Co	llection Sum	mary			
Environmental Media	a	Date	Primary	Duplicate	Triplicate

WP2

01/07/2021

Surface Water

QA200

QA100

Relative Percentage Difference Determination

Laboratory results for duplicate and triplicate samples are assessed using a determination of the Relative Percentage Difference (RPD). Where a primary sample and a duplicate sample are compared, the RPD provides an indication of the reproducibility of the results, which incorporates the sampling method. Where a primary sample and a split sample are compared, the RPD provides an indication of the accuracy of the primary laboratory results as compared to the secondary laboratory result.

The calculation used to determine the RPD is:

$$RPD = \frac{(Co - Cs)}{\left(\frac{Co + Cs}{2}\right)} x100$$

Where:

Co = Concentration of the original sample

Cs = Concentration of the duplicate sample

In calculating the RPD values the following protocols were adopted:

- > Where both concentrations are above laboratory reporting limits the RPD formula is used;
- > Where both concentrations are below the laboratory reporting limits, no RPD is calculated; and
- > Where one or both sample concentrations are reported to be less than ten times (<10x) the laboratory reporting limit, the RPD is calculated but is not assessed against the adopted criterion.

In accordance with the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended 2013, Cardno adopts an RPD acceptance criterion up to 30% of the mean concentration of the analyte. It should be noted that variations might be higher for organic analysis, due to the volatile nature of the components, and for low concentrations of analytes.

The adopted criterion will not apply to RPDs where one of both concentrations are less than 10 times the reporting limit, as this criterion would otherwise overestimate the significance of minor variations in concentrations at or near the laboratory reporting limit. Large RPDs returned for low concentrations of analytes near the reporting limit is not as indicative of a significant difference in the results as a small RPD is for larger concentrations.

This approach is employed by NATA accredited laboratories when assessing internal duplicate sample RPDs. This approach acknowledges that concentrations at or around the reporting limit are too low for an accurate evaluation of the significance of the RPD.

This approach has been adopted when assessing the relevance (compliance) of RPDs during this investigation. RPDs will be calculated for sample sets where one or both concentrations are less than 10 times the reporting limit for discussion purposes, but will not be assessed as a pass or fail in relation to the criterion.

The RPD results for duplicate samples are presented in this appendix. Although five (5) RPD values were reported to be above the accepted 30% RPD criteria. The breaches in RPDs are not considered to alter the overall outcome of the assessment. It can be concluded that the analytical data can be relied upon for the purposes of this factual report.

Laboratory QC and QCI Report Summary

The laboratories selected for undertaking the analysis (Eurofins mgt and ALS) are NATA accredited for the analysis required, and undertook certain QA/QC requirements to demonstrate the suitability of the data that is obtained. The laboratory is required to undertake and report internal laboratory Quality Control (QC) procedures for all chemical analysis undertaken. The QC testing is required to include:

- > Laboratory duplicate sample analysis at the rate of one duplicate analysis per ten samples
- > Method blank at the rate of one method blank analysis per 20 samples

- > Laboratory control sample at the rate of one laboratory control sample analysis per 20 samples
- > Spike recovery analysis at the rate of one spike recovery analysis per 20 samples.

Compliance with the laboratory QA/QC requirements and non-conformance details are discussed in the internal Laboratory QA/QC reports included with the certificates of analysis in **Appendix F**. Laboratory QA/QC requirements were within acceptance limits.

Cardno concludes that the data reported by the NATA accredited Eurofins mgt and ALS as presented in this report is suitable for interpretative purposes and to make conclusions/recommendations regarding water quality.

Cardno

Pro	ject Number: NE3016	1
	Site: Wiley Park Station	n

		1			-			-
		Lab Report Number	807266			807266	ES2124553	
		Field ID	WP2	QA100		WP2	QA200	
		Matrix Type	water	water		water	water	
		Date	1/07/2021	1/07/2021	RPD	1/07/2021	1/07/2021	RPD
	Unit	EQL						
NA								
Chlorophyll a	μg/L	5	< 0.001			<0.001		
ТРН								
Oil and Grease	mg/L	5	<10	<10	0	<10	<5	0
Inorganics								
Kjeldahl Nitrogen Total	mg/L	0.1	2.2	0.3	152	2.2	0.9	84
Nitrate & Nitrite (as N)	mg/L	0.01	0.90	0.87	3	0.90	0.75	18
Nitrogen (Total)	mg/L	0.1	3.1	1.17	90	3.1	1.6	64
Phosphorus	μg/L	10	130	120	8	130	120	8
TSS	mg/L	1	4.4	5.8	27	4.4	6	31
Turbidity	NTU	0.1	6.3	4.6	31	6.3	5.8	8

*RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: (1 - 10 x EQL); 30 (10 - 30 x EQL); 30 (> 30 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

APPENDIX

LABORATORY REPORTS

elephone Number: 0436 657 417 Viternative Contact: Chong Zheng Viternative Contact: Chong Zheng Viternative Contact: Chong Zheng intervative Contaction 201780 991 isampler: CZ I BW isampler: CZ I BW isample ID Isampler: CHONG Sample ID Isample ID Isample ID Isample ID Isample ID Isampler: CHONG Sample ID Isample ID Isample ID Isampler: CHONG Sample ID Isampler: CHONG SAMPLER: CHONG S				<u>a</u>	roject Name:		Downer S	Downer Sydney Metro Stations	stations			
19 actific Highway, St L				<u>a</u>	oject Number		4NE3018	4NE30187 Wiley Park				
91 actilic Highway, St L				đ	D No.:							
actific Highway, St Li				a	roject Specific	Quote No. :		-		190408CDNN_1		
acific Highway, St L				F	urnaround Rec	quirements:				Standard TAT		
es: Level 9 - The Forum, 203 Pacific Highway, St Lu	ben withhnall@cardno.com.au; chong.zeng@cardno.com.qu; ContramIXW@cardno.com.au;	com au; chong.zeng@c	ardno.com.qu;		ab:	Lab:	Eurofins	Unit F3, Buil	ding F, 16 Mar	Eurofins Unit F3, Building F, 16 Mars Rd, Lane Cove West NSW2066	066	
a dno Sample ID Laboratory Sample ID	eonards, New South	Vales 2065 Australia		A	Attn:		Sample Receipt	leceipt				
	Sample information							-	Analysis Required	ired		Comments
	No. Containers	Preservation	Date sampled	Matrix	TSS Chlorophyll-a	Turbidity	ion and Grease	zutal Phosphorus	negotiiN letoT			
WP1	4	ICE		Water			+	1	-			
WP2	4	ICE	accord to a so	Water	+	+	-		-			
QA100	3	ICE	ווחווקחבו	Water		1	+	+	-			
QA200	3	ICE		Water		1	+	+	-			Please send to ALS
						-						
									N	ALC: NO		
								1	-			
					-			-				
									+			
									1			
					-	-			1			
0	Received by:			Relinquished by:				Received by:			Relinquished by:	H-W
(June	(name / company)			(name / company				(name / company)	npany)		(name / company	1.221
Jate & Time: 01.07.2021	Date & Time:			Clanatura				Simature.			Signature:	WELTE: T
												80.0.14 140 7211
ceceived by:	Keinquished by:			Keceived by:				An nausuhunay	- An na		å	of a Ambient faircle and
any	(name / company)			(name / company				Data & Tima-	(Auson		Temperature Rec	Termersture Received at 1444 (if amflicable)
Jate or lime:	Dete & 11116.			Nave & 11110.								15

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

Australia

Melbourne
 Melbourne
 Unit F3, Buildin

 6 Monterey Road
 Unit F3, Buildin

 Dandenong South VIC 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove Wei
 NATA # 1261 Site # 1254

Sydney Unit F3, Building F Brisbane NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone : +61 2 9900 8400 NATA # 1261 Site # 20794

Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:	Cardno (NSW/ACT) Pty Ltd
Contact name:	Ben Withnall
Project name:	DOWNER SYDNEY METRO STATIONS
Project ID:	4NE30187 WILEY PARK
Turnaround time:	5 Day
Date/Time received	Jul 1, 2021 2:27 PM
Eurofins reference	807266

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Sample QA200 forwarded to ALS for analysis.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Ursula Long on phone : or by email: UrsulaLong@eurofins.com

Results will be delivered electronically via email to Ben Withnall - ben.withnall@cardno.com.au. Note: A copy of these results will also be delivered to the general Cardno (NSW/ACT) Pty Ltd email address.

Global Leader - Results you can trust

eurofins	SU			Australia								New Zealand		
		Environment Testing		Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000	Sydney Unit F3, 16 Mars Lane Co	3, Building F Irs Road Cove West N	Building F Road West NSW 2066		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450	675
ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com): www.eurofins.com.au	u email: EnviroSale		NATA # 1261 Site # 1254		9 : +61 2 # 1261 {	+61 2 9900 8400 1261 Site # 18217	~	VA I A # 1261 Site # 20794	NATA # 1261 Site # 23736	Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	IANZ # 1327	IANZ # 1290	
Company Name: Address:	Cardno (NS) Level 9, 203 St Leonards NSW 2065	Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway St Leonards NSW 2065	td vay			Order No.: Report #: Phone: Fax:	, t No.: # # ::		807266 0294967700 02 9499 3902		Received: Due: Priority: Contact Name:	Jul 1, 2021 2:27 PM Jul 8, 2021 5 Day Ben Withnall	V	
Project Name: Project ID:	DOWNER S 4NE30187 V	DOWNER SYDNEY METI 4NE30187 WILEY PARK	DOWNER SYDNEY METRO STATIONS 4NE30187 WILEY PARK								Eurofins Analytical {	Eurofins Analytical Services Manager : Ursula Long	Jrsula Long	
	ũ	Sample Detail			Oil & Grease (HEM) Chlorophyll a	Phosphate total (as P)	Total Suspended Solids Dried at 103–105°C	Turbidity	Total Nitrogen Set (as N)					
Melbourne Laboratory - NATA Site # 1254	tory - NATA Site	9 # 1254			××	×	×	×	×					
Sydney Laboratory - NATA Site # 18217	/ - NATA Site #1	18217												
Brisbane Laboratory - NATA Site # 20794	ry - NATA Site #	# 20794												
Perth Laboratory - NATA Site # 23736	NATA Site # 23	736												
Mayfield Laboratory - NATA Site # 25079	'y - NATA Site #	25079			_									
External Laboratory	Ż													
No Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1 WP1	Jul 01, 2021		Water	S21-JI01111	^ ×	×	×	×	×					
2 WP2	Jul 01, 2021		Water	S21-JI01112	×	×	×	×	×					
3 QA100	Jul 01, 2021		Water	S21-JI01113	$\hat{}$	×	×	×	×					
Test Counts					5	э Э	e	e	0					

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway St Leonards NSW 2065

NATA

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:

Ben Withnall

Report807266-WProject nameDOWNER SYDNEY METRO STATIONSProject ID4NE30187 WILEY PARKReceived DateJul 01, 2021

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			WP1 Water S21-JI01111 Jul 01, 2021	WP2 Water S21-JI01112 Jul 01, 2021	QA100 Water S21-JI01113 Jul 01, 2021
Test/Reference	LOR	Unit			
Chlorophyll a	5	ug/L	< 0.001	< 0.001	-
Nitrate & Nitrite (as N)	0.05	mg/L	1.3	0.90	0.87
Oil & Grease (HEM)	10	mg/L	< 10	< 10	< 10
Phosphate total (as P)	0.01	mg/L	0.18	0.13	0.12
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	< 0.2	2.2	0.3
Total Nitrogen (as N)*	0.2	mg/L	1.3	3.1	1.17
Total Suspended Solids Dried at 103–105°C	1	mg/L	4.0	4.4	5.8
Turbidity	1	NTU	4.1	6.3	4.6

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chlorophyll a	Melbourne	Jul 02, 2021	2 Days
- Method: LTM-INO-4340 Chlorophyll a in Waters			
Oil & Grease (HEM)	Melbourne	Jul 02, 2021	28 Days
- Method: LTM-INO-4180 Oil and Grease (APHA 5520B)			
Phosphate total (as P)	Melbourne	Jul 02, 2021	28 Days
- Method: LTM-INO-4040 Phosphate by CFA			
Total Suspended Solids Dried at 103–105°C	Melbourne	Jul 02, 2021	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Turbidity	Melbourne	Jul 06, 2021	2 Days
- Method: Turbidity by classical using APHA 2130B (LTM-INO-4140)			
Total Nitrogen Set (as N)			
Nitrate & Nitrite (as N)	Melbourne	Jul 02, 2021	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Total Kjeldahl Nitrogen (as N)	Melbourne	Jul 02, 2021	7 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			

. eurofins	SU		41	Australia								New Zealand	
	Env	Environment Testing		Melbourne Melbourne 6 Moriterey Road 1 6 Moriterey Road 1 Dandenong South VIC 3175 1 Phone : +61 3 8564 5000 1 NATA # 1261	Sydney Unit F3, 16 Mars Lane Co Phone :	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400	ng F st NSW : 9900 840		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +617 3902 4600 NATA # 1261 Site # 20794	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com	o: www.eurofins.com.au	u email: EnviroSales		Site # 1254	NATA	, # 1261 (1261 Site # 18217	217		Site # 23736	NATA # 1261 Site # 25079		
Company Name: Address:		Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway St Leonards NSW 2065	7 2			Order No.: Report #: Phone: Fax:			807266 0294967700 02 9499 3902		Received: Due: Priority: Contact Name:	Jul 1, 2021 2:27 PM Jul 8, 2021 5 Day Ben Withnall	K
Project Name: Project ID:	DOWNER S 4NE30187 V	DOWNER SYDNEY METRO STATIONS 4NE30187 WILEY PARK	O STATIONS								Eurofins Analytical S	Eurofins Analytical Services Manager : Ursula Long	Jrsula Long
	õ	Sample Detail		onorophyn a	Oil & Grease (HEM) Chlorophyll a	Phosphate total (as P)	Total Suspended Solids Dried at 103–105°C	Turbidity	Total Nitrogen Set (as N)				
Melbourne Laboratory - NATA Site # 1254	tory - NATA Site	; # 1254			^ ×	×	×	×	×				
Sydney Laboratory - NATA Site # 18217	/ - NATA Site #1	18217											
Brisbane Laboratory - NATA Site # 20794	ry - NATA Site #	± 20794											
Perth Laboratory - NATA Site # 23736	NATA Site # 23;	736											
Mayfield Laboratory - NATA Site # 25079	'y - NATA Site #	25079											
External Laboratory	Ż												
No Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1 WP1	Jul 01, 2021	_	Water	S21-JI01111	^ ×	×	×	×	×				
2 WP2	Jul 01, 2021	_	Water	S21-JI01112	^ ×	×	×	×	×				
3 QA100	Jul 01, 2021	_	Water	S21-JI01113		×	×	×	×				
Test Counts					5	3	e	e	σ				

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN : 50 005 085 521 Telephone: +61 2 9900 8400

Page 3 of 6

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: oH duplicates are reported as a rance NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Term

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " " in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Nitrate & Nitrite (as N)			mg/L	< 0.05			0.05	Pass	
Oil & Grease (HEM)			mg/L	< 10			10	Pass	
Phosphate total (as P)			mg/L	< 0.01			0.01	Pass	
Total Kjeldahl Nitrogen (as N)			mg/L	< 0.2			0.2	Pass	
Total Suspended Solids Dried at 10)3–105°C		mg/L	< 1			1	Pass	
Turbidity			NTU	< 1			1	Pass	
LCS - % Recovery								_	
Nitrate & Nitrite (as N)			%	102			70-130	Pass	
Oil & Grease (HEM)			%	82			70-130	Pass	
Phosphate total (as P)			%	107			70-130	Pass	
Total Kjeldahl Nitrogen (as N)			%	71			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Nitrate & Nitrite (as N)	M21-JI08929	NCP	%	70			70-130	Pass	
Phosphate total (as P)	B21-Jn62694	NCP	%	110			70-130	Pass	
Total Kjeldahl Nitrogen (as N)	B21-JI02227	NCP	%	105			70-130	Pass	
Total Suspended Solids Dried at 103–105°C	M21-JI00149	NCP	%	91			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				-					
				Result 1	Result 2	RPD			
Nitrate & Nitrite (as N)	M21-JI08929	NCP	mg/L	3.9	3.9	1.0	30%	Pass	
Total Kjeldahl Nitrogen (as N)	S21-JI01856	NCP	mg/L	< 0.2	< 0.2	<1	30%	Pass	
Total Suspended Solids Dried at 103–105°C	M21-JI01374	NCP	mg/L	15	18	15	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Phosphate total (as P)	S21-JI01112	CP	mg/L	0.13	0.13	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Turbidity	S21-JI01113	CP	NTU	4.6	4.3	6.0	30%	Pass	

Comments

Chlorophyll a analysis performed by Eurofins ARL, report reference 21-12812.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

Ursula Long Scott Beddoes Analytical Services Manager Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

 Job Number:
 21-12812

 Revision:
 00

 Date:
 13 July 2021

LABORATORY REPORT

ADDRESS: Eurofins Environment Testing Australia Pty Ltd

6 Monterey Road Dandenong South VIC 3175

ATTENTION: Eurofins Sydney

DATE RECEIVED: 12/07/2021

YOUR REFERENCE: 807266

PURCHASE ORDER: B21--807266

APPROVALS:

Hunt

Sam Becker Inorganics Manager

REPORT COMMENTS:

This report is issued by Eurofins ARL Pty Ltd. The report shall not be reproduced except in full without written approval from the laboratory.

Samples are analysed on an as received basis unless otherwise noted.

METHOD REFERENCES:

Methods prefixed with "ARL" are covered under NATA Accreditation Number: 2377 Methods prefixed with "PM" and "EDP" are covered under NATA Accreditation Number: 2561

Method ID	Method Description
ARL No. 141	Chlorophyll-a and Pheophytin-a in Water

LABORATORY REPORT

Physical Parameters		Sample No	21-12812-1	21-12812-2
	Sam	ple Description	S21-JI01111 WP1	S21-JI01112 WP2
		Sample Date	8/07/2021	8/07/2021
ANALYTE	LOR	Units	Result	Result
Chlorophyll-a	0.001	mg/L	<0.001	<0.001

Result Definitions [NT] Not Tested

* Denotes test not covered by NATA Accreditation

[ND] Not Detected at indicated Limit of Reporting

FOR MICROBIOLOGICAL TESTING - The data in this report may not be representative of a lot, batch or other samples and may not necessarily justify the acceptance or rejection of a lot or batch, a product recall or support legal proceedings. Tests are not routinely performed as duplicates unless specifically requested. Changes occur in the bacterial content of biological samples. Samples should be examined as soon as possible after collection, preferably within 6 hrs and must be stored at 4 degrees Celsius or below. Samples tested after 24 hrs cannot be regarded as satisfactory because of temperature abuse and variations.

Ben Withnauf 0438 687 417 Chong Zhang 0451 760 991 CZ / BW					Project Name: Project Number: PO No.: Project Spectific O Turnaround Requ	Project Name: Project Number: Po No.: Project Specific Quote No. : Turnaround Requirements:		Downer Sydney Metro Stations 4NE30187 Wiley Park	y Park		190408CDNNL1 Standard TAT		
	ben.withnall@cardno.com.au ContamNSW@cardno.com.au	ben.withnall@cardno.com.au; chong.zeng@cardno.com.qu; ContamNSW@cardno.com.au	Bcardno.com.qu:		Lab:		ũ	rofins Unit	F3, Building	Eurofins Unit F3, Building F, 16 Mars Rd, Lane Cove West NSW2066	ane Cove West	NSW2066	M
c Highway, S	St Leonards, New Sol	dress: Level 9 + The Forum, 203 Pacific Highway, St Leonards, New South Wales 2065 Australia			Attn:		Sa	Sample Receipt					
	Sample Information	-							Anah	Analysis Required			Comments
Laboratory Sample ID	D No. Containers	Preservation	Date sampled	Matrix	ê-liynqorold	SST	Vibidity	Oil and Grease	Total Phosphorus	105-101			
	4	ICE		Water	1	1	1. 1		1 1				
	4	3O	at instrument	Water	-	-	-	*	1 1				
	3	ICE	1707UOUN	Water		+			-	The second se	-		
	3	ICE		Water		-	-	-	1				Please send to ALS
						+	1	1	+				101
												ES2124553	23
							\square		+		+	· · · · 61-2-8784 8555	
ent treatment of the second	Received by:	Sep M.		Relinquished by:				Recei	Received by:			Relinquished by:	
	Date & Time: 02/07/2/	-	340	Date & Time:				Date	Date & Time:			(name / company) Data & Tima:	
	Signature:	ADA		Signature:				Signs	Signature:			Signaturo:	
ex ca	Refinquished by:			Received by: (name / company				Reitm	Retinquished by: Iname / company)			Lab uso: Samlas Barálvad, Co	Lab uso:: Samulas Bacsivad: Cool or Ambient feirels and
11200				Date & Time:				Date	Data & Time:			Temperature Received at:	on or Aumanum (ortona para) i at: (ii applicable)

ĀÂ !"#\$%#&#'!(\$)*('+'&Â('*)\$

,Ā%)·

./01\$*0230	4#Ā5657889			
&'()*\$ &"*\$ 3\$	Ā &Ä%:)*\$,)Ā.;Ä&(-\$!(<\$"(: Ā45.6+7.89:;7<ÄÄ	Ä !"# \$"#% &"*\$ 3\$	Ā+*,(#"*-)*\$ Ā1= *).+"(0	'./(,(0("*.1%2*)%
<22#)00	ĀÀ),)'.>.:=).?"#@ABC.D 3(E(3. ;(F=G % 1\$.Ä)"* #20.718.ABHI	<22#)00	ĀAJJKAL>.	8""2M #N.5" 2.1-(\$=E()'2. 6# '(.AOHP
+K- ('	Ā!)*QG(\$=* "R3 #2*"Q3"-Q @	+K- ('	Ā1= *)Q+"((0R<Ä1S'''! 'Q3"-
:)')M="*)	ĀTHO.A.>P>I.LOLL	:)')M="*)	ĀTHO.A.LJ	LP.LIII
? 30(-(')	ĀKKKK	? 30(-(')	Ā THOKAKL	JLP.LIBB
D#"U)3\$	ĀKKKK	DF)	ĀQ"EA	
V#2)#.*@-!)#	ĀKKKK	W@"\$).*@-!)#	Ā+6ABOJ& 1)3"*2 #%	<5718<&:BBBO.X+7YAAA.K. .8"#NZ
&KVK&.*@-!)#	ĀKKKK	W&.Ä),)'		DC.6C.[.<Ä1.W&.1\$ *2 #2
1(\$)	ĀKKKK			
1 -M')#	Ā&\Y68			
ĀÄ !"				
/ \$).1 -M')0.5)3)(,)2	āBAK]@'KABAO.OCĀPB	900@)./ \$)		<u>ā</u> bak]@!Kabao
&'()*\$.5)^@)0\$)2./@). / \$)	āB>K]@'KABAO	13=)2@')2.5)M"#\$	(*F./ \$)	Ā=>?@AB?5=56
Ā!#\$%!&'(Ā! Ä	\$#"			
4"2)."E./)'(,)#%	Ā& ##()#	1)3@#(\$%.1) '		ā7"\$.<, (' !')
7"Q."E.3""")#0Y!"_)0	ĀO	:)-M)# \$@#)		Ā OAQH`&.K.93).M#)0)*\$
5)3)(M\$./)\$ ('	Ā	7"Q."E.0 -M')0.#)3)(.)2.Y. * '%0)2	ā 0.Y.0

)!*!&Ä#(+,--!* "

- :=(0.#)M"#\$.3"*\$ (*0.\$=).E"""G(*F.(*E"#- \$("*Ā
 - K 1-M').&"*\$ (*)#X0ZYD#)0)#, \$("*.7"*K&"-M'(*3)0
 - K 1@--#%."E.1 -M')X0Z. *2.5)^@)0\$)2.<* '%0(0
 - K D#" 3\$(,).;"'2(*F.:(-).5)M"#\$
 - K 5)^@)0\$)2./)'(,)# !')0
- IB3CD3\$03E30\$F/\$FG3\$!0/CHFIJ3\$K/B2ILM\$(IN3\$%30/0F\$FCPE3\$FR3\$D04\$C0ID3D\$P03CHG3D\$/E\$ 03H/NN3L232\$G/B2ILM\$FIN3D\$FGCF\$GCJ3\$/HHA0032R\$(G3\$BCPE3E\$F000\$#00D\$FG3D3\$DCNOB3D\$ ALB3DD\$ILDF0AHFI/LD\$C03\$03H3IJ32\$E0/N\$S/A\$IL2IHCFILM\$\$001\$92\$E7500/H332R\$\$(G3\$CPD3LH3\$/E\$ FGID\$DANNC0S\$FCPB3\$IL2IHCF3D\$FGCF\$CBB\$DCNOB3D\$GC2\$C519F83L\$F893\$3003H/NN3L232\$ G/B2ILM\$FIN3D\$E/0\$FG3\$CLCBSDID\$03TA3DF32R
- D') 0).2(#)3\$. *%.^@)#()0.%"@.= ,).#)F #2(*F.\$=(0.G"#N."#2)#.\$=). !",).<Ä1.' !"# \$"#%.3"*\$ 3\$Q
- <* '%\$(3 '.G"#N.E"#.\$=(0.G"#N."#2)#.G(".!).3"*2@3\$)2. \$.<Ä1.**2**%/Q
- 1 -M')./(0M"0 '.K.<^@)"@0.XC.G))N0Za.1"(2.XA.-"*\$=0.b.O.G))NZE#"-.#)3)(M\$."E.0 -M')0Q
- D') 0).!). G #).\$= \$.<D;<Y7+D4.#)3"--)*20.G \$)#.*2.0"('.0 -M')
 0.!).3=(")2.\$".')00.\$= *."#.)^@ '.\$".Hc&.E"#.3=)-(3 '.
 *'%0(0a. *2.')00.\$= *."#.)^@ '.\$".OBc&.!@\$.@*E#"d)*.E"#.4(3#""F(3 '. * '%0(0Q.8=)#).0 -M')0. #).#)3)(,)2. !",).\$=(0.
 \$)-M)# \$@#)a.(\$.0="@'2.!).\$ N)*.(*\$".3"*0(2)# \$("*.G=)*.(*\$)#M#\$(*F.#)0@'\$0Q.5)E)#.\$".<Ä1.+*,(#"4 ('.LI.E"#.<Ä1.
 #)3"--)*2 \$("*0."E.\$=).!)0\$.M# 3\$(3).E"#.3=("(*F.0 -M')0. E\$)#
 0 -M'(*F. *2.E"#.- (*\$ (*(*F. .3"").*)-M)# \$@#).2@#(*F.\$#*0(\$ Q

.Ä-/#!(+,* Ä\$*!&0"123&!"!&%Ä \$,*(4,*5+,-/#\$Ä*6!"

<".3"-M #(0"*0. #).- 2). F (*0\$.M#)\$#) \$-)*\$YM#)0)#, \$("*.<1a.< D;<a.f1+D<.0\$ *2 #20Q

3FG/2 Sample ID	ĀCNOB3\$&/LFCIL30\$%3H3IJ32	! 03E30032\$ÄCNOB3\$&/LFCIL30\$E/0\$ÄDCBSDI
*IB\$CL2\$U03CD3\$4\$#!=5=		
VÄ5==\$	K.4(03)'' *)"@0.1@'M=@#(3. M#)0)#,)2	K.<-!)#.] #.K.1@'E@#(3.<3(2."#.1"2(@ 6(0@'E \$)

.7--Ä&'(,8(.Ä-/#!0"1(Ä*9(:!;7!" !9(<*Ä#'''\$"

1"-). (\$)-0. 2)03#(!)2. !)"G%. !). M #\$."E' !"# M#"3)00. *)3)00 #%. E"#. \$=).)_)3@\$("*. "E. 3'()*\$. #^(\$ 0N0Q.D 3N F)0 %. 3"*\$ (*. 22(\$("* '. *'%0)0a. 0. \$). 2)\$)#-(* \$("*. "E "(0\$@#).3"*\$)*\$. *2. M#)N \$ 0N0a.\$= \$. #).(*3'@2)2.(*.\$=).M 3N F)Q 9E.*". 0 -M'(*F. \$(-). (0. M#",(2)2a. \$). 0 -M'(*F. \$(- 2)E @'\$BBĀBB."*\$=). 2 \$). "E. 0 -M'(*FQ 9E.". 0 -M'(*F (0. M#",(2)2a. \$). 0 -M'(*F. 2 \$). G(". !). 00@-)2. ! ' !"# \$'#%. *2. 2(0M' %)2. (*. ! # 3N)\$0. G(\$="@\$ 3"-M"*)*\$ 4 \$#(_\$Å(#% >Å2 &Å.&'("Å-/#!(Å-/#\$*@(9Å !(2(Å-/#!(=Å	@)0\$)2 0@3= M # \$("*). G(" . 2 \$) %. \$=)	.+ <bai; 2)2.1"(20.K.1\$ *2 #2.Ä),)'</bai; 	+5.K.+ <bpi #(2(\$%</bpi 	5.K.+DBAB S#) 0).XV[SZ	5.K.7:KOO ((\$#"F)*. *2.:"\$ '.D="0M="#@0	
>Ä?,&Ä ,&'("Ä-/#!(.Ä-/#\$*@(9Ä !(2(.Ä-/#!(=Ā =Ā \$-!		8<:+5.K 1@0M)*	8<:+5.K.+< :@#!(2(\$%	8<:+5. V('.[.S	8<:+5.	
+1AOAPIICKBBO BOK]@'KABAO.BBĀB@ <abb< td=""><td></td><td>1</td><td>✓</td><td>1</td><td>1</td><td></td></abb<>		1	✓	1	1	

1 -M')X0Z.= ,).!))*#)3)(,)2.G(\$=(*.\$=).#)3"--)*2)2.="'2(*F.\$(-)0.E"#.\$=).#)^@)0\$)2. * '%0(0Q

3&,Ä6 \$%!(A,#9\$@B\$-!(:! /,&

:!;7!" !9(Ā!#\$%!&Ä?#!"		
W#)\$.'(K)Ä""		
к g <f.&)#\$(e(3 \$)."e.<*="" '%0(0.к.7<:<.х&v<z<="" td=""><td>+- ('</td><td>!)*QG(\$=* "R3 #2*"Q3"-Q @</td></f.&)#\$(e(3>	+- ('	!)*QG(\$=* "R3 #2*"Q3"-Q @
к g <f.9*\$)#m#)\$(,).w&.5)m"#\$.k. +?<fä:.x<*"*.w&9.5)mz.xw&9z<="" td=""><td>+- ('</td><td>!)*QG(\$=* "R3 #2*"Q3"-Q @</td></f.9*\$)#m#)\$(,).w&.5)m"#\$.k.>	+- ('	!)*QG(\$=* "R3 #2*"Q3"-Q @
к g <f.w&.5)м"#\$.к. +?<fä:.х<*"*.w&.5)мz.к.7<:<.хw&z<="" td=""><td>+- ('</td><td>!)*QG(\$=* "R3 #2*"Q3"-Q @</td></f.w&.5)м"#\$.к.>	+- ('	!)*QG(\$=* "R3 #2*"Q3"-Q @
к <p.k.<f.1 \$("*.к.+*,(#"*-)*\$="" '.;:.х157z<="" -m').5)3)(м\$.7"\$(е(3="" td=""><td>+- ('</td><td>!)*QG(\$=* "R3 #2*"Q3"-Q @</td></p.k.<f.1>	+- ('	!)*QG(\$=* "R3 #2*"Q3"-Q @
к &= (*."E.&@0\$"2%.X&"&Z.X&V&Z	+- ('	!)*QG(\$=* "R3 #2*"Q3"-Q @
к +/9.?"#- \$.К.+745S.Х+745SZ	+- ('	!)*QG(\$=* "R3 #2*"Q3"-Q @
к +/9.?"#- \$.К.+1/<:.Х+1/<:Z	+- ('	!)*QG(\$=* "R3 #2*"Q3"-Q @
&G/LM\$X3LM		, () C
к g <f.&)#\$(e(3 \$)."e.<*="" '%0(0.к.7<:<.x&v<z<="" td=""><td>+- ('</td><td>3="*FQd)*FR3 #2*"Q3"-Q @</td></f.&)#\$(e(3>	+- ('	3="*FQd)*FR3 #2*"Q3"-Q @
к g <f.9*\$)#м#)\$(,).w&.5)м"#\$.к. +?<fä:.x<*"*.w&9.5)mz.xw&9z<="" td=""><td>+- ('</td><td>3="*FQd)*FR3 #2*"Q3"-Q @</td></f.9*\$)#м#)\$(,).w&.5)м"#\$.к.>	+- ('	3="*FQd)*FR3 #2*"Q3"-Q @
к g <f.w&.5)м"#\$.k. +?<fä:.x<*"*.w&.5)mz.k.7<:<.xw&z<="" td=""><td>+- ('</td><td>3="*FQd)*FR3 #2*"Q3"-Q @</td></f.w&.5)м"#\$.k.>	+- ('	3="*FQd)*FR3 #2*"Q3"-Q @
к <p.k.<f.1 \$("*.к.+*,(#"*-)*\$="" '.;:.х157z<="" -m').5)3)(m\$.7"\$(e(3="" td=""><td>+- ('</td><td>3="*FQd)*FR3 #2*"Q3"-Q @</td></p.k.<f.1>	+- ('	3="*FQd)*FR3 #2*"Q3"-Q @
к &= (*."E.&@0\$"2%.X&"&Z.X&V&Z	+- ('	3="*FQd)*FR3 #2*"Q3"-Q @
к +/9.?"#- \$.К.+745S.X+745SZ	+- ('	3="*FQd)*FR3 #2*"Q3"-Q @
к +/9.?"#- \$.К.+1/<:.Х+1/<:Z	+- ('	3="*FQd)*FR3 #2*"Q3"-Q @
&/LFCN)Ā.		
к g <f.&)#\$(e(3 \$)."e.<*="" '%0(0.к.7<:<.x&v<z<="" td=""><td>+- ('</td><td>3"*\$ -*0GR3 #2*"Q3"-Q @</td></f.&)#\$(e(3>	+- ('	3"*\$ -*0GR3 #2*"Q3"-Q @
к g <f.9*\$)#м#)\$(,).w&.5)м"#\$.k. +?<fä:.x<*"*.w&9.5)mz.xw&9z<="" td=""><td>+- ('</td><td>3"*\$ -*0GR3 #2*"Q3"-Q @</td></f.9*\$)#м#)\$(,).w&.5)м"#\$.k.>	+- ('	3"*\$ -*0GR3 #2*"Q3"-Q @
к g <f.w&.5)м"#\$.k. +?<fä:.x<*"*.w&.5)mz.k.7<:<.xw&z<="" td=""><td>+- ('</td><td>3"*\$ -*0GR3 #2*"Q3"-Q @</td></f.w&.5)м"#\$.k.>	+- ('	3"*\$ -*0GR3 #2*"Q3"-Q @
к <p.k.<f.1 \$("*.к.+*,(#"*-)*\$="" '.;:.х157z<="" -m').5)3)(m\$.7"\$(e(3="" td=""><td>+- ('</td><td>3"*\$ -*0GR3 #2*"Q3"-Q @</td></p.k.<f.1>	+- ('	3"*\$ -*0GR3 #2*"Q3"-Q @
к &= (*."E.&@0\$"2%.X&"&Z.X&V&Z	+- ('	3"*\$ -*0GR3 #2*"Q3"-Q @
к +/9.?"#- \$.К.+745S.X+745SZ	+- ('	3"*\$ -*0GR3 #2*"Q3"-Q @
к +/9.?"#- \$.К.+1/<:.Х+1/<:Z	+- ('	3"*\$ -*0GR3 #2*"Q3"-Q @
')Y*'&#Ā</td><td></td><td></td></tr><tr><td>к <P.K.<f.:9*,"(3).Х97hZ</td><td>+- ('</td><td>M(*,"(3)0R3 #2*"Q3"-Q @</td></tr></tbody></table>		

	Ē
	D
	2
<	ALS

ental

6	i
} ₀ ≠	
0 0	-
< -	
<#	1
= <	
<	1

+,%&-/0-	1 Ä*2324556	%&'\$	() <i>X</i> +Ā
123\$4/	(Ā\$ 7'&%8'*+9\$Ā!:%;!)%(!7	-&.*"&/*"0	(5463"*47\$4/&2Ā836393*4Ā:0;4\$0
1*4/& </td <td>(=>Ā?5@ĀAB!C@D</td> <td>1*4/&<!--</td--><td>(:E&4\$Ā52239</td></td>	(=>Ā?5@ĀAB!C@D	1*4/& </td <td>(:E&4\$Ā52239</td>	(:E&4\$Ā52239
D;;"\$99	(-\$6\$2ĀFĀ!E\$ĀG*''#7Ā,ÄHĀ%&<3+3<ĀC3'EI&0	D;;"\$99	(,LLM,NFĂA**;O&"PĂ>*&;Ã:73/E+3\$2;Ã@:AĂD#9/"&23&Ă,)JQ
	:/Ā-\$*4&";9Ā@:AĀ,ÄJK		
!\$2\$0E*4\$	(RJ)Ă,ĂFQFKÃN)NN	i\$2\$0E*4\$	(RJ)Ă,ĂNLNQĂNKKK
/>\$\$ /</td <td>(Q@5HÄ)NLĀA32\$0Ā%&"P</td> <td>8&/\$Å:&7O2\$9Å>\$<\$36\$;</td> <td>(Ä,MT#2M,Ä,)Ā)H(QÄ</td>	(Q@5HÄ)NLĀA32\$0Ā%&"P	8&/\$Å:&7O2\$9Å>\$<\$36\$;	(Ä,MT#2M,Ä,)Ā)H(QÄ
U";\$"Ā4#7.\$"	(MMMM	8&/\$ÅD4&20939Å1*77\$4<\$;	(ÄHMT#2M,Ä,)
1MUM1Ā4#7.\$"	(MMMM	B99#\$Ā8&/\$	(ÄFMT#2M,Ä, JĀ)Q(HÄ
:&7O2\$"	(1VW?A		HIGGENRY NALA
:3/\$	(MMMM		
X#*/\$A4#7.\$"	(5@W,,,,ĀMĀ:\$<*4;&"0ĀA*"P		According According 005
@* Ā*+Ā9&7O2\$9Ā"\$<\$36\$;			Accredited for compliance with
@* Ā*+Ā9&7O2\$9Ā&4&209\$; ()			ISO/IEC 17025 - Testing
	につっかでへきになった。		

1E39Ä*\$0**/A9#0\$"9\$;\$9Å&40ÃO*\$63*#9Ä*\$0**/9ZA3/EA/E39A\$+\$"\$4*\$ A>\$9#2/9A\$OO20AA/E\$A9&7O2\$9Z&9A\$#.73/\\$;[A #42\$99AE\$A9&7O234A\$A9A <*4;#<\\$;A .0A D-: A 1E39A;*<#7\$4/A 9E&22 4*/Ā.\$Ā"\$0"*;#<\$;[Ā\$\<\$0/Ā34Ā+#22 Ā

!E39Ā1\$"/3+3<&/\$Å*+ĀD4&20939Ā<*4/&349Ā/E\$Ā+*22*134\\$34+*"7&/3*4

-]\$4\$"&2Ā1*77\$4/9
- D4&20/3<&2Å>\$9#2/9

\$//<=<,>?@%>A,-B?=<,>%C0-=<>0>=%% =D<E%C,-=%F<@@%%AH>/% ~%=D0%A,@@,F<>IE0C?-?=0%==?JDB0>=E1KH?@<=\vec{b}%=-,@%0C,-=M%K\$9K\vec{A}%\vec{A}%\vec{A}%A,BC@<?>J0\$EE0EEB0>=%+,%?EE<EFK=D KH?@<=L% 0N<0F%?>/%*?BC@0% 0J0<C=%',=<A<J?=<,>O

ĂĂ !'#\$%Ä&' !E39Ā,*<#7\$4/ÃE&9Â.\$\$4Ā\$2\$</**43<&220Ă93'4\$;Ă.0Ă/E\$Ă&#**8E*28/\$;**\$\$9Ā.\$2*I Ā52\$</**43<Ă93434`A`A39Ă<&""3\$;Ă*#/Ä34**Ă<\$\$\$DE**&O**<\$;#"\$9Ă9O\$<3+3\$;Ã34Ă,)Ă1G>Ă%&"Ă))

())%&*Ä#"#ÄS!+,"#& S%-	:0;4\$0ÅB4*'''&43<9[Å:73/E+3₩2@:A
.S'Ä#ÄS!	B4*'''&43<9Ã1**'';34&/*''
ĂĂ !''#\$%Ä&'	A39&7Ā=&"&99&

(,	(5:,),QKKH	(1D>8@UÃY@:AWD1!ZÃ%!_Ā-!8	(Q@5HÄ)NLĀA32\$0Ā%&"P	
%&'\$	A*"PĀU";\$"	123\$4/	%"*S\$ </td <td></td>	

General Comments

&"\$A+#220A6&23;&/\$;A&4;A&"\$A*+/\$4A&/A/E\$A<23\$4/A"\$a#\$9/

AE\$"\$Å7*39/#"\$Å;\$\\$"734&\3*4ÅE&9Å.\$\$4ÅO\$"+*"7\$;[Å"\$9#2/9**Å&"\$\$**%**%**\$4Å&Å;"0Å\\$3'E/Ä.&939

AE\$"\$\$&\$\"\$<\\0.3\$9\\$\;\$AZ\$99\IE\$4AYbZA`\$9#2\\$39\E3'E\$"\A6\#2A\#\$0\"37\$"0\98\702\$\$\$\"\$<\\0.37\$"0\98\702\$\$\$\"\$<\\0.35\\$1"\$\$4\$20939

AE\$"\$AF\$\$AU>^*+A&^*\$0**1\$,A"\$9#21Å;3++\$"9A+**7Å91&4;8E\$@@\$\$\$0Å.\$A;#\$A*AE\$77*39##\$34*41\$349#++3<354**\$**\$\$\$\$0\$\$\$\$2702*0\$;2A**A78/"3\3434\$*+\$\$\$4<\$

0#"0*9\$9

AE\$"\$&&A"\$9#2\À39Å"\$a#3"\$,À'rÅ7\$\$/Å~*7O23&4<\$Å2373/**9%低₣₰₦&@7**%834\0Ă7#9/Å.\$Å<*493.\$"\$; À>\$+\$"År^K]E\$ÅD-;Å1***4**%**%**\$**49**329

- 1D:A@#7,\$"AcA1D:A"\$"39/"0A4#7,\$"A+""A;&,&,&9\$A7&34,&34\$,A.0\$A1Ex2AD:9/"&</9Å.\$"63<\$9 Å1E\$73<&2AD:9/"&</9A.\$"6334\$\$7467F\$73<&2AD:3/"3367 -U>ĀcĀ-373/Ā*+Ā"\$O*"/34' f\$0Ā(
 - - dĀcĀD-:Ā39Ā4*/Ā@D!DĀ&<<"\$;3/\$;Ā+*"Ā/E\$9\$Â/\$9/9

eĀcĀB4;3<&/\$9Ā&4Ā\$9/37&/\$;Ā6&2#\$

Analytical Results

∷#.M=&/"3\ %+\$!Ä %8&/"3\ 7%+\$!Ä :		Ā"/01&+23	K\$2RR	aaaa	aaaa	ଉଉଉ	gaga
		<u>Ā "/01Ä! +*"#&+4+#Ä/&</u>	(& Ä)MT#2M,Ä,)ÄÄÄ(ÄÄ	MMMM	MMMM	MMMM	MMMM
\$\$\0\$:1*	, (Ā+9:/;& 9	678 5!Ä#	Ä*2324556QRR3	aaaaaaa	aaaaaaa	aaaaaaa	aaaaaaa
			>\$9#2/	MMMM	MMMM	MMMM	MMMM
Ğ\$R251%!,=?@%C8E0/%*,@ <td>?=%3R4%S%2TĀ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	?=%3R4%S%2TĀ						
HEC0>/0/%,@ <td>MMMM K</td> <td>K 7'W-</td> <td>∍</td> <td>aaaa</td> <td>aaaa</td> <td>aaaa</td> <td>aaaa</td>	MMMM K	K 7'W-	∍	aaaa	aaaa	aaaa	aaaa
Ä\$R451%!H-G <k=< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></k=<>							
1+-G <</td <td>MMMMÄ)</td> <td>ğ) @!`</td> <td>50V</td> <td>aaaa</td> <td>aaaa</td> <td>aaaa</td> <td>aaaa</td>	MMMMÄ)	ğ) @!`	50V	aaaa	aaaa	aaaa	aaaa
<u>ÄWR5XY1%%'<=6@85%'<=-?=0%852%'%%%67<ej-0=0%\$p2@< u=""></ej-0=0%\$p2@<></u>	<u> </u>	<u>(8)</u>					
.%∃ 2%0= ¿-=>,%\%\%_=>-=>,	MMMMÄ Ä)	à À) 7'W-	RO[5	aaaa	aaaa	aaaa	aaaa
ÄWRU3Y1%I,=?@@VD@%'4=0;%&L%7 <ej-0=0%\$e&@< td=""><td>EJ-0=0%\$\$\$@</td><td></td><td></td><td></td><td></td><td></td><td></td></ej-0=0%\$e&@<>	EJ-0=0%\$\$\$@						
!;=?@%W]0@/?D@%'<=-,I0>%?E%'	MMMMÄ)	Ä) 7'W-	ROX	aaaa	aaaa	qaqa	aaaa
ÄWRU2Y1%!,=?@%I&>%?E%&W'%\%'&Z:%G%7 <ej-0=0%\$þ£@< td=""><td>2:%G%7<ej-0=0%\$p< td=""><td>8) 1</td><td></td><td></td><td></td><td></td><td></td></ej-0=0%\$p<></td></ej-0=0%\$þ£@<>	2:%G%7 <ej-0=0%\$p< td=""><td>8) 1</td><td></td><td></td><td></td><td></td><td></td></ej-0=0%\$p<>	8) 1					
gĀ,=?@%'<=-,I0>%?E%'	(ÄMMMÄ)	Ä) 7'W-	30U	aaaa	aaaa	aaaa	aaaa
ÄWRU[Y1%!,=?@%;DJ;-HE%?E%;L%G7 <ej-0=0%\$ber@< td=""><td>መଥବ\$%0=0-L∃</td><td></td><td></td><td></td><td></td><td></td><td></td></ej-0=0%\$ber@<>	መଥ ବ\$%0=0-L∃						
!,=?@%;D,ECD,-HE%?E%;	MMMMÄ Ä)	à Ă) 7'W-	R032	QQQQ	aaaa	aaaa	QQQQ
<u></u> Ä;R2R1%&<@%?>/%Y -80 2 <u></u> B0%							
&<@%_%Y-0?E0	MMMM K	K 7'W-	Я	aaaa	aaaa	aaaa	aaaa

	<u>ĀÀ !"#\$%8</u>	ĀÀ !"#\$%&'(#)'!%)*+')#	
/%'.01. 2 *34546778	6778	*À+"	. \$#. #
4 5"62 , &)9('%: (&)9(.%:(3:; &#<%+#\$%!#8	0Å1-(Å2-(3	, 7685(-69"62Å #:585!5-6#;3<6"3
4-62Å=2 , >?#@7A	>;#@7A#BC'DAE00	4-62À=2	, ;FÀ6"#7 5!
E<<("!! , 0"8" #G# ·⊃#∩"_6À	, 0"8" #G#F"#Ā-()9#H&/#*À=5.5=#D5+FIÀ3 э+0"6Ä/<+#АБ#Н&. IK	E<<(""!!	, HLLMHNG#B <oà(p#?-à<#;952f.5" 5à#h\$jq<="" <#a;b#e)!2(à="" td=""></oà(p#?-à<#;952f.5">
"" "OF-6" "	, 2FO - 2C(), FC, DFT - 2C) RJS#TH6QGGK#NSNN	"	. RJS#H#NLNQ#NKKK
*(-S"=2	QA7/&\$NL#B5 "3#*Ä(P	:Ä2"#;Ä9O "!#?"="58"<	
U(<"(#6)91"(MMMM		:Ä2"#E6Ä 3!5!#4-99"6="<	&/MT) MH&H\$
4MUM4#6)91"(MMMM		C!!)"#:À2"	&GMT) MH&H\$
		×	A A A A A A A A A A A A A A A A A A A
-			
, #6\91"/	7		in Chin
, , 11#/"—"58"~			Alfulution No. 825
			Accreated for compliance with ISO/IEC 17025 - Testing
'F5I# /"∩-/?#I\∩"/I"<"I#	ÄG3#07"85-\\# /"∩-//2415/5E#2F51#" "/"6 ="%#9") 2\#	道〇〇 344 2F141及9〇 " VIZ	"IIH → 2F''#I\Ğq ∩ 56+#ŽIH ==6<)=?"<# 13#EO:%#E5IH <==\0"62# IEĞ
6-2#1''#(''O(-<)="<[#'\="O2#56#.) % 'EE!#Y\`& 573#A. 677_#9"O.73#- 678 66!#7E"#J66##66_708`75_6	el≠de"≠irga+#rg /0∛dr g		
-0:#X/N 323#4-92(- #? 0-(z#92A30 0Å1-(Å2-(3#:)0 5=Å2"#Y:]*Z#?"0	ヽטבט#Ⴏーטב(ו- #: いーに#טבאטטו#בר #וסטדאטט.קטאבט-ט. 0Ă1-(Â2-(3#:)O 5=Ă2'#Y:]''Z#?'\0-(2Å#' Å258''#*''(="62Å+"#:5"("6="#Y?*:Z#Ä6<#E=="02Ä6="#05952!	5952! 5952!	
 >"2F-<#@ Ä6P#Y>@2#Ä6<#0Ä1-(Ä2-(3#4-62(- #;05P'#Y04;Z >Ä2/5F:#Y-0FP'#Y>-7#"''0-\$#"==#"(72#Ä6<#F=="02Ä6="#05952) 	>''PF-<#@_Ă6P#Y>@Z#Ă6<#0Ă1-[À2-(3#4-62(- #;O5P"#Y04;Z ##'O-@ '(3#Ă6<#E=="O2Ă6="#05952! >ݞンィティʉ:∩ҕ₽יษY>:7#*"∩ 4 #"=.¤^'!3#ă <i>R<</i> #E=="O2Ă6="#05052!	952!	
<i>AA_!''#\$%A&'</i> 'F5!#<-=)9"62#FÀ!#1""6#" "=2(-65=À ;	<i>AA !'#\$%A&'</i> 'F5!#<-=)9"62#FÀ!#1""6#" "=2(-65=À 3#!5+6"<#13#2F"#À)2F-(5 <u>19</u> * # À2-(5"!#1" -1%#7 "=2(-65=#!5+656+#5!#=À((5"<#-)2#56 #6=9063 Ř#O(-="<)("!#!O"=5.5"<#56#H\$#4Å?#*À(2#\$\$%	#!5+656+#5!#=Ä((5"<#-)2#56# 8= 9	J68k #O(-="<)("!#!O"=5.5"<#56#H\$#4Ā?#*À(2#\$\$%
ĀÄ !'#\$%Ä&'	.s'À#ÀS!	())%&*Ä#'#Ä\$!+,''#& \$%-	-%2
B5!Ä9#>Ä(Ä!!Ä	C6-(+Ä65=!#4(<56Ä2-(;3<6"3#C6-(+À65=![#;952F.5 " [#A;B	t;952F.5t[#A;B

, H#.#	, 7;H\$HQKK/	, 4E?:AU#YA;BWE4'Z#*'`#0':	, QA7/&\$NL#B5 "3#*À(P
*Ä+"	B-(P#U(<"(4 5"62	*(-S"=2

General Comments

F'# Ä&Ä 325=Ä&(="</\"#)!'<# 13#E0;# F&8"#1""6# <"8"-0"4# (-9# "12Å15!F"<#562"(6Å25-6Å %#-+65]"(=# 0(="<)("# !)=F#Å!# %015!F"<# 13#Z"#];7*E[# E;# Å6<#A7*>%## @#F-)!'# <"8" - 0"< # Q(="<)("# !)=F#Å!# 7="] Ä("#.) 3#8Ä 5<Ä2"<#Å6<#Ä("#-.2"6#Å2#2F"#= 5"62#("a)"!2%

BF"("#9-5!2)("#<"2"(956Å25-6#FÅ!#1""6#O"(.-(9"<[#("!) 2!#Å("#(" O-(2"~#-6#Å#<(3#1"5+F2#1Å!5!%

BF"("#Ä#("O-(2"*#"!!#2FÄ&#YEZ#("!) 2#5l#F5+F"(#2FÄF**#@B@%%2#**1"#<)"#2.#0(59Ä(3#liÅ9O"#"/2(Å=2W<5+"]2Ä2"#<5) **78-**\$#**8%5**=5"62#liÅ9O"#_.(#ÄA#("O-(2"*#"#10);2#<5."(|#.(-9#l2Ä6~Ä(<#0U?]#2F5H9Ä3#1"#<)"#2-**#**F5+

4E;#A)91"(#c#4E;#("+5i2(3#6)91"(#.(-9#<Ä2Ä1Ä!"#9Ä562Ä56"<#13#4B5=Ä #E1i2(Ä=2!#;"(85="!%#1"#5F"95=Ä #E1i2(Ä=2!#;"(85="#8B88A5-6#-#2F"#E9"(5=Ä6#4F"95=Ä #;-=5"23%# E6-639-)!#*c*#?!"(!#2-#!Å90 "!#|F5=FÅÄ("#6-2#!0"=5.5=Å 3#0Å(**##**F5!#|-(P#.(<"(#1)2#.-(9"<#0Å(2#..#2F"#X4#0(="!!# -2 0U?#c#05952#-.#("O-(256+# e"3#,

Laboratory Duplicate (DUP) Report

-(# 2F"#?" À28"#"[="62# :"85Ä25-6#??*:Z# -# 0Ä1-(Å2-(3#;)0 5=Ä2!# Ä("# ! 0"=5.5"<46/=6.# >"2F-<# XBCM7AW) Å4=#Å("# <"0"6-(52# 6# # 2" # 9Å+652)<"#-# ("1) 2!# 56#=90Å(51-6# 2-#7"# "8" # - # ("0-(256+#?") 2# b# \$;"# 0U? # A-#05952^#?"!) 2#1"21""6#\$&#Å6<#Hă"!#0U?,#&f#M#K&f*#?<mark>3#]-2#</mark>#259"!#0U?,#&f#M#H&f%

;)1M>Ä2(5\ 2%#*)						Laboratory I	Laboratory Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method:+Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
* =472%#->?@%3AB	IC1D010%3-@E0B%0.E10%	* =472%#->?@%3ABC1D010%3-@E0B%0.E10%?>%5=6%F%4G&987%A&%!->2%8HHI							
7;H\$HQ/\$QM&&\$	E6-639-)!#	7E&HKD,#;)!O"6<"<#;- 5 #Y;;Z</td <td>MMMM</td> <td>Μ</td> <td>0W+ 6</td> <td>/ &</td> <td>ਕ</td> <td>HK%\$</td> <td>A-#05952</td>	MMMM	Μ	0W+ 6	/ &	ਕ	HK%\$	A-#05952
7;H\$HQKKJM&&\$	E6-639-)!#	7E&HKD,#;)!O"6<"<#;- 5 #Y;;Z</td <td>MMMM</td> <td>Μ</td> <td>0M+ 6</td> <td>Хq</td> <td>Яd</td> <td>&%&</td> <td>A-#05952</td>	MMMM	Μ	0M+ 6	Хq	Яd	&%&	A-#05952
* =672%#A.KE0E>L%	* =672%#A.KE0E>L%%:Ā&%!->2%8HH4477<								
7;H\$HQK/&M&&K	E6-639-)!#	7E&QK,#')(15<523	MMM	MMMM &%\$	A']	JJ%G	JL%\$	8%/	&f#M#H&f
7;H\$HQK/&M&\$Q	E6-639-)!#	7E&QK,#')(15<523	MMN	MMMM &%\$	A']	Q%N	Q%N	&%&	&f#M#H&f
*M=7NO2%%(E>.E>1	1%C@AB%(E>.?>1%?B%(%	*M=7NO2%%(E>.E>1%C@AB%(E>.?>1%?B%(%:('P<%%KL%9EBA&A%<							
7;H\$HQKHKM&&\$	E6-639-)!#	7e&KGh,#A52(52"#R#A52(Ä2"#Ä!#A	MMN	MMMM &%&\$	0M+6	&%&\$	b&%&\$	8%8	A-#05952
7BH\$&HNLJM&&\$	E6-639-)!#	7e&KGh,#A52(52"#R#A52(À2"#Ä!#A	MMN	MMMM &%&\$	0M+6	&%&/	&%&Q	&%&	A-#05952
*M=J5O2%#->?@%N	AR1@0?S@%(E>T1D%UL	*M=J5O2%#->?@%MR1@0?S@%(E>T1D%UL%9EBQ.1>1% D?@HB4888%Å&\.>2%							
7;H\$HQKHKM&&\$	E6-639-)!#	7e&J\$h,#'-2Ă #eS" <ĂF #A52(-+"6#À!#A	MMN	MMMM &%\$	0W+ 6	CG%\$	QJ%G	C%)	&f#M#H&f
7;H\$HQJ&KM&&\$	E6-639-)!#	7e&J\$h,#'-2Ă #eS" <ĂF #A52(-+"6#Ă!#A	MMN	MMMM &%\$	0M+ 6	b&%\$	\$%\$q	&%&	A-#05952
*M=JHO2%#->?@%+	+S-BCSAB%?B%+%KL%9	*М=JHO2%#->?@%+S-BCSAB%?B%+%КL%9EBQ.1>1% D?@LB <mark>H98844</mark> &%!->2%8H							
7;H\$HQKHKM&&\$	E6-639-)!#	7e&JLh,#'-2À #*F-!OF-()!#À!#*	MMN	MMMM &%&\$	0M+6	K%H&	K%HL	/%\$	&f#M#H&f
7;H\$HQJ&KM&&\$	E6-639-)!#	7e&JLh,#'-2Ä #*F-!OF-()!#Ä!#*	MMN	MMMM &%&\$	0/\+6	b&%&\$	&%&\$	8%8	A-#05952

Method Blank (MB) and Laboratory Control Sample (LCS) Report

OÄ(Ä9"2"(#5#2# 9-652-(# O2"625Ä #Ä1-(Ä2-(3#=-62Ä956Ä25-6%#"# a)Ä 523#-62(- # 2"(9# 0Ä1-(Ä2-(3#4-62(- # ;Ä90 "# Y04;Z#(""(# 2 # Å# ="(25.5"<#""""6="# 9Ä2"(5Ä [#(# Å# P6-16# 562"(""("="# 0"# 9 Å2(5\#O5P"<#57F#2Å(+"25F#2Å(+"25F#2Å)))] Ä6Ä 32"!%#F1#O)(O-1"#-#ZF5|#X4#OÄ(Å9"2"(#51#2-#9-652-(#9**\BB**(#<515-6#Å==)(Å=3#56<"O"6<"62#-#1Å90 "#9Å2(5\%#:36**\\$984#89**05952!#Å("#1Å1"<=#6#!2Å25!25=Å #"8Å) À25-6#-#O(=#**U#**0" Å6Å 32"!%#F1#O)(O-1"#-#ZF5!#X4#OÄ(Å9"2"(#51#2-#9-652-(#9\BBC)(=516-6#Å==)(Å=3#56<"O"6<"62##.#1Å90")

Made Concentration Splite S	:)1M>Ä2(5/ <mark>2%#*)</mark>				Method Blank (MB)		Laboratory Control Spike (LCS) Report	S) Report	
Unit Result Concentration LCS 9 +W0 bK S& +W0 S&& +W0 S&& 9 +W0 bK S&& +W0 S&& S& 9 +W0 bK S&& +W0 S& S& 9 +W0 bK S&&& BK S& 9 +W0 bK S&& S& S& 9 +W0 bK S& S& S& 9 +W0 bK S& S S 9 +W0 bK S S S 9 +W0 bK S S S 9 +W0 bK S S S 9 +W0 S S S S 9 +W0 S S S S 9 +W0 S S S S 10 - S S S S S 11 - S S S S S 11 - S S S S					Report	Spike	Spike Recovery (%)	Acceptable Limits (%)	Limits (%)
9 +W0 bK 5&&&+0 9 +W0 bK 5&&&+0 bK 5&&&&+0 bK 5&&&&+0 bK 5&&&&+0 bK 5&&&&+0 bK 5&&&&+0 bK 5&&&&+0 bK 5&&&&& bK 5&&&&& bK 5&&&&& bK 5&&&&& bK 5&&&& bK 5&&& bK 5&& bK	Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SDT	Том	High
MMMM K 9+V0 bK \$K +V0 \$& \$& \$	* =472%#->?@%3ABC1D010%3-@E0B%0.E10%?>%5=	=6%F%4G& %7 %:Ā&!->2%	%8HHIJ						
bk S&&&#####W0 S& S& S& S	7E&HKD,#;)!O"6<"<#;- 5 #Y;;Z</td <td>MMMM</td> <td>¥</td> <td>0/\+ 6</td> <td>Яd</td> <td>\$K +W0</td> <td>\$&Q</td> <td>N/%&</td> <td>\$HG</td>	MMMM	¥	0/\+ 6	Яd	\$K +W0	\$&Q	N/%&	\$HG
MMMM 8%S AT OJ/#9+W0 GG%J MMMM 8%S AT b8%S GG%J GG%J A9E3AG1=37%.0AG2)1E#14% MMMM 8%S AT GG%N GG%N A9E3AG1=37%.0AG2)1E#14% MMMM 8%S 9+W0 B8%S GG%L P A9E3AG1=32%.0AG2)1E#14% MMMM 8%SS 9+W0 B8%S GG%L P A07(0B1BB8685.3AL1>2%B 9+W0 B8%S S\$#9+W0 GG%L P A07(0B1BB8685.3AL1>2%B 9+W0 B8%S S\$#9+W0 GG%L P A01(1B1B8685.3AL1>2%B 9+W0 B8%S S\$#9+W0 GG%L P A01(1B1B8685.3AL1>2%B 9+W0 B8%S S\$#9+W0 GG%L P A01(1B1B8685.3AL1>2%BH 9+W0 B8%S S\$#9+W0 GG%L P A01(1B1B8685.3AL1>2%BH 9+W0 B8%S S\$#9+W0 GG%L P A0111B1B8685.3AA1>2 A01(1B1B868568568566666666666666666666666666	-				Яd	\$&& +W0	\$&/	8%HN	\$\$&
MMMM &%S AT b&%S C&#AT CG%N \$9ERB&st>12%_BRE_LimitH\$ AT b&%S C&#AT CG%N C \$9ERB&st>12%_BRE_LimitH\$ 9+W0 b&%S &%K#9+W0 GG%L C \$07@HEBB\$S\$*: A\$L>2%B 9+W0 b&%S &%H9+W0 GG%L C \$01@HEBB\$S\$*: A\$L>2%B 9+W0 b&%S \$%H9+W0 GG%L C \$01@HEBB\$S\$*: A\$L>2%B 9+W0 b&%S \$%H9+W0 GG%L C \$01@HEBB\$S\$*: A\$L>2%BHH 0 b&%S \$%H9+W0 GG%L C \$01B1\$B\$34\$A\$A\$L>2%BHH 0 B&%S \$%H9+W0 GG%L C \$01B1\$B\$34\$A\$A\$L>2%BHH 0 B&%S \$%H9+W0 GG%L C \$01B1\$B\$B\$35 0 B&%S \$%H9+W0 GG%L C C \$01B1\$B\$B\$35 0 B B B C C C \$010\$B\$ 0 B B B C C C <t</td><td></td><td></td><td></td><td></td><td>Яd</td><td>QJ/#9+W0</td><td>GG%J</td><td>N/%&</td><td>\$\$N</td></tr><tr><td>MMMM 8%5 A1 b8%5 Q&#A1 GG%N (982B3681>32%)BRG183H% 3 3 3 3 3 (982B3681>22%)BRG183H% 8%85 8%6#9+W0 GG%L 1 (917) 8%85 8%6#9+W0 GG%L 1 (917) 9+W0 b8%85 8%6#9+W0 GG%L 1 (917) 9+W0 b8%5 8%9+W0 GG%L 1 (101) 8%8 9+W0 b8%8 8#9+W0 GG%L 1 (101) 8%8 9+W0 b8%8 8#9+W0 GG%L 1 (101) 101 8%8 8849+W0 GG%L 1 (101) 101 101 1 1 1 (101) 101 101 1 1 1 (101) 101 1 1 1 1 (101) 101 1 1 1 1 (101) 101 1 1 1 1 (101) 101 1 1 1 1 (101) 101 1 1 1 1 (101) 101 1 1 1 1 (101)</t</td><td>* =672%#A.KE0E>L%%:Ā&!->2%8HH4477<</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>(ABERBAGE1>37%/ABREDIEFH% (ABERBAGE1>37%/ABREDIEFH% GG%L GG%L (AD12) B4%85 B4%00 GG%L GG%L (AD12) D12(@HBB86%: AB1>2%8 9+W00 B8%5 S8#9+W0 GG%L (AD12) MMMM 8%5 S8#9+W0 GG%L P (AD12) MMMM 8%85 S8#9+W0 GG%L P (AD12) MMMM 8%85 S8#9+W0 GG%L P (AD111) MMMM 8%85 S8#9+W0 GG%L P (AD111) MMMM S%85 S8#9+W0 GG%L S8 (AD1111) MMM S%85 S8#9+W0 G1%C (AD1111) MMM</td><td>7E&QK,#')(15<523</td><td>MMMM</td><td>&%\$</td><td>٩٦</td><td>b&%\$</td><td>Q&#A]</td><td>GG%N</td><td>G\$%&</td><td>\$&K</td></tr><tr><td>MMMM 8%&8 9+W0 b8%&8 8% 8% B8% b D?@HBIB8%: Ā&1->2%8 MMMM 8% 8% 69+W0 66%L 1 MMMM 8% 9+W0 b8% 8%+9+W0 66%L 1 MMMM 8% 9+W0 b8% 8%+9+W0 66%L 1 ?@IB1988%: All->2%8 9+W0 b8% 8%+9+W0 66%L 1 ?@IB1988%: All->2%8H9 9+W0 b8% 8%+9+W0 66%L 1 ?@IB1988%: All->2%8H9 9+W0 b8% 8%+9+W0 66%L 1 ?@IB19884: All->2%8H9 9+W0 b8% 8%-00H#9+W0 61%K 1 ?@IB19884: All->2%8H9 9+W0 b8% 8%-00H#9+W0 61%K 1</td><td>*M=7NO2%%(E>.E>1%C@AB%(E>.?>1%?B%(%:('P<%</td><td>%%КL%9Ё₿₿₫&а>я2%₿ВЩ</td><td>@JEEH%</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>b D?@HBIB68%:Ä&I->2%8 b 8%5 \$	+W0 GH%Q MMMM &%5 \$#9+W0 GH%Q MMMM &%5 \$#9+W0 GH%Q b 8%5 b 8%5 \$#9+W0 GH%Q 7@LB10884:Allocation b 8%5 \$#9+W0 GH%Q 7@LB10884:Allocation b 8%5 \$%0 B 8%5 MMMM &%85 Q%0 G%1 10 b 8%8 Q%0 G%1</td><td>7e&KGh,#A52(52"#R#A52(Å2"#Ä!#A</td><td>MMMM</td><td>&%&\$</td><td>0M+6</td><td>b&%&\$</td><td>&%K#9+W0</td><td>GG%L</td><td>G\$%&</td><td>\$\$/</td></tr><tr><td>MMMM &%\$ 9 +W0 b8%\$ \$	+W0 GH%Q 7@LB1/834Å81>-2%8HH b8%\$ \$#9+W0 GG%L \$\$\$ 7@LB1/834Å81>-2%8HH b8%\$ \$#9+W0 GG%L \$\$\$ 100 b8%\$ \$\$ \$\$ \$\$ \$\$ 100 b8%\$ \$\$ \$\$ \$\$ \$\$ 100 b8%\$ \$\$ \$\$ \$\$ \$\$ 100 b8%\$ \$\$ \$\$ \$\$ \$\$</td><td>*M=J5O2%#->?@%MR1@0?S@%(E>T1D%UL%9EBQ</td><td>Q.1>1% D?@HBB88%:Ā8</td><td>&!->2%8</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>7@LB1/824:Addl:>2%8HH b8%\$ \$#9+W0 \$\$\$ 7@LB1/824:Addl:>2%8HH b8%\$ \$#9+W0 GG%L 7@LB1/824:Addl:>2%8HH 0%00H#9+W0 GG%L 7@LB1/824:Addl:>2%8HH 0%00H#9+W0 GG%L 7@LB1/824:Addl:>2%81 0%00H#9+W0 GG%L 7@LB1/824:Addl:>2%81 0%00H#9+W0 GG%L 7@LB1/824:Addl:>2%85 8%00H#9+W0 G3%K 7.000 b8%85 8%00H#9+W0 8.000 b8%85 8%00H#9+W0</td><td>7e&J\$h,#'-2Ä #eS" <ÄF #A52(-+"6#Ä!#A</td><td>MMMM</td><td>8%\$</td><td>0/\+ 6</td><td>b&%\$</td><td>0W+6#8\$</td><td>GH%Q</td><td>JG%&</td><td>\$&\$</td></tr><tr><td>?@LB1/834Å8!>>2%8HH B&%\$ K#9+W0 GG%L ?@LB1/834Å8!>>2%8HH 0%00H#9+W0 G3%K MMMM &%85 2%00H#9+W0 G3%K b&%85 B&%85 8%00H#9+W0 G%5K b b&%85 8%00H#9+W0 G%5K mmm %8 9+W0 63%K</td><td></td><td></td><td></td><td></td><td>b&%\$</td><td>0M+6#\$</td><td>\$\$\$</td><td>L&%&</td><td>\$\$N</td></tr><tr><td>P@LB1/E39.43.81->2%8HH B.4.W0 B.8.%&S Q%GH#9+W0 G.J%K MMMM 8.%&S 9+W0 B.8.%&S 8%QCH#9+W0 G.J%K b.8.%&S 5%CAH#9+W0 G.J%K 6%CAH#9+W0 6.5%CA mmMM 8.%&S 8%CAH#9+W0 6.5%CA 6.5%CA mmMM 8.%&S 8%CAH#9+W0 5%CA 6.5%CA</td><td></td><td></td><td></td><td></td><td>b&%\$</td><td>K#9+W0</td><td>GG%L</td><td>L&%&</td><td>\$/&</td></tr><tr><td>MMMM & %&\$ 9+W0 b&%&\$ Q%QH#9+W0 GJ%K b&%&\$ 8%QQH#9+W0 d#\$\$K b&%&\$ 8%QQH#9+W0 d#\$\$K b&%&\$ 8%QQH#9+W0 d#\$\$K b%&\$ 0,000 b%& 0,000</td><td>*M=JHO2%#->?@%+S-BCSAB%?B%+%KL%9EBQ.1></td><td>>1% D?@LB1J\$\$\$4:4_8.1-</td><td>>2%8HH</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>b&%&\$\$ & & & & & & & & & & & & & & & & &</td><td>7e&JLh,#'-2Ä #*F-!OF-()!#Ä!#*</td><td>MMMM</td><td>&%&\$</td><td>0/\+6</td><td>b&%&\$</td><td>0%0H#9+W0</td><td>GJ%K</td><td>L\$%&</td><td>\$&\$</td></tr><tr><td>b&%&\$ \$#9+W0 \$&0</td><td></td><td></td><td></td><td></td><td>b&%&\$</td><td>8%QQH#9+W0</td><td>A#\$\$K</td><td>LH%&</td><td>\$&N</td></tr><tr><td></td><td></td><td></td><td></td><td></td><td>b&%&\$</td><td>0M+6#\$</td><td>\$&Q</td><td>L&%&</td><td>\$/&</td></tr><tr><td></td><td>*+=4=2%'E@%?D0%O.1?B1%:'VO<%%:Ā&!->2%8HHN</td><td>V=5H<</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>7*&H&,#U5 #i#h("À!"</td><td>MMMM</td><td>¥</td><td>0M+ 6</td><td>Яd</td><td>K&&	+W0</td><td>\$&J</td><td>N\$%&</td><td>\$H\$</td></tr></tbody></table>									

Matrix Spike (MS) Report

523#-62(- # 2"(9# > \2(5);#, O5P"#>>:Z# ("."(|# 2.# \6#562(\Avety A(\Z-{3# !0.52#\90";# 105P"<#62E\#\00]"=2#-940";# 12#.;# 2#.9 -652.(#02",62\Avety A(\Z-{3});0;# 12#.)=2#-9#. ÄGÄ 32"#("=-8"(5"!%#;2Ä25=#?"=-8"(3#05952!#Ä!#0"(#Ä1-(Ä22Ä#¥ÄÄ 523#U1S"=258"!#Y:XUJZ%#C<"Ä #("=-8"(3#(Ä6+"!#!2Ä2"##ÅÅB\$##56#2F"#"8"62#.#!Ä9O "#9Ä2(5)#562"(."("6="%

;)1M>Ä2(5 2%#*)			Ma	Matrix Spike (MS) Report		
			Spike	SpikeRecovery(%)	Acceptable Limits (%)	imits (%)
Laboratory sample ID Sample ID	Method: +Compound	CAS Number	Concentration	SM	Том	High
[*] M=7NO2%%(E>.E>1%C@AB%(E>.?>1%?B%(%:('P<%%KL%9 88Å&X ************************************	%Harden					
7;H\$HQKHKM&&\$ E6-639-)!#	7e&KGh,#A52(52"#R#A52(À2"#Ä!#A	MMMM	8%K#9+W0	GQ%\$	L&%&	\$/&
*M=J5O2%#>?@%MR1@0?S@%(E>T1D%UL%9EBQ.1>1% D?@HB/88%;Ā&!>2%8	:Ā&!~2%8					
7;H\$HQKHKM&&H E6-639-)!#	7e&J\$h,#'-2Ă #eS" <ĂF #A52(-+"6#Ă!#A	MMMM	K +W0	GK%K	L&%&	\$/&
*M=JHO2%#->?@%+S-BCSAB%?B%+%KL%9EBQ.1>1% D?@LB J%84 ,4Å&!->2%8HI	&!->2%8HH					
7;H\$HQKHKM&&H E6-639-)!#	7e&JLh,#'-2Ä #*F-!OF-()!#Ä!#*	MMMM	\$ +W0	\$&\$	L&%&	\$/&

ĀÀ Ā!"!#\$%&'()*+"À,,+,,\$+)-"*-*#"(,,',-".'-/"Ă0(&'-1"2+3'+.

%&()'*	%3241Å(25!2-#0'614171(2'8.92!. ∿EF&'G'HIH*'H.I.I.I	MGOP 00GMG&	MQOP 00GMG&	%&	%&
i\$#	+#,(À#-(À. Ā10ICDI/21	6#+i.8#5C017' <i:i14!9< th=""><th>i-#9,i 22@</th><th>>(T'()'7#5C0!7'À!!!14!9</th><th>>(T'()'7#5C0!7#2#0.7!9</th></i:i14!9<>	i-#9,i 22@	>(T'()'7#5C0!7'À!!!14!9	>(T'()'7#5C0!7#2#0.7!9
@::<=<>5	%ÅŽAB7"CB;4 ÄIDE"FDG"HDA %<'=3>'?@Å∆>R++	%>3LM&HI'?10!."#ÄN	%0000	%RS=?	\$0000
4#56"758+5	/01!2- //2-#	"Ă(K!:-	81-!	8#5C0!Ä	UÄ9!Ä'2 5,!Ä

5)(&"+Q%+5-"()8"+Q-+5)(&"À08'-#5"5+3'+.N"L()1"*#\$%#)+)-,"#M"-J" D/,"5+%#5-","(0-#\$(-*(&&1"+)+5(-+8")1"-/+"ÄH,"HKL,"-/5#0//")-+5%5+(-#)"#M"-/+"ÄH;"Ã0(&:-1"#)-5#&"2+%#5-"()8",+3+5(&"**4@**:-1"Å,,05()*+"%(5(\$+-+5,"\$+(,05+8")1"ÅHK),"'D-#\$(-*8")1"ÅHK),"(0-#\$(-*(*1)1")+5(-+8")1"ÅHK),"D(*)=0.)8"\$#5+"(**05(-+"8(-("3(&'8(-'#)"()8"","8+,'1)+8"*#*"(,,',-"")-+ 5+%#5-"*#)-5'J0-+" #"-/+"#3+5(&&"AĀ7"(,,+,,\$+)-"()8"5+%#5-')I"M#5"I0'8+&')+"*#\$%&'()*+N" 5+%#5-')I"/I/&'I/-,"()1")#)O*#)M#5\$()*+,P"M(*'&'-(-+,"M(,-+5"(

=Ä1i)5i-D(9'7 55#Ä1i7'#29'Äi)iÄi2:i7'#Ä!#07('CÄ(419i9'-('#771 7-'12'-Ä#:!#,101-.T

Summary of Outliers

Outliers : Quality Control Samples

ĀD17'ÄıC(Ä-'D1\$D01\$D-7'(-01!Ä7')0#\$\$!9'12'-D!'V #01-.'/(۩ۿرالا)'<

- B7"L+-/#8"R&()6"3(&0+"#0-&'+5,"#**05N
 - B7"A0%&**(-+"#0-&'+5,"#**05N
- B7"L(-5'Q";%'6+"#0-&'+5,"#**05N
- H(J#5(#51"!#)-5#&"#0-&'+5,"+Q',="O"%&+(,+",++"M#&&#")1"%(M#5"M0&&"8+-('&,N
 - S#5"(&&"5+10&(5",(\$%&+"\$(-5"*+

Outliers : Analysis Holding Time Compliance

B7"Ä)(&1,',"T#&8')I"D'\$+"70-&'+5,"+Q',-N

Outliers : Frequency of Quality Control Samples

B7"Ā0(&'-1"!#)-5#&";(\$%&+"S5+U0+)*1"70-&'+5,"+Q',-N

%G()'* %38G&G*JJL	%/B<6>U'W>8?SB/ĀX'''ĀY'+Ā6	%*>3LM&HI'?10!."#ÄN	
"#\$! ?(ĂN'UĂ9!Ă	/01!2-	"Ä(K!:-	

Outliers : Quality Control Samples

ĀÀ !"#\$%&'()*&%+,-).!\$/0'()1\$2,3\$%,34)5,7%3,!)6\$7 !&')\$/-)*\$%3" 8)6 "0&'

;#-Ä1**334ÄD:2**

/(5C(29'[Å(C'>#5!	+#,(A#-(A.'8#5C0!'@6 /01!2-'8#5C0!'@6	/01!2-'8#5C0!'@6	Å)(&1-+	/B8'> 5,!Å	6#-#	+151-7	-(+\$\$+)-	_
H(J#5(-#51"!#)-5#&";%'6+"CH!;E"2+*#3+5'+,"								
3]MFI[%'Ā(-#0'"D(7CD(Ä 7'#7'"', '617:Ä!-!'B2#0.7!Ä	V/0;<[GOLIIFLLGM 0000	0000	D#-(&"F/#,%/#50,"(,"F	0000	0000&&J''	IGTMO&MH\ 2	2+*#3+51"I5+(-+5"-/()"0%%+5"*#)-5#&"	
							&'\$'- &	

Analysis Holding Time Compliance

2'12-(':(2719!Ä#-1(2'`D!2'12-!ÄCÄ!-12\$'Ä!7 0-7T @)7#5C0i7#Ä!19i2-1)1i9',i0('#7'D#412\$',i!2'#2#0_7i9'(Ä'IZ-Ä #:-i9'(-719!'()Ä!:(55i29i9'D(0912\$'-15i7b'-D177D(09',!'#N!

D(0912\$'-1517 WĂI)II\$:12\$' e83"B' 87' H*Fb'B'BABb' B8' #29' >3";X' ,#719' (2' -DI' 7#5C0I' :(2 -#121Ă C剤(419)9T"6#-17`剤C(剤-19`剤C(剤)72-')1剤7-9#-1()1Z(剤2#0.717#29C剤:0 9)'7, 7]a 12-910 -1(27#29剤剤27TB'017-2\$'(),剤#:D17W1)#2.X17'C剤(419)9'D)剤12T ĂD17'ÀC(À-' 7 55#Å1di7' iZ-À#-1(2' S'CÀIC#Ä#-1(2#29' #2#0.717'-6i7' #29' :(5C#Ài7' i #:D' `1-D' B+8' Äi:(55i29i9'

A(0912\$-15!')(Å'0i#:D#!'5!-D(97''WIT\$`Ā/+"X' 4#Ä.'#::(Å912\$'-('-D!' #2#0.i7' ÄC(Å-!9T''B77175!2'' :(5C#Ä17'-D!' 0!#:D'9#-!' 710'5!-)(Å'17''#2#0.-!' C(0912\$'-15!')(Å'-DI' 14#0!2'' 7(10'5!- D(9T'AD17'' #Å!%'(Å\$#21:7') &*°9#.7b'5lÄ: Ä`GH'9#.7'c'(-DIÅ'5j-#07'8HM'9#.7T''B'À!:Й9!9', Ä/#:D'9(17'2(-'\$ #Å#2-!!!#,Ä#;D')(Ä#00'2(204(0#-10!'C#Å#5!-! Ä/T A(0912\$'-1517') (Å' VOC in solis' 4#Ä. #.:[Å912\$'-{' #2#0.-17' (}' 12-lÄ17-T' ^ 12.0'DO(Ä19!' #29' 8..Ä12!' D(0012\$'-15!' 17' 1'9#.7_' (-D)Ä7' 8*'9#.7 T' B' Ä1:(Ä919' , Ä1#:D' 9(17' 2(- \$ #Ä#2-!!' #', Ä1#:D')(Ä' #00^/U' #2#0.-17' #28')) (Å' #00^/U' #28') 7D(09;,!'t4)Å1)119'12'#71'-D'ÅIG(Å-19',ÅI#:D'17'#)#07!'C(71- 14!'<u>(Å</u>^12.0')D0(Å19!'#29'8-.Å12!#ÅI'2(-NI:'#2#0.-17'()'12-IÅ - 17-S:(2:İÅ2T

;#.Å1@ \$ ÅĎ:2				34#0 #-1(2	%"FA(0912\$'-15!',	34#0 #-1(2%"fA(0912\$'-15!',Ä!#:D'_' ~'f?1-D12'D(0912\$'-15!T'	0912\$'-15
Method	Sample Date	:8%	:8%3\$#%";/);)<3& \$3\$%";/			9/\$i4'''	
Container / 5/"&%)6\$7 !&)?Ä@'A		Date extracted	ĀĂ&)>,3)&8%3\$#%",/ :=\$!Ä\$%",/	:=\$!Ä\$%",/	Date analysed	ĀÄ&)>, 3) \$/\$!4'''	:=\$!Ä\$%",/
.ÄV 9"D#{&";0,%+)8+8";#&'8,"85"+8"(."=V "W" <x!< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x!<>							
l&+(5"F&(,-**"R#–&+"O"B(-05¢&V T E<br VBGMM	V=OZ0&O <v<=< td=""><td>0000</td><td>0000</td><td>0000</td><td>VYOZ0&O<v<₌< td=""><td>VYOZ0&O<v<= 00gmg&<="" mhop="" td=""><td>></td></v<=></td></v<₌<></td></v<=<>	0000	0000	0000	VYOZ0&O <v<₌< td=""><td>VYOZ0&O<v<= 00gmg&<="" mhop="" td=""><td>></td></v<=></td></v<₌<>	VYOZ0&O <v<= 00gmg&<="" mhop="" td=""><td>></td></v<=>	>
.ÄV>?9"D05J'8'-1							
I&+(5"F&(,-**"R#&+"O"B(-05¢@V>?E VBGMM	V=OZ0&O <v<=< td=""><td>0000</td><td>0000</td><td>0000</td><td>V@OZ0&O<v<< td=""><td>V@OZ0&O<v<= 00gmg&<="" mlop="" td=""><td>></td></v<=></td></v<<></td></v<=<>	0000	0000	0000	V@OZ0&O <v<< td=""><td>V@OZ0&O<v<= 00gmg&<="" mlop="" td=""><td>></td></v<=></td></v<<>	V@OZ0&O <v<= 00gmg&<="" mlop="" td=""><td>></td></v<=>	>
:[V?]9""B'-5'-+"%&0,"B'-5(-+"(,"B"CB7QE""J1"A',*5+-+"À)(&1,+5							
I&+(5"F&(,.**'R#-&+"O";0&M05*** `AC #?)] E VBGMM	V=OZ0&O <v<=< td=""><td>0000</td><td>0000</td><td>0000</td><td>V^OZ0&O<v<=< td=""><td>GQOP 00GMG&</td><td>></td></v<=<></td></v<=<>	0000	0000	0000	V^OZ0&O <v<=< td=""><td>GQOP 00GMG&</td><td>></td></v<=<>	GQOP 00GMG&	>
:[V^=]9"D#(&"L+&&(&"B'-5#+)"R1"A',*5+-+"Ä)(&1,+5							
I&+(5"F&(,.**"R#&+"O";)0&M05*** `ÀC[%^=] E VBGMM	V=OZ0&O <v<=< td=""><td>V^OZ0&O<v<=< td=""><td>GQOP 00GMG&</td><td>></td><td>V^OZ0&O<v<=< td=""><td>GQOP 00GMG&</td><td>></td></v<=<></td></v<=<></td></v<=<>	V^OZ0&O <v<=< td=""><td>GQOP 00GMG&</td><td>></td><td>V^OZ0&O<v<=< td=""><td>GQOP 00GMG&</td><td>></td></v<=<></td></v<=<>	GQOP 00GMG&	>	V^OZ0&O <v<=< td=""><td>GQOP 00GMG&</td><td>></td></v<=<>	GQOP 00GMG&	>
:[V^Y]9"D#(&"F/#,%/#50,"(,"F"J1"A,*5+++"À)(&1,+5							
I&+(5"F&(,^**"R#-&+"O";)0&M05*** `AC}W^Y]E VBGMM	V=OZ0&O <v<=< td=""><td>V=OZ0&O<v<= v^oz0&o<v<="</td"><td>GQOP 00GMG&</td><td>></td><td>V^OZ0&O<v<=< td=""><td>GOOP DOGMG&</td><td>></td></v<=<></td></v<=></td></v<=<>	V=OZ0&O <v<= v^oz0&o<v<="</td"><td>GQOP 00GMG&</td><td>></td><td>V^OZ0&O<v<=< td=""><td>GOOP DOGMG&</td><td>></td></v<=<></td></v<=>	GQOP 00GMG&	>	V^OZ0&O <v<=< td=""><td>GOOP DOGMG&</td><td>></td></v<=<>	GOOP DOGMG&	>
:FV <v9"7'8,"()8"]5+(,+"c7`]e< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></v9"7'8,"()8"]5+(,+"c7`]e<>							
L,*+&&()+#0,";0& %05**" %5+,+53+8"CFV <ve VBGMM</ve 	V=OZ0&O <v<=< td=""><td>0000</td><td>0000</td><td>0000</td><td>VYOZ0&O<v<₌< td=""><td>VYOZ0&O<v<=< b=""> GQOP 00GMG&</v<=<></td><td>></td></v<₌<></td></v<=<>	0000	0000	0000	VYOZ0&O <v<₌< td=""><td>VYOZ0&O<v<=< b=""> GQOP 00GMG&</v<=<></td><td>></td></v<₌<>	VYOZ0&O<v<=< b=""> GQOP 00GMG&</v<=<>	>

%L'()`* %38G&G*JJL %B<6>U'W>8?SB/ÅX'''ĂY'+Ă6 %*>3LM&HI'?10!.'''#ÅN

Quality Control Parameter Frequency Compliance

ĀD!)(00('12\$'ÀIC(À-'7 55#À1717-D!)Åla 12..'()0#,(À#-(À.V/) 7#5C017#2#0.719"1-D12'-D1#2#0.-1:#0'0(-W7X'12"D1:D'-D1'7 15-197#5C01W7X"#7W'IÀIX'CÀ(:17719TB:- #0'À#-17D(09',1'\$ÀI#-IÀ'-D#2'(À'1a #0'-(' -D1'IZC1:-19'À#:ITB'017-12\$'(),ÀI#:D17'17'CÀ(41919'12'-D1'8 5 5#À.'()'U -01IÀ7T

;#-Ă1 234ÄD:2				34#0 #-1(2	2 % "f'V #01 '/(2-	Ř(0')Ř! a !2: . '2	34#0 #-1(2%"fV #01'/(2-Ă(0')Ă!a !2: .'2(-'1-D127O:1)1:#-1(2'_^'fV #01'/(2-Ă(0')Ă!a !2: .''1-D12'D:1)1:#-1(2T
V #01-:/(2-Ä(0'8#5C0!'Ã.C!		5,7	5,Ä%		C\$% 80 A		BÀ\$!"%4)5,/%3,!)6 &#">"#\$%",/
9/\$! 4%'#\$!)*&%+,-'	*&%+,-	B5	C&DÄ!\$3	Actual	Expected	:=\$!Ä\$%",/	
+#,(Ä#-(Ä.'6 C01:#+i7'W6e"X							
>1-Å1-i#29'>1-Ä#-i'#7'>'W>UZX','617.Ä!-i'B2#0.7!Ä	3]MJQ[U	ð	VVVV= "	VVVV= "	>	>3";'GM&L'=L'c'B+8'V/'8-#29#Ä9
8 7Ci29i9'8(0197'WA1\$D'+i4!0X	3BMGJA	ט	Ð	VVVV="	VVVV="	>	>3";'GM&L'=L'c'B+8'V/'8-#29#Ä9
Ā(-#0']Ki09#D0'>1-Ă(\$!2'#7'>'=.'617.Ă!-!'B2#0.7!Ă	3]MF&[U	ð	VVVV="	VVVV="	>	>3";'GM&L'=L'c'B+8'V/'8-#29#Å9
Ā(-#0"D(7CD(Ä 7'#7""=.'617.Ă!-!'B2#0.7!Ă	3]MFI[U	Ð	VVVV= "	VVVV="	>	>3";'GM&L'=L'c'B+8'V/'8-#29#Ä9
Ā Ä,191	3BM*J	U	Ð	VVVV="	VVVV= "	>	>3";'GM&L'=L'c'B+8'V/'8-#29#Ä9
+#,(Ä#-(Å.'/(2-Ä(0'8#5C0i7'W+/8X							
>1-Ä1-i#29'>1-Ä#-i'#7'>'W>UZX','617.Ä!-i'B2#0.7!Ä	3]MJQ[ø	Ð	VVV?"	VVV	>	>3";'GM&L'=L'c'B+8'V/'8-#29#Ä9
U10#29'[À!#7!	3"MGM	ø	ß	۲۰N^	VVV?"	>	>3";'GM&L'=L'c'B+8'V/'8-#29#Ä9
8 7Ci29i9'8(0197'WA1\$D'+i4i0X	3BMGJA		Ø	NVV?="	VVN?="	>	>3";'GM&L'=L'c'B+8'V/'8-#29#Ä9
Ā(-#0']Ki09#D0'>1-Ă(\$!2'#7'>'=.'617.Ă!-!'B2#0.7!Ă	3]MF&[Ð	NVV?="	NVV∽"	>	>3";'GM&L'=L'c'B+8'V/'8-#29#Ä9
Ā(-#0"D(7CD(Ä 7'#7""=.'617.Ă!-!'B2#0.7!Ă	3]MFI[Ð	NVV?="	VVN?="	>	>3";'GM&L'=L'c'B+8'V/'8-#29#Ä9
Ā Ä,191	3BM*J	જ	Ø	VVV?"	VVV?"	>	>3";'GM&L'=L'c'B+8'V/'8-#29#Ä9
;!-D(9'=0#2N7'W;=X							
>1-Ä1-i'#29'>1-Ä#-i'#7'>'W>UZX',''617.Ä!-i'B2#0.7!Ä	3]MJQ[ø	Ð	VVV?"	VVV?"	>	>3";'GM&L'=L'c'B+8'V/'8-#29#Ä9
U10#29[Ä!#7!	3"MGM	જ	Å	۲۰N^"	VVV?"	>	>3";'GM&L'=L'c'B+8'V/'8-#29#Ä9
8 7Ci29!9'8(0197'WA1\$D'+!4!0X	3BMGJA	જ	Ð	VVV?"	VVV?"	>	>3";'GM&L'=L'c'B+8'V/'8-#29#Ä9
Ā(-#0']Ki09#D0'>1-Ă(\$!2'#7'>'=.'617.Ă!-!'B2#0.7!Ă	3]MF&[ø	Ð	VVV?"	VVV?"	>	>3";'GM&L'=L'c'B+8'V/'8-#29#Ä9
Ā(-#0"D(7CD(Ä 7'#7""=.'617.Ä!-!'B2#0.7!Ä	3]MFI[ø	Ð	VVV?"	VVV?"	>	>3";'GM&L'=L'c'B+8'V/'8-#29#Ä9
Ā À,191	3BM*J	જ	Ø	VVV?"	VVV?"	>	>3";'GM&L'=L'c'B+8'V/'8-#29#Ä9
;#-Ä1Z'8C1NI7'W;8X							
>1-Ä1-i#29'>1-Ä#-i'#7'>'W>UZX',''617:Ä!-i'B2#0.7!Ä	3]MJQ[જ	GM	VVV?"	VVV?"	>	>3";'GM&L'=L'c'B+8'V/'8-#29#Ä9
Ā(-#0']Ki09#D0'>1-Ä(\$!2'#7'>'=.'617:Ä!-!'B2#0.7!Ä	3]MF&[જ	Ð	VVV?"	VVV?"	>	>3";'GM&L'=L'c'B+8'V/'8-#29#Ä9
Ā(-#0"D(7CD(Ä 7'#7'"=.'617.Ă!-!'B2#0.7!Ă	3]MFI[ø	Ð	VVV?"	MN2.	>	>3";'GM&L'=L'c'B+8'V/8-#29#Å9

ALS

Brief Method Summaries

3";T'@2'D(7!' 7#29#Ä97(Å.,:0112-Åla I7-TÅD!)(00('12\$ÅlC(Å-'CÅ(419!TÅ1!)9!7.Å1C-1(27'()'-DI#2#0.-1:#0'CÅ(:!9Å17'15C0('.!9)(Å'ÅI7'0-7'Ä!C(Å-!9'12'-DI' ĀDI#2#0.-1.#0'CÄ(:!9 Ä17 7!9', '-D'3241Ä(2512-#0'614171(2'D# 41',!!29!410(C!9')Ä(5'17+#,017D19'12-1Ä2#-1(2#00.À!:821d19'C Ä(:!9 Ä177 :D'#7'-D(7'I'C ,017D19', '-D'188'3'Bb'B8'#29> 12'914IN/CI9'#ĂI'CĂ(419I9'' 1-D12'-DI'-I-D(9'6I7-Ă1C-1/271 #0 717T'8/ Ä·17'\Ä/5'`D1·D'B+8'5|-D/97'D#4!' I 9!4!0(C!9'CÄ(:!9 Ä!7'#Ä!'!5C0(.!9'12'-D!#,7!2:!'()'9(: 5!2-!9' //Ä-1)1-#-I/(

/2/3/4%"#2/18#"%2/2/2	*&%+ -	*\$%3"8	ノ : 20 : に共 8 () 1 - 208 : 。
8 7Ci29i9'8(0197'WA1\$D'+i4i0X	3BMGJA	?BĀ3<	@2/D(7!%-ci)iÄI2:!9-('B"AB'GJ*M6T"B'\$Ä#415!-Ä1:'CÄ(:!9 Ä!'!5 C0(.!9-('9!-IÄ512!'-D!#5(2-'()' g2(20)10-IÄ#,0!9ÄI719 !'12##a !(7'7#5C0IT'ÄD!'CÄ17.Ä1,!9[h /W&TG 5X')10-IÄ'17'Ä127!9''1-D'9!1(217!9''#-IÄb' (4!2'9Ä1!9'#29' !1\$D!9'CÄ1(Ä'-(#2#0.717T"'B'' !00051Z!9'7#5C017')10-IÄ!9'-DÄ(\$D'#\$0#77')1,Ä!')10-IÄ'W&TG 5XT" ÄD!'Ä1719 !(2'-DI')10-IÄ'C#C!Ä17'9Ä1!9#-'&M*ESOG/T'ÄD17#0#0+17':(5C01#2-''1-D'>3"';8:D!9 0!'=WLX
Ā Ä,191	3BM*J	?BĀ3<	@2'D(7!%')!Äl2:!9'-('B"AB'G&LM'=T'ĀD17'5!-D(9'17'.(5C01#2-'` 1-D' 3";'8:D!9 0!'=WLX
>1-Ä1-!'#29'>1-Ä#-!'#7'>W>UZX',''617.Ä!-!' B2#0.7!Ä	3JMJQ[?BĀ3<	@2'D(71%' <i)iäi2:19-('b"ab*jmmo>ULO'hT'/(5,1219'(Z191719>1 -Â(\$!2'W>UGE>ULX'17'9!-IĂ51219',.' /Di51.#0'<!--9 :-1(2#29'91À1:-':(0(À151-À.','617.À!-!'B2#0.7!À T'ĀD17'5!-D(9'17':(5C01#2-'`1-D'-->3";' 8:Di9 0!=WLX</i)iäi2:19-('b"ab*jmmo>
Ā(-#0']K109#D0'>1-Ă(\$!2'#7'>'=.'617.Ă!-!' B2#0.7!Ă	3]MF&[?BÃ3<	@2'D(71%'<1)IÄ12:19-('B"AB*JMMO>(\\$\$'6'W@2'D(71XT'B2#01a ({)'7#5C0!'17'91\$17-19' 712\$#'D1\$D' -!5C!À#- À1'JK109#D0'91\$17-1(2'-(''(24!À-21-À(\$!2(7':{5C(297 '-('#55(21#T'B55(21#17'9!-!Å512!9' :(0(À15!-À1:#00.','917:À!-!#2#0.7!ÅT\AD17'5!-D(9'17':{5C01#21-D'>3";'8:D!9 0!'=WLX
Ā(+#0'>1-Ă(\$!2'#7'>'WĀ]>'E'>(ZX'=.' 617:Ài-I'B2#0.7!À	3]MFG[?BĀ3<	@2'D(7!%')IÄI2:!9-('B"AB*JMMO (À\$'S'*JMMO>ULOT'ĀD17'5!-D(\\
Ā(-#0"D(7CD(Ă 7'#7""=:617.ĂI-!' B2#0.7IĂ	3JMFI[?BÃ3<	@2'D(7!%'<))Ä12:!9-('B'AB*-JMMO''Ab'P1ÄN#'!-#0b'RD#2\$'!-#0'AD17'CÄ(:!9 Ä1'124(0417'7 0CD Ä1'#:19' 91\$!7-1(2'()#'7#5C0!#01a (-'-(',Ä!#N'CD(7CD(Ä 7'9('2'-('\Ä-D(CD(7CD#!T''AD!'(À-D(CD(7CD#!Ř!#:-7''1-D' #55(21 5'5(0,,9#:1'#29#2-15(2.'C(-#771 5'+Å-Å+'!-(')(Ä5#:(5C012''D1:D'17-D12'Å19 :!9#29'1-7' :(2:!2-Ä#1(2'5!#7 À!9#-'HHM25' 712\$'917.'À!-!#2#0.7!ÅT'AD17'5 !-D(9'17''(5C01#2-''1-D'>3'';'8:D19 0!'=WLX
U10'#29[Å!#7!	3"MGM	?BÃ3<	@2'D(71% <1)]Ă12:19-('B"AB'JJGM'=T"U10'c\$Ă!#7!'17'#\$Ă#415! -Ă1:'CĂ(:!9 Ă1-('9!-!Ă512!'-D!'#5(2-'()'(10'c' \$Ă!#7!Ă17! Ă1719 !'12'#2'#a !(7'7#5C0!TĂD!7#5C0!'17'T!Ă1#00.'!Z- Ă#∴!9'-DĂ!!'-15!7"2OD!Z#2!TĂD!'Ă17 0-#2-' !Z-Ă#:-7#Ă!:'(5,12!9b'9!D.9Ă#-!9#29':(2:!2-Ă#-!9'CĂ1(Ă'-('\$Ă# 415!-Ă1:'9!-!Ă512#-1(2TĂD17'5!-D(9'17':(5C01#2-' '1-D'>3"';8:D!9 0!=WLX
<3& \$3\$%",/)*&%+,-'	*&%+,-	*\$%3"8	*&%+,-)Å" %"/
Ā]>SĀ"61\$!7-1(2	3]MF&S3]MFI	?BĀ3<	@2'D(7!%)!Äi2:!9-('B"AB'*JMM' (Ä\$'O'6_'B"AB*JMM'''O'AT'ĂD 17'5!-D(9'17':(5C01#2-''1-D'>3'';8:D!9 0!' =WLX

Appendix 4 – TL927-1-02F02 WE42 NOISE AND VIBRATION MONITORING REPORT (R2)

Acoustics Vibration Structural Dynamics

1 March 2022 TL927-1-02F02 WE42 Noise and Vibration Monitoring Report (r2)

Downer EDI Works Pty Ltd 76 Berry Street Nth Sydney NSW 2060

Sydney Metro Southwest - Station Upgrades - OOHW WE42 Possession Works

1 Introduction

Renzo Tonin & Associates was engaged by Downer EDI Works to conduct noise and vibration monitoring during the OOHW Station Upgrade WE42 Possession works for Sydney Metro Southwest. The monitoring was undertaken to verify predicted noise levels in the Out of Hours Work Application (OOHWA) No. 2 Revision 3¹. This report provides a summary of the measured noise levels.

2 Details of monitoring

Vibration monitoring was undertaken at Hurlstone Park Station during the demo saw works between 08:00pm and 10:00pm on 19th April 2021. Noise monitoring was undertaken during out of hours work between 08:00pm and 01:00am on 19th and 20th April 2021. During this period, the possession works were occurring at Dulwich Hill Station, Hurlstone Park Station, Campsie Station, Wiley Park Station and Punchbowl Station. Note that there were no works being carried out at Belmore station during this period.

2.1 Measurement location

The noise measurements were conducted at the worst affected residential receiver, relative to the measured works. The vibration monitoring was conducted on the station platform at Hurlstone Park Station. The measurement locations are listed in Table 2-1. Figures depicting the monitoring locations are included in APPENDIX A.

¹ DOWNER SM OOHWA WK42 WK 43 Rev3 Approval _COMMS_ER, dated: 15 April 2021.

Assessment Point	Date	Time	Measured plant	Approx. distance to measured plant	Temporary noise barrier between measured plant/ receiver
1 Ewart Lane, Dulwich Hill	19.04.2021	09:54pm – 10:00pm	Lighting tower	18 metres	No
	19.04.2021	10:02pm – 10:17pm	Lighting tower	18 metres	No
	20.04.2021	08:08pm – 08:23pm	Demo saw	35 metres	Yes
	20.04.2021	10:28pm – 10:43pm	Lighting tower	18 metres	No
Hurlstone Park Station	19.04.2021	09:09pm – 09:15pm	Demo saw (Vibration)	0.2 and 0.5 metres away	N/A
107 Duntroon Street, Hurlstone Park	19.04.2021	09:21pm – 10:00pm	Demo saw	40 metres	Yes
	19.04.2021	10:26pm – 10:41pm	Hand tools	37 metres	Yes
13-15 Anglo Road, Campsie	20.04.2021	09:50pm – 10:00pm	Lighting Tower	115 metres	No
	20.04.2021	11:28pm – 11:43pm	Excavator with clamp attachment	100 metres	no
1-3 Shadforth Street,	19.04.2021	11:22pm – 11:37pm	Hand tools	30 metres	Yes
Wiley Park	20.04.2021	09:15pm – 09:30pm	Hand tools	30 metres	Yes
14 Arthur Street, Punchbowl	19.04.2021	11:59pm – 12:14am	Vacuum truck	85 metres	Yes
Functioowi	20.04.2021	08:53pm – 09:08pm	_1	-	-

Table 2-1: Measurement locations

Notes:

1: The demo saw was inaudible during this measurement.

2.2 Measurement equipment

Noise measurement equipment consisted of one NTi Audio XL2 Type 1 sound level meter and microphone calibrator. The microphone was checked prior and after measurements using a Bruel & Kjaer Type 4231 calibrator. No significant drift in calibration was observed. All instrumentation complies with AS IEC 61672.1 2004 '*Electroacoustics - Sound Level Meters*' and carries current NATA certification (or if less than 2 years old, manufacturers certification).

Table 2-2 summarises the details of noise measurement equipment.

Table 2-2	: Summary	of n	oise	measurement	equipment
		· · · ·	0.00	measarement	equipment

Instrument	Make	Model	Serial Number	Last Calibrated
Type 1 Sound Level Meter (XL2)	NTi	XL2	A2A-02386-D2	08 July 2019
Type 1 Sound Level Meter Calibrator	B&K	Туре 4231	2677710	03 December 2020

The instrumentation used for the vibration measurement are summarised in Table 2-3. The accelerometers used in the measurements have current calibration certificates.

Туре	Make / Model
Type 1 Signal Analyser	Soundbook-2
Accelerometer	Endevco 61C3

Table 2-3: Summary of vibration instrumentation

2.3 Environmental conditions

Environmental conditions recorded during the measurements are provided in Table 2-4. Environmental conditions did not have an adverse effect on the measured noise and vibration levels.

Table 2-4: Environmental conditions

Assessment Point	Date and Start Time	Environmental Conditions
1 Ewart Lane, Dulwich	19.04.2021 09:54pm	Clear sky; air temperature 21°C; wind speed <5 m/s; relative humidity 35%
Hill	19.04.2021 10:02pm	Clear sky; air temperature 21°C, wind speed <5 m/s; relative humidity 35%
	20.04.2021 08:08pm	Clear sky; air temperature 22°C, wind speed <5 m/s; relative humidity 42%
	20.04.2021 10:28pm	Clear sky; air temperature 20°C, wind speed <5 m/s; relative humidity 39%
Hurlstone Park Station	19.04.2021 09:09pm	Clear sky; air temperature 21°C, wind speed <5 m/s; relative humidity 35%.
107 Duntroon Street,	19.04.2021 09:21pm	Clear sky; air temperature 21°C, wind speed <5 m/s; relative humidity 35%.
Hurlstone Park	19.04.2021 10:26pm	Clear sky; air temperature 21°C, wind speed <5 m/s; relative humidity 35%.
13-15 Anglo Road,	20.04.2021 09:50pm	Clear sky; air temperature 20°C, wind speed <5 m/s; relative humidity 39%
Campsie	20.04.2021 11:28pm	Clear sky; air temperature 20°C, wind speed <5 m/s; relative humidity 39%
1-3 Shadforth Street,	19.04.2021 11:22pm	Clear sky; air temperature 20°C, wind speed <5 m/s; relative humidity 35%
Wiley Park	20.04.2021 09:15pm	Clear sky; air temperature 21°C, wind speed <5 m/s; relative humidity 39%
14 Arthur Street,	19.04.2021 11:59pm	Clear sky; air temperature 20°C, wind speed <5 m/s; relative humidity 35%
Punchbowl	20.04.2021 08:53pm	Clear sky; air temperature 21°C, wind speed <5 m/s; relative humidity 39%

3 Noise Monitoring results

The results of the noise monitoring are presented in Table 3-1 below.

Table 3-1:	Measured	noise	levels	L _{Aeq(15min)}
------------	----------	-------	--------	-------------------------

Assessment Point	Measured plant	Predicted noise level	Measured level dB(A		Above predicted	Comments
Point		dB(A)	L _{Aeq(15min)}	L _{Amax}	noise level?	
1 Ewart Lane, Dulwich Hill	Demo saw	72 ^H	61	66	No (L _{Aeq, 15min})	Temporary noise barriers were setup correctly during the measurement. The measured L _{Aeq. 15min} is lower than the predicted noise level.

Assessment Point	Measured plant	Predicted noise level	Measured level dB(/		Above predicted	Comments
Folin		dB(A)	L _{Aeq(15min)}	L _{Amax}	noise level?	
	Lighting tower	68 [†]	61	75	No (L _{Aeq, 15min})	Lighting tower setup on 19.04.2021. The measured L _{Aeq, 15min} is lower than the predicted noise level.
	Lighting tower*	68 [†]	55	58	No (Laeq, 15min)	Lighting tower setup on 20.04.2021. Note that a different lighting tower was setup on the Tuesday night, which produced lower noise levels. The measured L _{Aeq, 15min} is lower than the predicted noise level.
107 Duntroon Street, Hurlstone Park	Demo saw	67^	52	57	No (L _{Aeq, 15min})	Temporary noise barriers were setup correctly during the measurement. The measured L _{Aeq. 15min} is lower than the predicted noise level.
	Hand tools	56^	46	53	No (L _{Aeq, 15min})	Temporary noise barriers were setup correctly during the measurement. The measured L _{Aeq. 15min} is lower than the predicted noise level.
13-15 Anglo Road, Campsie	Lighting Tower	68 [†]	49	61	No (L _{Aeq, 15min})	The lighting tower was not audible at this monitoring location. As a result, the noise contribution from the lighting tower can be assumed to be at least 10dB less than the measured LAeq. 15min.
	Excavator with clamp attachment	68 [†]	61	78	No (L _{Aeq, 15min})	The measured L _{Aeq. 15min} is lower than the predicted noise level during the demolition of shed works.
1-3 Shadforth Street, Wiley	Hand tools on 19.04.2021	72 ^T	54	61	No (L _{Aeq, 15min})	The measured $L_{Aeq, 15min}$ is lower than the predicted noise level.
Park	Hand tools on 20.04.201	72 [†]	70	85	No (L _{Aeq, 15min})	The measured L _{Aeq. 15min} is lower than the predicted noise levels. Note that this measurement included the activity of hammering which produced higher noise levels.
14 Arthur Street, Punchbowl	Vacuum truck	46 [†]	52 (42)	64	No (L _{Aeq, 15min})	The vacuum truck was not audible at this monitoring location. As a result, the noise contribution from the vacuum truck can be assumed to be at least 10dB less than the measured L _{Aeq. 15min} .

Note: * - Note that a different lighting tower was setup on the 20.04.2021, which produced lower noise levels.

H – The corresponding predicted noise level for high impact activities

T – The corresponding predicted noise level for typical activities

^ – Access to the most affected facade was not available. As a result, the predicted noise level for the relevant facade has been presented.

It can be seen from Table 3-1 that, the measured L_{Aeq, 15min} noise levels were consistent with and below the predicted noise levels. The mitigation and management measures implemented were therefore considered suitable for this activity.

4 Vibration Monitoring results

The established vibration criteria for cosmetic damage in the Construction Noise & Vibration – OOHW Assessment Stage 2 Possession Works (CNV-OOHWA)² is as follows:

- Reinforced or frame structures: 25.0 mm/s
- Unreinforced or light framed structures: 7.5 mm/s
- Heritage structures: 2.5 mm/s

The results of the vibration monitoring are present in below.

Plant	Distance from source	95 th percentile PPV (mm/s)	Maximum PPV (mm/s)	Comments
Demo Saw	0.2m	2.38	2.72	At 0.2 metres away, the concrete saw produced a maximum PPV value of 2.72 mm/s. This maximum PPV value exceeds the screening level for Heritage structures (2.5 mm/s)
	0.5m	1.46	1.78	At 0.5 metres away, the concrete saw produced vibration levels that are below the established vibration criteria.

Table 4-1: Measured vibration levels

It can be seen from Table 4-1 that, the demo saw produced vibration levels were below the vibration criterion of 2.5 mm/s for cosmetic damage, at a distance of 0.5 metres away. However, at 0.2 metres away, the demo saw produced a maximum PPV value of 2.72 mm/s. This maximum PPV value exceeds the vibration criterion of 2.5 mm/s for cosmetic damage. As a result, the site specific minimum working distance for the demo 0.5 metres for heritage structures and 0.2 metres for reinforced or unreinforced structures.

5 Conclusion

Renzo Tonin & Associates completed noise and vibration monitoring of the out of hours works for the WE42 possession works. The results of the noise measurements were consistent with and below the predicted $L_{Aeq \ 15minutes}$ levels presented in the CNV-OOHWA prepared for the works. The vibration measurements established new, site specific minimum working distances for the demo saw, allowing works at ≥ 0.5 metres for heritage structures and ≥ 0.2 metres for reinforced or unreinforced structures.

² TL927-1-02F01 CNV_OOHWA WE42 Possession April 2021 (r4), dated: 06 April 2021

Document control

Date	Revision history	Non-issued revision	Issued revision	Prepared	Instructed	Reviewed / Authorised
03.05.2021	First Issue	0	1	R. Zhafranata	T. Gowen	T. Gowen
01.03.2022	Report revised to address client's comments	-	2	R. Zhafranata	T. Gowen	T. Gowen

File Path: R:\AssocSydProjects\TL901-TL950\TL927 Southwest Metro - Stations Upgrades\1 Docs\02 April WE42 possession\TL927-1-02F02 WE42 Noise and Vibration Monitoring Report (r2).docx

Important Disclaimers:

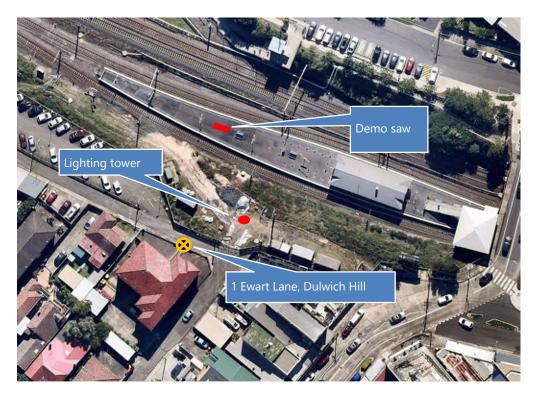
The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

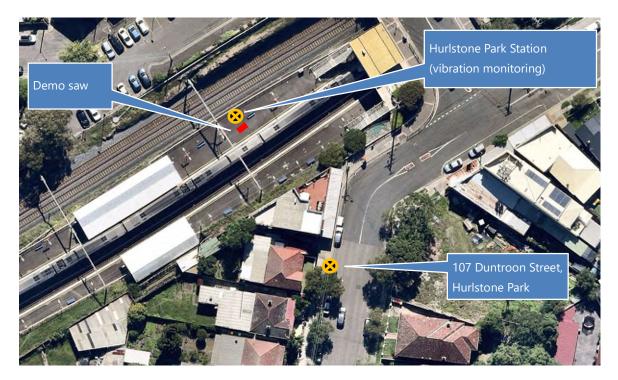
This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.


We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.


External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systems (eg facade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in Such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

APPENDIX A Measurement locations

A.1 1 Ewart Lane, Dulwich Hill

A.2 107 Duntroon Street, Hurlstone Park

A.3 13-15 Anglo Road, Campsie

A.4 1-3 Shadforth Street, Wiley Park

A.5 14 Arthur Street, Punchbowl

Appendix 5 – TL927-1-07F01 WE48 NOISE AND VIBRATION MONITORING REPORT (R1)

Acoustics Vibration Structural Dynamics

2 June 2021 TL927-1-07F01 WE48 Noise and Vibration Monitoring Report (r1)

Downer EDI Works Pty Ltd 76 Berry Street Nth Sydney NSW 2060

Sydney Metro Southwest - Station Upgrades - OOHW WE48 Possession Works

1 Introduction

Renzo Tonin & Associates was engaged by Downer EDI Works to conduct noise and vibration monitoring during the OOHW Station Upgrade WE48 Possession works for Sydney Metro Southwest. The noise monitoring was undertaken to verify predicted noise levels in the corresponding Gatewave model (Gatewave scenario ID: 1855). The vibration monitoring was undertaken to establish site specific minimum working distances for vibration intensive plants and monitor affected heritage structures. This report provides a summary of the monitoring results.

2 Details of monitoring

Vibration monitoring was undertaken at Hurlstone Park Station, Wiley Park Station and Punchbowl Station during the WE48 possession works between 10:00pm 28 May 2021 and 09:00pm 29th May 2021. Noise monitoring was undertaken at Dulwich Hill Station, Hurlstone Park Station, Campsie Station, Belmore Station, Wiley Park Station and Punchbowl Station during the WE48 possession works between 10:00pm 28 May 2021 and 09:00pm 29th May 2021.

2.1 Measurement location

The noise measurements were conducted at the worst affected residential receiver, relative to the measured works. The vibration monitoring was conducted on the station platforms. The measurement locations are listed in Table 2-1. Figures depicting the monitoring locations are included in APPENDIX A.

Table 2-1: Measurement locations

Assessment PointDateTimeMeasured plantAgence, bistance to plantBarrier between plantWiley Park Station20.52.0210.11 gramConcrete saw (Vibration)3.7 metresN/A20.52.0210.12 gramHandheld jackhammer (Vibration)3.7 metresN/A20.52.0210.13 gram90 Pound handheld jackhammer (Vibration)3.7 metresN/A21.05.02010.13 gramVibration1 metresN/A21.05.02010.13 gramConcrete saw, vacuum truck,20 metresNo21.05.02010.50 gramConcrete saw, vacuum truck,20 metresNo25.badforth Street, Wiley Park20.52.0212.46 gramConcrete saw, vacuum truck,20 metresNo25.badforth Street, Wiley Park20.52.0212.46 gramConcrete saw, vacuum truck,20 metresNo25.badforth Street, Wiley Park20.52.0212.46 gramConcrete saw20 metresNo26.05.02011.29 gramCrane mounted truck10 metresNo20.05.02012.46 gramExcavator with bucket, lighting10 metresNo21.05.02020.52.0212.46 gramExcavator with bucket, lighting10 metresNo21.13 gramStream of wither Wiberstoin10 metresNoStream11.13 gram20.52.0212.43 gramExcavator with bucket, lighting10 metresNo21.14 gram20.52.0212.43 gramExcavator with bucket, gramNoStream11.14 gram20.52.02 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
Interpretability Interpretability <thinterpretability< th=""> <thinterpretability< t<="" td=""><td>Assessment Point</td><td>Date</td><td>Time</td><td>Measured plant</td><td>distance to measured</td><td>barrier between measured plant/</td></thinterpretability<></thinterpretability<>	Assessment Point	Date	Time	Measured plant	distance to measured	barrier between measured plant/
Image: constraint of the second sec	Wiley Park Station	28.05.2021		Concrete saw (Vibration)	3 metres	N/A
Instruction (Vibration) 1A Shahdforth Street Wiley Park 26.05.2021 10.15pm Goncrete saw, vacuum truck, lighting tower 20 metres No 2 Shadforth Street Wiley Park 20.05.2021 12.25am Jackammering 20 metres No 2 Shadforth Street Wiley Park 20.05.2021 12.45pm Concrete saw, wood chipper 50 metres No 1 Cornelia Street, Wiley Park 28.05.2021 11.13pm Crane mounted truck 7 metres No 2 A Cornelia Street, Wiley Park 28.05.2021 11.13pm Exavator with bucket, lighting tower 10 metres No 2 A Cornelia Street, Wiley Park 29.05.2021 02.12mm Exavator with bucket, lighting tower 10 metres No 2 A Cornelia Street, Wiley Park 29.05.2021 02.43mm Exavator with bucket, lighting tower 10 metres No 2 A Cornelia Street, Wiley Park 29.05.2021 02.43mm Exavator with bucket, lighting tower 10 metres No 2 A Cornelia Street, Dunchool 2.05.2021 02.448pm Exavator with bucket, generator 10 metres No 2 A Lor		29.05.2021		Handheld jackhammer (Vibration)	3, 7 metres	N/A
Wiley Park 10:50pm lighting tower 20 metres No 29.05.2021 12:36am – Jackhammering 12:52am 20 metres No 2 Shadforth Street, Wiley Park 80.05.2021 10:54pm – Concrete saw 20 metres No 29.05.2021 12:46pm – Concrete saw 20 metres No 10.50pm / Grand Street, Wiley Park 28.05.2021 11:13pm – Crane mounted truck 7 metres No 2.A Cornelia Street, Wiley Park 28.05.2021 11:29pm – Excavator with bucket, lighting tower 10 metres No 2.A Cornelia Street, Wiley Park 29.05.2021 02:17am – Excavator with bucket, lighting tower 10 metres No 2.9.05.2021 02:17am – Excavator with auger otosay 100 metres No 2.9.05.2021 04:48pm – St excavator with auger attachment (Vibration) 100 metres No 1.9.05.2021 04:48pm – Excavator with auger attachment (Vibration) 1.15.2 N/A 1.3.15 Anglo Road, Campsie 29.05.2021 01:43pm – Excavator with hammer attachment (Vibration) 1.3.4,5 N/A 1.01 Dutroon Fark 29.05.2021 01:43pm – Excavator with hammer attachment (Vibr		29.05.2021	•	5	1 metre	N/A
12:52am 12:52am 2 Shadforth Street, Wiley Park 28.05.2021 10:54pm - Concrete saw 11:09pm 20 metres No 29.05.2021 12:46pm - Chainsaw, wood chipper 01:01 pm 50 metres No 1 Cornelia Street, Wiley Park 28.05.2021 11:13pm - Crane mounted truck 7 metres No 2A Cornelia Street, Wiley Park 28.05.2021 11:29pm - Excavator with bucket, lighting 11:45pm 10 metres No 2A Cornelia Street, Wiley Park 28.05.2021 02:17am - Excavator with bucket, lighting 02:32am 10 metres No 24.10 pm, box.2021 02:17am - Excavator with bucket, lighting 02:032am 20 metres No 41.10 ranga Parade, Punchbowl 29.05.2021 02:17am - ST excavator with auger 10:09am - ST excavator with auger 100 metres No 13-15 Anglo Road, Campsio 29.05.2021 12:17pm - ST excavator with hauger 12:25pm 10:0 metres N/A 14urstone Park Station 29.05.2021 01:43pm - Excavator with bucket, generator 10:58pm 20 metres N/A 103 Duntroon Park 29.05.2021 02:40pm - ST Excavator with hammer attachment (Vibration), 10T excavator with hammer parkt 20 metres No		28.05.2021			20 metres	No
Wiley Park 11:09pm 20.52.021 12:46pm Chainsaw, wood chipper 50 metres No 1 Complia Street, Wiley Park 28.05.2021 11:13pm Crane mounted truck 7 metres No 2 A Complia Street, Wiley Park 28.05.2021 11:13pm Excavator with bucket, lighting tower 10 metres No 2 A Complia Street, Wiley Park 29.05.2021 02:17am Excavator with bucket, lighting tower 10 metres No 1 Uranga Parade, Punchbow 29.05.2021 02:54pm Stacavator with bucket, lighting tower, truck and dogs 100 metres No 1 Uranga Parade, Punchbow 29.05.2021 02:54pm Stacavator with bucket, generator 100 metres No 1 3.15 Anglo Road, Barbishon Park 29.05.2021 12:7pm Stacavator with hugger attachment (Vibration), 10T 11.5, 2 N/A 1 3.15 Anglo Road, Barbishon Park 29.05.2021 12:40pm Stacavator with hugger attachment (Vibration), 10T Naftres Naftres 1 3.15 Anglo Road, Barbishon Park 29.05.2021 02:40pm Stacavator with hammer attachment (Vibration), 10T Naftres Naftres		29.05.2021		Jackhammering	20 metres	No
01:01pm01:01pm1 Cornelia Street, Wiley Park28.05.202111:13pm 11:28pmCrane mounted truck recavator with bucket, lighting tower7 metresNo2A Cornelia Street, Wiley Park28.05.202111:29pm 11:45pmExcavator with bucket, lighting tower10 metresNo2A Cornelia Street, Dulwich Hill29.05.202102:17am 02:32amExcavator with bucket, lighting tower10 metresNo29.05.202102:17am 02:32amExcavator with bucket, lighting tower, truck and dogs20 metresNo41 Uranga Parade, Punchbowl29.05.202109:54am 12:25pmST excavator with auger attachment (Vibration)100 metresNo91.05.202112:17pm 12:25pmST excavator with auger attachment (Vibration)1, 15, 2 metresN/A13-15 Anglo Road, Campsie29.05.202101:43pm 01:58pmExcavator with bucket, generator attachment (Vibration), 10T extavator with hammer attachment (Vibration), 10T metresNo103 Duntroon Street, Hurlstone Park29.05.202103:49pm 04:04pmExcavator with hammer attachment (Vibration), 10T metresNo103 Duntroon Street, Hurlstone Park29.05.202105:46pm 06:01pmVacuum truck20 metresNo11 Accaia Street, Belmore29.05.202105:46pm 06:01pmVacuum truckS0 metresNo12 Accaia Street, Belmore29.05.202105:46pm 06:01pmVacuum truckS0 metresNo14 Accaia Street, Belmore29.05.2021 <t< td=""><td></td><td>28.05.2021</td><td></td><td>Concrete saw</td><td>20 metres</td><td>No</td></t<>		28.05.2021		Concrete saw	20 metres	No
Wiley Park11:28pm2A Cornelia Street, Wiley Park28.05.202111:29pm - 11:45pmExcavator with bucket, lighting tower10 metresNo1 Ewart Lane, Dulwich Hill29.05.202102:17am - 02:32amExcavator10 metresNo29.05.202104:48pm - 05:03pmExcavator with bucket, lighting tower, truck and dogs20 metresNo41 Uranga Parade, Punchbowl29.05.202109:54am - 10:09amST excavator with auger attachment100 metresNo9unchbowl Station29.05.202112:17pm - 12:25pmST excavator with auger attachment (Vibration)1, 1.5, 2 metresN/A13-15 Anglo Road, Campsie29.05.202101:43pm - 01:58pmExcavator with bucket, generator attachment (Vibration), 10T excavator with hammer attachment 0 metresNo103 Duntroon Street, Hurlstone Park29.05.202103:49pm - 06:01pmExcavator with hammer attachment20 metresNo11 Accaia Street, Belmore29.05.202105:46pm - 06:01pmVacuum truck 06:01pm50 metresNo2 Hopetoun Street, Hurlstone Park2		29.05.2021	•	Chainsaw, wood chipper	50 metres	No
Wiley Park 11:45pm tower 1 Ewart Lane, Dulwich Hill 29.05.2021 02:17am – Excavator 02:32am Excavator with bucket, lighting 05:03pm 20 metres No 29.05.2021 04:48pm – Excavator with bucket, lighting 05:03pm 20 metres No 41 Uranga Parade, Punchbowl 29.05.2021 09:54am – ST excavator with auger attachment 100 metres No 9unchbowl Station 29.05.2021 12:17pm – ST excavator with auger attachment (Vibration) 1, 1.5, 2 N/A 13-15 Anglo Road, Campsie 29.05.2021 01:43pm – Excavator with bucket, generator 01:58pm 20 metres Yes Hurlstone Park Station 29.05.2021 02:40pm – 04:42pm 2.5T Excavator with hammer attachment (Vibration), 10T excavator with hammer attachment (Vibration) 1, 3, 4, 5 metres N/A 103 Duntroon Street, Hurlstone Park 29.05.2021 03:49pm – 04:04pm Excavator with hammer attachment 20 metres No 1 Accacia Street, Belmore 29.05.2021 05:46pm – 07:22pm Vacuum truck O6:01pm 50 metres No		28.05.2021		Crane mounted truck	7 metres	No
Dulwich Hill02:32am29.05.202104:48pm 05:03pmExcavator with bucket, lighting tower, truck and dogs20 metresNo41 Uranga Parade, Punchbowl29.05.202109:54am 10:09am5T excavator with auger attachment100 metresNoPunchbowl Station29.05.202112:17pm 12:25pm5T excavator with auger attachment (Vibration)1,1,5, 2 metresN/APunchbowl Station29.05.202101:43pm 01:58pmExcavator with bucket, generator20 metresYes13-15 Anglo Road, Campsie29.05.202101:43pm 01:58pmExcavator with bucket, generator20 metresN/AHurlstone Park Station29.05.202102:40pm 04:42pmS.5T Excavator with hammer attachment (Vibration), 10T excavator with hammer attachment (Vibration)1, 3, 4, 5 metresN/A103 Duntroon Fark29.05.202103:49pm 04:04pmExcavator with hammer attachment with rement excavator with hammer attachment (Vibration)20 metresNo113 Locacia Street, Hurlstone29.05.202103:49pm 04:04pmExcavator with hammer attachment with rement metresSo metresNo1 Accacia Street, Hurlstone Park29.05.202105:46pm 06:01pmVacuum truck metresSo metresNo2 Hopetoun Street, Hurlstone Park29.05.202107:07pm 07:22pmExcavator with hammer attachment, moxy trucks, boring and trenching activities, lighting40 metresNo		28.05.2021			10 metres	No
05:03 pmtower, truck and dogs41 Uranga Parade, Punchbowl29.05.202109:54am - 10:09 am5T excavator with auger attachment100 metresNoPunchbowl29.05.202112:17 pm - 12:25 pm5T excavator with auger attachment (Vibration)1, 1.5, 2 metresN/A13-15 Anglo Road, Campsie29.05.202101:43 pm - 01:58 pmExcavator with bucket, generator attachment (Vibration), 10T excavator with hammer attachment (Vibration), 10T excavator with hammer attachment (Vibration), 10T excavator with hammer attachment (Vibration)1, 3, 4, 5 metresN/A103 Duntroon Street, Hurlstone Park29.05.202103:49 pm 04:04 pmExcavator with hammer attachment (Vibration)20 metresNo11 Accacia Street, Belmore29.05.202105:46 pm - 04:04 pmVacuum truck 06:01 pm50 metresNo2 Hopetoun Street, Hurlstone Park29.05.202107:07 pm - 07:22 pmExcavator with hammer attachment, moxy trucks, boring and trenching activities, lighting40 metresNo	•	29.05.2021		Excavator	10 metres	No
Punchbowl10:09amattachmentPunchbowl Station29.05.202112:17pm - 12:25pmST excavator with auger attachment (Vibration)1, 1.5, 2 metresN/A13-15 Anglo Road, Campsie29.05.202101:43pm - 01:58pmExcavator with bucket, generator attachment (Vibration)20 metresYesHurlstone Park Station29.05.202102:40pm - 04:42pm2.5T Excavator with hammer attachment (Vibration), 10T excavator with hammer attachment (Vibration)1, 3, 4, 5 metresN/A103 Duntroon Street, Hurlstone Park29.05.202103:49pm - 04:04pmExcavator with hammer attachment20 metresNo1 Accacia Street, Belmore29.05.202105:46pm - 06:01pmVacuum truck50 metresNo2 Hopetoun Street, Hurlstone Park29.05.202107:07pm - 07:22pmExcavator with hammer attachment, moxy trucks, boring and trenching activities, lighting40 metresNo		29.05.2021	•	5 5	20 metres	No
12:25pmattachment (Vibration)metres13-15 Anglo Road, Campsie29.05.202101:43pm - 01:58pmExcavator with bucket, generator o1:58pm20 metresYesHurlstone Park Station29.05.202102:40pm - 04:42pm2.5T Excavator with hammer attachment (Vibration), 10T excavator with hammer attachment (Vibration)1, 3, 4, 5 metresN/A103 Duntroon Street, Hurlstone Park29.05.202103:49pm - 04:04pmExcavator with hammer attachment (Vibration)20 metresNo1 Accacia Street, Belmore29.05.202105:46pm - 06:01pmVacuum truck50 metresNo2 Hopetoun Street, Hurlstone Park29.05.202107:07pm - 07:22pmExcavator with hammer attachment, moxy trucks, boring and trenching activities, lighting40 metresNo	-	29.05.2021			100 metres	No
Campsie01:58pmHurlstone Park Station29.05.202102:40pm - 04:42pm2.5T Excavator with hammer attachment (Vibration), 10T excavator with hammer attachment (Vibration)1, 3, 4, 5 metresN/A103 Duntroon Street, Hurlstone Park29.05.202103:49pm - 04:04pmExcavator with hammer attachment20 metresNo104 Caccia Street, Belmore29.05.202105:46pm - 06:01pmVacuum truck50 metresNo2 Hopetoun Street, Hurlstone Park29.05.202107:07pm - 07:22pmExcavator with hammer attachment, moxy trucks, boring and trenching activities, lighting40 metresNo	Punchbowl Station	29.05.2021	•	5		N/A
Station04:42pmattachment (Vibration), 10T excavator with hammer attachment (Vibration)metres103 Duntroon Street, Hurlstone Park29.05.202103:49pm 04:04pmExcavator with hammer attachment20 metresNo1 Accacia Street, Belmore29.05.202105:46pm 06:01pmVacuum truck50 metresNo2 Hopetoun Street, Hurlstone Park29.05.202107:07pm 07:22pmExcavator with hammer attachment, moxy trucks, boring and trenching activities, lighting40 metresNo		29.05.2021		Excavator with bucket, generator	20 metres	Yes
Street, Hurlstone Park04:04pmattachment1 Accacia Street, Belmore29.05.202105:46pm - 06:01pmVacuum truck50 metresNo2 Hopetoun Street, Hurlstone Park29.05.202107:07pm - 07:22pmExcavator with hammer attachment, moxy trucks, boring and trenching activities, lighting40 metresNo		29.05.2021		attachment (Vibration), 10T excavator with hammer		N/A
Belmore 06:01pm 2 Hopetoun Street, Hurlstone Park 29.05.2021 07:07pm - 07:22pm Excavator with hammer attachment, moxy trucks, boring and trenching activities, lighting 40 metres No	Street, Hurlstone	29.05.2021			20 metres	No
Hurlstone Park 07:22pm attachment, moxy trucks, boring and trenching activities, lighting		29.05.2021		Vacuum truck	50 metres	No
		29.05.2021	•	attachment, moxy trucks, boring and trenching activities, lighting	40 metres	No

2.2 Measurement equipment

Noise measurement equipment consisted of one NTi Audio XL2 Type 1 sound level meter and microphone calibrator. The microphone was checked prior and after measurements using a Bruel & Kjaer Type 4231 calibrator. No significant drift in calibration was observed. All instrumentation complies with AS IEC 61672.1 2004 '*Electroacoustics - Sound Level Meters*' and carries current NATA certification (or if less than 2 years old, manufacturers certification).

Table 2-2 summarises the details of noise measurement equipment.

Table 2-2: Summary of noise measurement equipment

Instrument	Make	Model	Serial Number	Last Calibrated
Type 1 Sound Level Meter (XL2)	NTi	XL2	A2A-02386-D2	08 July 2019
Type 1 Sound Level Meter Calibrator	B&K	Туре 4231	2677710	03 December 2020

The instrumentation used for the vibration measurement are summarised in Table 2-3. The accelerometers used in the measurements have current calibration certificates.

Table 2-3: Summary of vibration instrumentation

Туре	Make / Model
Type 1 Signal Analyser	Soundbook-2
Accelerometer	Endevco 61C3

2.3 Environmental conditions

Environmental conditions recorded during the measurements are provided in Table 2-4. Environmental conditions did not have an adverse effect on the measured noise and vibration levels.

Assessment Point	Date and Start Time	Environmental Conditions
1A Shadforth Street,		Clear sky; air temperature 13°C, wind speed <5 m/s; relative humidity 64%.
Wiley Park		····),···· [····· · · · · · · · · · · · · · ·
2 Shadforth Street,	28.05.2021 10:54pm	Clear sky; air temperature 12°C, wind speed <5 m/s; relative humidity 62%.
Wiley Park	29.05.2021 12:46pm	Clear sky; air temperature 15°C, wind speed <5 m/s; relative humidity 50%.
1 Cornelia Street, Wiley Park	28.05.2021 11:13pm	Clear sky; air temperature 11°C, wind speed <5 m/s; relative humidity 56%.
2A Cornelia Street, Wiley Park	28.05.2021 11:29pm	Clear sky; air temperature 10°C, wind speed <5 m/s; relative humidity 58%.
1 Ewart Lane,	29.05.2021 02:17am	Clear sky; air temperature 12°C, wind speed <5 m/s; relative humidity 56%.
Dulwich Hill	29.05.2021 04:48pm	Clear sky; air temperature 14°C, wind speed <5 m/s; relative humidity 50%.
41 Uranga Parade, Punchbowl	29.05.2021 09:54am	Clear sky; air temperature 12°C, wind speed <5 m/s; relative humidity 50%.
13-15 Anglo Road, Campsie	29.05.2021 01:43pm	Clear sky; air temperature 15°C, wind speed <5 m/s; relative humidity 50%.

Table 2-4: Environmental conditions

Assessment Point	Date and Start Time	Environmental Conditions
103 Duntroon Street, Hurlstone Park	29.05.2021 03:49pm	Clear sky; air temperature 14°C, wind speed <5 m/s; relative humidity 50%.
1 Accacia Street, Belmore	29.05.2021 05:46pm	Clear sky; air temperature 14°C, wind speed <5 m/s; relative humidity 50%.
2 Hopetoun Street, Hurlstone Park	29.05.2021 07:07pm	Clear sky; air temperature 13°C, wind speed <5 m/s; relative humidity 40%.

3 Noise Monitoring results

The results of the noise monitoring are presented in Table 3-1 below.

Assessment Point	Measured plant	Predicted noise level	Measured level dB(A		Above predicted	Comments
Point		dB(A)	L _{Aeq(15min)}	L _{Amax}	noise level?	
1A Shadforth Street, Wiley Park	Concrete saw (south platform), vacuum truck, lighting tower	73 ^N	71	83	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level.
	Concrete (north platform), vacuum truck, lighting tower	73 ^N	67	72	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level.
	Jackhammering	73 ^N	66	83	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level.
2 Shadforth Street, Wiley Park	Concrete saw	80 ^N	63	78	No (L _{Aeq, 15min})	The measured L _{Aeq. 15min} is lower than the predicted noise level. During this measurement, the station platform building was in between the measured plant and the receiver. As a result, the measured noise level is significantly lower than the predicted noise level.
	Chainsaw, wood chipper	82 ^D	70	80	No (L _{Aeq, 15min})	The measured $L_{Aeq, 15min}$ is lower than the predicted noise level.
1 Cornelia Street, Wiley Park	Crane mounted truck	78 ^N	72	100	No (Laeq, 15min)	The measured L _{Aeg. 15min} is lower than the predicted noise level. The measured L _{Amax} of 100 dB(A) was caused by dropping chocks.
2A Cornelia Street, Wiley Park	Crane mounted truck	69 ^N	60	74	No (LAeq, 15min)	The measured $L_{Aeq, 15min}$ is lower than the predicted noise level.
1 Ewart Lane, Dulwich Hill	Excavator	77 ^N	65	80	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level.
	Excavator with bucket, lighting tower, truck and dogs	78 ^D	67	82	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level.

Assessment Point	Measured plant	Predicted noise level	Measured level dB(A		Above predicted	Comments
Point	•	dB(A)	L _{Aeq(15min)}	L _{Amax}	noise level?	
41 Uranga Parade, Punchbowl	5T Excavator with auger attachment	68 ^D	63	77	No (LAeq, 15min)	The measured $L_{Aeq, 15min}$ is lower than the predicted noise level.
13-15 Anglo Road, Campsie	Excavator with bucket, generator	79 ⁰	60	62	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level. During this measurement, only the generator was audible at the closest residential receiver. Furthermore, noise barriers were installed around the generator. As a result, the measured noise level is significantly lower than the predicted noise level.
103 Duntroon Street, Hurlstone Park	Excavator with hammer attachment	93 ^D	66	74	No (L _{Aeq, 15min})	The measured L _{Aeq. 15min} is lower than the predicted noise level. The predicted noise level was calculated for the most affected facade. Note that there was no access to the most affected facade. The property building provided shielding from the measured plant. As a result, the measured noise level is significantly lower than the predicted noise level.
1 Acacia Street, Belmore	Vacuum truck	71 ^D	71	78	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is consistent with the predicted noise level.
2 Hopetoun Street, Hurlstone Park	Excavator with hammer, lighting tower, moxy trucks, boring and trenching activities	69 ^E	57	62	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level. Note that the boring and trenching activities were not audible at this monitoring location.

Note: D – The corresponding predicted noise level for the worst-case scenario during day period

E - The corresponding predicted noise level for the worst-case scenario during evening period

N – The corresponding predicted noise level for the worst-case scenario during night period

It can be seen from Table 3-1 that, the measured $L_{Aeq. 15min}$ noise levels were consistent with and below the predicted noise levels. The mitigation and management measures implemented were therefore considered suitable for the measured activities.

4 Vibration Monitoring results

The established vibration criteria for cosmetic damage in the Construction Noise & Vibration – OOHW Assessment Stage 2 Possession Works (CNV-OOHWA)¹ is as follows:

¹ TL927-1-02F01 CNV_OOHWA WE42 Possession April 2021 (r4), dated: 06 April 2021

- Reinforced or frame structures: 25.0 mm/s
- Unreinforced or light framed structures: 7.5 mm/s
- Heritage structures: 2.5 mm/s

The results of the vibration monitoring are present in below.

Table 4-1: Measure	d vibration l	evels
--------------------	---------------	-------

Plant	Distance from source	95 th percentile PPV (mm/s)	Maximum PPV (mm/s)	Comments
Concrete saw	3m, measured at the affected heritage structure	<0.5	<0.5	The vibration monitor was mounted on the North platform building. During the concrete sawing activity, the vibration signals from the concrete saw could not be detected. As a result, the concrete saw was allowed to be operated.
Handheld jackhammer	3m	0.95	1.05	At 3 metres and at 7 metres away, the handheld jackhammer produced vibration levels that are below
Jackhammer	7m	0.13	0.26	the established vibration criteria.
5T excavator with auger	1m	0.35	1.15	The 5T excavator with auger attachment produced vibration levels that are below the established
attachment	1.5m	0.29	0.96	vibration criteria at 2 m, 1.5 m and 1 m away. Since the bored piling works are greater than 1 metre away
	2m	0.26	0.81	from the platform building, the 5T excavator with auger attachment was allowed to be operated.
90 pound handheld jackhammer	1m, Measured at the affected heritage structure	0.97	1.12	The vibration monitor was mounted on the North platform building. During the jackhammering activity, the 90 pound handheld jackhammer produced vibration levels that are below the established vibration criteria. As a result, the 90 pound handheld jackhammer was allowed to be operated.
10T excavator with hammer attachment	2m	3.69	6.06	At 2 metres away, the 10T excavator with hammer attachment produced a 95 th percentile PPV value of 3.69 mm/s. As a result, the 10T excavator with hammer attachment shall not be used within 2 metres of heritage structures.
	3m	1.55	2.40	At 4 metres and 3 metres away, the 10T excavator with hammer attachment produced vibration levels that are below the established vibration criteria. As a
	4m	0.90	1.20	result, the 10T excavator with hammer attachment can be operated with a minimum working distance of 3 metres for heritage structures.
2.5T excavator with hammer attachment	2m, Measured at the affected heritage structure	1.39	1.82	The vibration monitor was mounted on the South platform building. During the rockhammering activity, the 2.5T excavator with hammer attachment produced vibration levels that are below the established vibration criteria. As a result, the 2.5T excavator with hammer attachment was allowed to be operated.

It can be seen from Table 4-1 that the measured vibration intensive plant listed above met the established vibration criteria. Site specific minimum working distances to reduce the likelihood of exceedance of the vibration criterion for heritage structures .

5 Conclusion

Renzo Tonin & Associates completed noise and vibration monitoring for the WE48 possession works. The results of the noise measurements were consistent with and below the predicted $L_{Aeq 15minutes}$ levels presented in the Gatewave model prepared for the works. The results of the vibration measurements were consistent with the established vibration criteria presented in the CNV-OOWA prepared for the works.

Document control

Date	Revision history	Non-issued revision	Issued revision	Prepared	Instructed	Reviewed / Authorised
02.06.2021	First Issue	0	1	R. Zhafranata	T. Gowen	T. Gowen

File Path: R:\AssocSydProjects\TL901-TL950\TL927 Southwest Metro - Stations Upgrades\1 Docs\07 May WE48 possession\TL927-1-07F01 WE48 Noise and Vibration Monitoring Report (r1).docx

Important Disclaimers:

The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

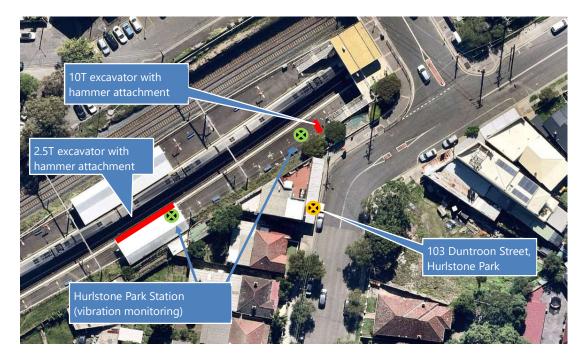
This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.

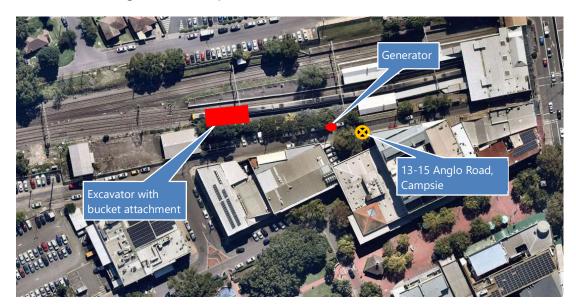
We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.


External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systems (eg facade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in Such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

APPENDIX A Measurement locations

A.1 1 Ewart Lane, Dulwich Hill


A.2 103 Duntroon Street, Hurlstone Park

A.3 2 Hopetoun Street, Hurlstone Park

A.4 13-15 Anglo Road, Campsie

It Shadforth Street,
A.5 1A Shadforth Street, Wiley Park

A.6 2 Shadforth Street, Wiley Park

A.7 1 Cornelia Street, Wiley Park

A.8 41 Uranga Parade, Punchbowl

A.9 1 Accacia Street, Belmore

Appendix 6 – TL927-1-08F01 WE49 NOISE AND VIBRATION MONITORING REPORT (R2)

Acoustics Vibration Structural Dynamics

4 February 2022 TL927-1-08F01 WE49 Noise and Vibration Monitoring Report (r2)

Downer EDI Works Pty Ltd 76 Berry Street Nth Sydney NSW 2060

Sydney Metro Southwest - Station Upgrades - OOHW WE49 Possession Works

1 Introduction

Renzo Tonin & Associates was engaged by Downer EDI Works to conduct noise and vibration monitoring during the OOHW Station Upgrade WE49 Possession works for Sydney Metro Southwest. The noise monitoring was undertaken to verify predicted noise levels in the corresponding Gatewave model (Gatewave scenario ID: 1862). The vibration monitoring was undertaken to monitor potentially affected heritage structures. This report provides a summary of the monitoring results.

2 Details of monitoring

Noise monitoring was undertaken at Dulwich Hill Station, Hurlstone Park Station, Campsie Station, Belmore Station, Wiley Park Station and Punchbowl Station during the WE49 possession works between 08:00am and 03:00pm 5th June 2021. Vibration monitoring was undertaken at Belmore Station during the WE49 possession works between 03:00pm and 03:30pm 5th June 2021.

2.1 Measurement location

The noise measurements were conducted at the worst affected residential receiver, relative to the measured works. The vibration monitoring was conducted on the station platform. The measurement locations are listed in Table 2-1. Figures depicting the monitoring locations are included in APPENDIX A.

Assessment Point	Date	Time	Measured plant	Approx. distance to measured plant	Temporary noise barrier between measured plant/ receiver
7 Bedford Crescent, Dulwich Hill	05.06.2021	08:34am – 08:49am	Flatbed truck, excavator, generator	55	Yes
3A Commons Street, Hurlstone Park	05.06.2021	09:24am – 09:39am	Generator, excavator, hi-rail loading vehicles	8	No
12 Railway Street, Hurlstone Park	05.06.2021	09:50am – 10:05am	Telescopic crane, flatbed truck and van	50	No
5-9 London Street, Campsie	05.06.2021	10:40am – 11:00am	Chainsaw, concrete truck	60	No
1A Shadforth Street, Wiley Park	05.06.2021	12:09pm – 12:24pm	Excavator with hammer attachment	25	No
41 Uranga Parade, Punchbowl	05.06.2021	01:13pm- 01:28pm	Hiab truck, excavator	45	No
1 Acacia Street, Belmore	05.06.2021	02:36pm – 02:51pm	Vacuum truck, excavator with bucket and auger attachment	40	No
Belmore Station	05.06.2021	03:09pm – 03:25pm	XD9-1 excavator with auger attachment (vibration)	4	N/A

Table 2-1: Measurement locations

2.2 Measurement equipment

Noise measurement equipment consisted of one NTi Audio XL2 Type 1 sound level meter and microphone calibrator. The microphone was checked prior and after measurements using a Bruel & Kjaer Type 4231 calibrator. No significant drift in calibration was observed. All instrumentation complies with AS IEC 61672.1 2004 '*Electroacoustics - Sound Level Meters*' and carries current NATA certification (or if less than 2 years old, manufacturers certification).

Table 2-2 summarises the details of noise measurement equipment.

 Table 2-2: Summary of noise measurement equipment

Instrument	Make	Model	Serial Number	Last Calibrated
Type 1 Sound Level Meter (XL2)	NTi	XL2	A2A-02386-D2	08 July 2019
Type 1 Sound Level Meter Calibrator	B&K	Туре 4231	2677710	03 December 2020

The instrumentation used for the vibration measurement are summarised in Table 2-3. The accelerometers used in the measurements have current calibration certificates.

Table 2-3:	Summary	of vibration	instrumentation
------------	---------	--------------	-----------------

Туре	Make / Model
Type 1 Signal Analyser	Soundbook-2
Accelerometer	Endevco 61C3

2.3 Environmental conditions

Environmental conditions recorded during the measurements are provided in Table 2-4. Environmental conditions did not have an adverse effect on the measured noise and vibration levels.

Table 2-4: Enviro	onmental	conditions
-------------------	----------	------------

Assessment Point	Date and Start Time	Environmental Conditions
7 Bedford Crescent, Dulwich Hill	05.06.2021 08:34am	Clear sky; air temperature 11° C, wind speed <5 m/s; relative humidity 53%.
3A Commons Street, Hurlstone Park	05.06.2021 09:24am	Clear sky; air temperature 13° C, wind speed <5 m/s; relative humidity 53%.
12 Railway Street, Hurlstone Park	05.06.2021 09:50am	Clear sky; air temperature 14°C, wind speed <5 m/s; relative humidity 60%.
5-9 London Street, Campsie	05.06.2021 10:40am	Clear sky; air temperature 16° C, wind speed <5 m/s; relative humidity 57%.
1A Shadforth Street, Wiley Park	05.06.2021 12:09pm	Clear sky; air temperature 18°C, wind speed <5 m/s; relative humidity 63%.
41 Uranga Parade, Punchbowl	05.06.2021 01:13pm	Clear sky; air temperature 18°C, wind speed <5 m/s; relative humidity 49%.
1 Acacia Street, Belmore	05.06.2021 02:36pm	Clear sky; air temperature 20°C, wind speed <5 m/s; relative humidity 63%.

3 Noise Monitoring results

The results of the noise monitoring are presented in Table 3-1 below.

Assessment Point	Measured plant	Predicted noise level	Measured noise level dB(A)		Above predicted	Comments	
		dB(A)	L _{Aeq(15min)}	L _{Amax}	noise level?		
7 Bedford crescent, Dulwich Hill	Flatbed truck, excavator, generator	67 ^D	54	66	No (Laeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. The hoardings on the station platform provided partial shielding for this monitoring location.	
3A Commons Street, Hurlstone Park	Generator, excavator, hi-rail loading vehicles	73 ^D	69	77	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level.	
12 Railway Street, Hurlstone Park	Telescopic crane, flatbed truck and van	72 ^D	59	90	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level. Explain about the distance of the measured plant	
5-9 London Street, Campsie	Chainsaw	74 ^D	61	80	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level.	
1A Shadforth Street, Wiley Park	excavator with hammer attachment	80 ^D	66	87	No (L _{Aeq, 15min})	The measured $L_{Aeq, 15min}$ is lower than the predicted noise level.	

Table 3-1: Measured noise levels LAeq(15min)

Assessment Point	Measured plant	Predicted noise level dB(A)	Measured noise level dB(A)		Above predicted	Comments
			L _{Aeq(15min)}	L _{Amax}	noise level?	
41 Uranga Parade, Punchbowl	Hiab truck, excavator	68 ^D	53	79	No (L _{Aeq, 15min})	The measured $L_{Aeq, 15min}$ is lower than the predicted noise level. Occasional distant noise impacts from the excavator was audible at this monitoring location.
1 Acacia Street, Belmore	Vacuum truck, excavator with bucket and auger attachment	68 ^D	57	80	No (L _{Aeq, 15min})	The measured $L_{Aeq, 15min}$ is lower than the predicted noise level.

Note: D - The corresponding predicted noise level for the worst-case scenario during day period

It can be seen from Table 3-1 that, the measured L_{Aeq, 15min} noise levels were below the predicted noise levels. The mitigation and management measures implemented were therefore considered suitable for the measured activities.

4 Vibration Monitoring results

The established vibration criteria for cosmetic damage in the Construction Noise & Vibration – OOHW Assessment Stage 2 Possession Works (CNV-OOHWA)¹ is as follows:

- Reinforced or frame structures: 25.0 mm/s
- Unreinforced or light framed structures: 7.5 mm/s
- Heritage structures: 2.5 mm/s

The results of the vibration monitoring are present in below.

Table 4-1: Measured vibration levels

Plant	Distance from source	95 th percentile PPV (mm/s)	Maximum PPV (mm/s)	Comments
XD9-1 excavator (piling works)	4m, measured at the affected heritage structure	0.12	0.29	The vibration monitor was mounted on the external platform building. During the piling activity, the vibration signals from the XD9-1 excavator produced vibration levels that are below the established vibration criteria. As a result, the XD9-1 excavator was allowed to be operated.

It can be seen from Table 4-1 that the XD9-1 excavator met the established vibration criteria. As a result, the XD9-1 excavator was allowed to be operated during the piling works.

¹ TL927-1-02F01 CNV_OOHWA WE42 Possession April 2021 (r4), dated: 06 April 2021

5 Conclusion

Renzo Tonin & Associates completed noise and vibration monitoring for the WE49 possession works. The results of the noise measurements were below the predicted $L_{Aeq 15minutes}$ levels presented in the Gatewave model prepared for the works. The results of the vibration measurements were consistent with the established vibration criteria presented in the CNV-OOWA prepared for the works.

Document control

Date	Revision history	Non-issued revision	Issued revision	Prepared	Instructed	Reviewed / Authorised
02.06.2021	First Issue	0	1	R. Zhafranata	T. Gowen	T. Gowen
04.02.2022	Report revised to rectify measurement month on page 1	-	2	R. Zhafranata	T. Gowen	T. Gowen

File Path: R:\AssocSydProjects\TL901-TL950\TL927 Southwest Metro - Stations Upgrades\1 Docs\08 June WE49 possession\TL927-1-08F01 WE49 Noise and Vibration Monitoring Report (r2).docx

Important Disclaimers:

The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.

We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.

External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systems (eg facade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in Such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

APPENDIX A Measurement locations

A.1 7 Bedford Crescent, Dulwich Hill

A.2 3A Commons Street, Hurlstone Park

A.3 12 Railway Street, Hurlstone Park

A.4 5-9 London Street, Campsie

A.5 1A Shadforth Street, Wiley Park

A.6 41 Uranga Parade, Punchbowl

A.7 1 Acacia Street, Belmore

Appendix 7 – TL927-1-09F01 WE52 WK1 NOISE AND VIBRATION MONITORING REPORT (R3)

Acoustics Vibration Structural Dynamics

7 July 2021 TL927-1-09F01 WK52-WK1 Noise and Vibration Monitoring Report (r3)

Downer EDI Works Pty Ltd 76 Berry Street Nth Sydney NSW 2060

Sydney Metro Southwest - Station Upgrades - WK52-WK1 Possession Works

1 Introduction

Renzo Tonin & Associates was engaged by Downer EDI Works to conduct noise and vibration monitoring during the Station Upgrade WK52-WK1 Possession works for Sydney Metro Southwest. The noise monitoring was undertaken to verify predicted noise levels in the corresponding Gatewave model (Gatewave scenario ID: 2139 for typical activities and Gatewave scenario ID: 2212 for high impact activities). The vibration monitoring was undertaken to establish site specific minimum working distances for vibration intensive plant and monitor potentially affected structures. This report provides a summary of the monitoring results.

2 Details of monitoring

Noise monitoring was undertaken at Dulwich Hill Station, Hurlstone Park Station, Campsie Station, Belmore Station, Wiley Park Station and Punchbowl Station during the WK52-WK1 possession works between 08:00am 28th June 2021 and 06:00pm 1st July 2021. Vibration monitoring was undertaken at Dulwich Hill Station, Hurlstone Park Station, Belmore Station, Wiley Park Station and Punchbowl Station during the WK52-WK1 possession works between 08:00am 28th June 2021 and 06:00pm 1st July 2021.

2.1 Measurement location

The noise measurements were conducted at the worst affected residential receiver, relative to the measured works. The vibration monitoring was conducted on the station platform and worksite. The measurement locations are listed in Table 2-1. Figures depicting the monitoring locations are included in APPENDIX A.

Table 2-1: Measurement locations

Assessment Point	Date	Time	Measured plant	Approx. distance to measured plant	Temporary noise barrier between measured plant/ receiver	
2 Shadforth Street, Wiley Park	28.06.2021	08:43am – 09:00am	Excavators with bucket attachment, handheld grinder, truck deliveries	15m	No	
Wiley Park Station	28.06.2021	09:30am – 11:50am	14T excavator with bucket attachment	3m	N/A	
Belmore Station	28.06.2021	02:00pm – 02:40pm	3.5T excavator with rockhammer attachment	10m	N/A	
30 Redman Parade, Belmore	28.06.2021	02:07pm – 02:32pm	3.5T excavator with rockhammer attachment, excavators with bucket attachment	50m	No	
103/105 Duntroon Street, Hurlstone	28.06.2021	03:07pm – 03:29pm	Excavators with bucket attachment, Moxy trucks	20m	No	
Park	29.06.2021	10:50pm – 11:09pm	Excavator with rockhammer attachment, excavator with bucket attachment, generator	20m	No	
Dulwich Hill Station	28.06.2021	04:15pm – 05:50pm	6T excavator with rockdrill attachment	15m	N/A	
1 Ewart Lane, Dulwich Hill	28.06.2021	04:21pm – 04:40pm	Generator, truck deliveries, excavator with rockdrill attachment	30m	No	
71 Ewart Street, Dulwich Hill	28.06.2021	04:44pm – 05:00pm	Excavator with rockdrill attachment	120m	No	
5 Bedford Crescent, Dulwich Hill	28.06.2021	05:16pm – 05:35pm	Excavator with rockdrill attachment and generator	60m	No	
199 Beamish Street, Campsie	29.06.2021	09:30am – 10:01am	Two 5T excavators with bucket and gripper attachment, truck deliveries (construction bin)	15m	No	
		10:02am – 10:27am	Two 5T excavators with gripper attachment	15m	No	
8 -10 Shadforth Street, Wiley Park	29.06.2021	12:19pm – 12:37pm	15T excavator with bucket attachment and Moxy truck	75m	No	
115 Duntroon Street, Hurlstone Park	29.06.2021	11:11pm – 11:26pm	Excavator with rockhammer attachment	60m	No	
5 Commons Street, Hurlstone Park	29.06.2021	11:31pm – 12:00am	Excavator with bucket attachment, Moxy trucks, lighting tower, concrete agitator	50m	No	
41 Urunga Parade, Punchbowl	30.06.2021	09:45am – 10:01am	Excavator with bucket attachment, stockpile management, Moxy truck	40m	No	
Punchbowl Station	30.06.2021	10:25am – 11:00am	Handheld electric jackhammer	2m	N/A	
50 Floss Street, Hurlstone Park	30.06.2021	12:18pm – 12:37pm	Two excavators with rockhammer attachment, concrete saw	20m	No	
107 Duntroon Street, Hurlstone Park	30.06.2021	12:48pm – 01:18pm	Concrete saw, excavator with rockhammer attachment, generator, electric rotary cutter	35m	No	

Assessment Point	Date	Time	Measured plant	Approx. distance to measured plant	Temporary noise barrier between measured plant/ receiver
Hurlstone Park Station	01.07.2021	08:50am – 09:00am	3T roller on static mode	10m	N/A
	01.07.2021	12:15pm – 12:25pm	8T roller on static mode	5m	N/A
	01.07.2021	04:00pm – 05:15pm	35T pilling rig with auger	20m	N/A
5 Railway Street, Hurlstone Park	01.07.2021	12:30pm – 12:46pm	15T excavator with bucket attachment, truck delivery, fuel truck, 8T roller	25m	No
	01.07.2021	04:50pm – 05:05pm	35T pilling rig with auger, concrete truck	25m	No
7 Commons Street, Hurlstone Park	01.07.2021	02:47pm – 03:05pm	5T excavator with bucket attachment, concrete truck, jackhammer	50m	No

2.2 Measurement equipment

Noise measurement equipment consisted of one NTi Audio XL2 Type 1 sound level meter and microphone calibrator. The microphone was checked prior and after measurements using a Bruel & Kjaer Type 4231 calibrator. No significant drift in calibration was observed. All instrumentation complies with AS IEC 61672.1 2004 '*Electroacoustics - Sound Level Meters*' and carries current NATA certification (or if less than 2 years old, manufacturers certification).

Table 2-2 summarises the details of noise measurement equipment.

Table 2-2: Summary of noise measurement equipment

Instrument	Make	Model	Serial Number	Last Calibrated
Type 1 Sound Level Meter (XL2)	NTi	XL2	A2A-02386-D2	08 July 2019
Type 1 Sound Level Meter Calibrator	B&K	Туре 4231	2677710	03 December 2020

The instrumentation used for the vibration measurement are summarised in Table 2-3. The accelerometers used in the measurements have current calibration certificates.

Table 2-3: Summary of vibration instrumentation

Туре	Make / Model	
Triaxial Transducers	Sigicom C22 (SN: 102478)	
Triaxial Transducers	Sigicom C22 (SN: 102479)	

2.3 Environmental conditions

Environmental conditions recorded during the measurements are provided in Table 2-4. Environmental conditions did have an adverse effect on two noise measurements. As a result, the two noise

measurements were deemed as invalid. For the remaining measurements, the environmental conditions did not have an adverse effect on the measured noise and vibration levels.

Assessment Point	Date and Start Time	Environmental Conditions
2 Shadforth Street, Wiley Park	28.06.2021 08:43am	Overcast; air temperature 11°C, wind speed <5 m/s; relative humidity 69%.
30 Redman Parade, Belmore	28.06.2021 02:07pm	Overcast; air temperature 18°C, wind speed <5 m/s; relative humidity 70%.
103/105 Duntroon Street, Hurlstone Park	28.06.2021 03:07pm	Overcast; air temperature 18°C, wind speed <5 m/s; relative humidity 68%.
	29.06.2021 10:50pm	Overcast; air temperature 16°C, wind speed <5 m/s; relative humidity 71%.
1 Ewart Lane, Dulwich Hill	28.06.2021 04:21pm	Overcast; air temperature 17°C, wind speed <5 m/s; relative humidity 61%.
71 Ewart Street, Dulwich Hill	28.06.2021 04:44pm	Overcast; air temperature 17°C, wind speed <5 m/s; relative humidity 61%.
5 Bedford Crescent, Dulwich Hill	28.06.2021 05:16pm	Overcast; air temperature 16°C, wind speed <5 m/s; relative humidity 66%.
199 Beamish Street, Campsie	29.06.2021 09:30am	Raining. As a result, this measurement is invalid.
	29.06.2021 10:02am	Raining. As a result, this measurement is invalid.
8 -10 Shadforth Street, Wiley Park	29.06.2021 12:19pm	Overcast; air temperature 10°C, wind speed <5 m/s; relative humidity 90%.
115 Duntroon Street, Hurlstone Park	29.06.2021 11:11pm	Overcast; air temperature 16°C, wind speed <5 m/s; relative humidity 76%.
5 Commons Street, Hurlstone Park	29.06.2021 11:31pm	Overcast; air temperature 16°C, wind speed <5 m/s; relative humidity 76%.
41 Urunga Parade, Punchbowl	30.06.2021 09:45am	Overcast; air temperature 15°C, wind speed <5 m/s; relative humidity 40%.
50 Floss Street, Hurlstone Park	30.06.2021 12:18pm	Overcast; air temperature 15°C, wind speed <5 m/s; relative humidity 40%.
107 Duntroon Street, Hurlstone Park	30.06.2021 12:48pm	Overcast; air temperature 14°C, wind speed <5 m/s; relative humidity 40%.
5 Railway Street,	01.07.2021 12:30pm	Overcast; air temperature 14°C, wind speed <5 m/s; relative humidity 40%.
Hurlstone Park	01.07.2021 04:50pm	Overcast; air temperature 13°C, wind speed <5 m/s; relative humidity 45%.
7 Commons Street, Hurlstone Park	01.07.2021 02:47pm	Overcast; air temperature 13°C, wind speed <5 m/s; relative humidity 65%.

Table 2-4: Environmental conditions

3 Noise Monitoring results

The results of the noise monitoring are presented in Table 3-1 below.

		Duadiated Managemed naise		Above	Commonts	
Assessment Point	Measured plant	Predicted noise level		Measured noise level dB(A)		Comments
		dB(A)	L _{Aeq(15min)}	L _{Amax}	noise level?	
2 Shadforth Street, Wiley Park	Excavators with bucket attachment, handheld grinder, truck deliveries	81 [⊤]	64	84	No (L _{Aeq, 15min})	The measured L _{Aeq. 15min} is lower than the predicted noise level.
30 Redman Parade, Belmore	3.5T excavator with rockhammer attachment, excavators with bucket attachment	65 ^н	63*	76	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level.
103/105 Duntroon	Excavators with bucket attachment, Moxy trucks	82 [⊤]	65	85	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level.
Street, Hurlstone Park	Excavator with rockhammer attachment, excavator with bucket attachment, generator	84 ^H	66*	76	No (LAeq, 15min)	Note that there was no access to the most affected facade. The property building provided shielding between the rockhammering activity and the measurement location. As a result, the measured LAee, 15min noise level is significantly lower than the predicted noise level.
1 Ewart Lane, Dulwich Hill	Generator, truck deliveries, excavator with rockdrill attachment	74 ^H	73*	86	No (L _{Aeq, 15min})	The measured L _{Aeq. 15min} is lower than the predicted noise level.
71 Ewart Street, Dulwich Hill	Excavator with rockdrill attachment	84 ^H	64*	75	No (LAeq, 15min)	The measured L _{Aeq. 15min} is lower than the predicted noise level. During this measurement, only the rockdrilling activity is audible from the works. There were no concurrent works in the work area directly across from the monitoring location. As a result, the measured noise level is significantly lower than the predicted noise level.
5 Bedford Crescent, Dulwich Hill	Excavator with rockdrill attachment and generator	74 ^H	69*	78	No (L _{Aeq, 15min})	The measured $L_{Aeq, 15min}$ is lower than the predicted noise level.
199 Beamish Street, Campsie	Two 5T excavators with bucket and gripper attachment, truck deliveries (construction bin)	70 [†]	75	92	Not applicable	These measurements were deemed invalid as the environmental conditions caused adverse effect on the
	Two 5T excavators with gripper attachment	70 ^T	75	91	Not applicable	measured noise levels.
8 -10 Shadforth Street, Wiley Park	15T excavator with bucket attachment and Moxy truck	64 [⊤]	55	73	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level.
115 Duntroon Street, Hurlstone Park	Excavator with rockhammer attachment	67 ^н	63*	83	No (Laeq, 15min)	The measured L _{Aeq. 15min} is lower than the predicted noise level.
5 Commons Street, Hurlstone Park	Excavator with bucket attachment, Moxy trucks, lighting tower, concrete agitator	68 ^T	54	75	No (L _{Aeq, 15min})	The measured L _{Aeq. 15min} is lower than the predicted noise level.

Assessment	Measured plant	Predicted noise		Measured noise level dB(A)		Comments	
Point		level dB(A)	L _{Aeq(15min)}	L _{Amax}	noise level?		
41 Urunga Parade, Punchbowl	Excavator with bucket attachment, stockpile management, Moxy truck	73 ^T	58	72	No (L _{Aeq, 15min})	The measured $L_{Aeq, 15min}$ is lower than the predicted noise level.	
50 Floss Street, Hurlstone Park	Two excavators with rockhammer attachment, concrete saw	73 ^н	68*	74	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level.	
107 Duntroon Street, Hurlstone Park	Concrete saw, excavator with rockhammer attachment, generator, electric rotary cutter	79 ^н	66*	87	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level.	
5 Railway Street, Hurlstone Park	15T Excavator with bucket attachment, truck delivery, fuel truck, 8T roller	83 [⊤]	63	82	No (L _{Aeq, 15min})	The measured $L_{Aeq, 15min}$ is lower than the predicted noise level.	
	35T Pilling rig with auger, concrete truck	83⊺	65	72	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level.	
7 Commons Street, Hurlstone Park	5T Excavator with bucket attachment, concrete truck, jackhammer	75 [†]	59	74	No (LAeq, 15min)	The measured $L_{Aeq, 15min}$ is lower than the predicted noise level. Jackhammering was not the dominant noise source, as it was just audible at this monitoring location. As a result, the measured noise level is compared to the predicted noise level for a typical activity.	

Note: T: Predicted L_{Aeq, 15min} for typical activities (Gatewave ID: 2139) H: Predicted L_{Aeq, 15min} for high impact activities (Gatewave ID: 2212) *: Including 5 dB penalty for high impact activities

It can be seen from Table 3-1 that, the measured L_{Aeq, 15min} noise levels were below the predicted noise levels. The mitigation and management measures implemented were therefore considered suitable for the measured activities.

4 Vibration Monitoring results

The established vibration criteria for cosmetic damage in the Construction Noise & Vibration – OOHW Assessment Stage 2 Possession Works (CNV-OOHWA)¹ is as follows:

- Reinforced or frame structures: 25.0 mm/s
- Unreinforced or light framed structures: 7.5 mm/s
- Heritage structures: 2.5 mm/s

The results of the vibration monitoring are present in below.

¹ TL927-1-02F01 CNV_OOHWA WE42 Possession April 2021 (r4), dated: 06 April 2021

Table 4-1: Measured vibration levels

				M- 1	
Assessment point	Plant	Distance from source	95th percentile PPV (mm/s)	Maximum PPV (mm/s)	Comments
Wiley Park Station (refer to figure A.1)	14T excavator with bucket attachment	3m, measured at the affected heritage structure	0.55	1.00	The vibration monitor was mounted on the platform building. During the excavating activity, the vibration signals from the 14T excavator with bucket attachment produced vibration levels that are below the established vibration criteria. As a result, the 14T excavator with bucket attachment was allowed to be operated.
Belmore Station (refer to figure A.2)	3.5T excavator with rockhammer attachment	10m, measured at the affected heritage structure	0.25	0.45	The vibration monitor was mounted on the platform building. During the rockhammering activity, the vibration signals from the 3.5T excavator with rockhammer attachment produced vibration levels that are below the established vibration criteria. As a result, the 3.5T excavator with rockhammer attachment was allowed to be operated.
Dulwich Hill Station (refer to figure A.4)	6T excavator with rockdrill attachment	15m, measured at the affected heritage structure	< 0.5	1.15	The vibration monitor was mounted on the platform building. During the rockdrilling activity, the vibration signals from the 6T excavator with rockdrill attachment produced vibration levels that are below the established vibration criteria. As a result, the 6T excavator with rockdrill attachment was allowed to be operated.
Punchbowl Station (refer to figure A.10)	Handheld electric jackhammer	1m	0.90	1.65	The vibration monitor was mounted on the platform building. It was understood that the affected wall of the platform building is not heritage. As a result, the screening criterion for unreinforced structures (7.5 mm/s) was used for this measurement. During the jackhammering activity, the vibration signals from the handheld electric jackhammer produced vibration levels that are below the established screening criterion for unreinforced structures (7.5 mm/s). As a result, the handheld electric jackhammer was allowed to be operated.
Hurlstone Park Station (refer to figure A.13)	3T roller – static mode	10m, measured at the closest residential structure	< 0.5	< 0.5	During the rolling activity, the vibration signals from the 3T roller on static mode produced vibration levels that are below the established screening criterion for unreinforced structures (7.5 mm/s). As a result, the 3T roller on static mode was allowed to be operated.
Hurlstone Park Station (refer to figure A.13)	8T roller – static mode	5m	0.90	1.50	During the rolling activity, the vibration signals from the 8T roller on static mode produced vibration levels that are below the established screening criterion for unreinforced structures (7.5 mm/s). As a result, the 8T roller on static mode can be operated at a minimum distance of 5 metres from unreinforced structures.
Hurlstone Park Station (refer to figure A.13)	35T piling rig with auger	20m, measured at the closest residential structure	< 0.5	< 0.5	During the piling activity, the vibration signals from the 35T piling rig with auger produced vibration levels that are below the established screening criterion for unreinforced structures (7.5 mm/s). As a result, the 35T piling rig with auger was allowed to be operated.

It can be seen from Table 4-1 that the listed vibration intensive equipment have met the established vibration criteria. As a result, the listed vibration intensive equipment were allowed to be operated during the station upgrade works.

5 Conclusion

Renzo Tonin & Associates completed noise and vibration monitoring for the WK52-WK1 possession works. The results of the noise measurements were below the predicted $L_{Aeq 15minutes}$ levels presented in the Gatewave model prepared for the works. The results of the vibration measurements were consistent with the established vibration criteria presented in the CNV-OOWA prepared for the works.

Document control

Date	Revision history	Non-issued revision	Issued revision	Prepared	Instructed	Reviewed / Authorised
06.07.2021	First Issue	0	1	R. Zhafranata	T. Gowen	T. Gowen
06.07.2021	Report revised to address client's comment	-	2	R. Zhafranata	T. Gowen	T. Gowen
07.06.2021	Appendix A.9 amended	-	3	R. Zhafranata	T. Gowen	T. Gowen

File Path: R:\AssocSydProjects\TL901-TL950\TL927 Southwest Metro - Stations Upgrades\1 Docs\09 June WK52-WK1 possesion\TL927-1-09F01 WK52-WK1 Noise and Vibration Monitoring Report (r3).docx

Important Disclaimers:

The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.

We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.

External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systems (eg facade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in Such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

APPENDIX A Measurement locations

A.1 2 Shadforth Street, Wiley Park


A.2 30 Redman Parade, Belmore

A.3 103/105 Duntroon Street, Hurlstone Park

A.4 1 Ewart Lane, Dulwich Hill

A.5 71 Ewart Street, Dulwich Hill

A.6 5 Bedford Crescent, Dulwich Hill

A.7 8 – 10 Shadforth Street, Wiley Park

A.8 115 Duntroon Street, Hurlstone Parlk

A.9 5 Commons Street, Hurlstone Park

A.10 41 Uranga Parade, Punchbowl

A.11 50 Floss Street, Hurlstone Park

A.12 107 Duntroon Street, Hurlstone Park

A.13 5 Railway Street, Hurlstone park

A.14 7 Commons Street, Hurlstone Park

Appendix 8 – TL927-1-10F01 WK52-WE2 NOISE AND VIBRATION MONITORING REPORT (R1)

Acoustics Vibration Structural Dynamics

16 July 2021 TL927-1-10F01 WK01-WE2 Noise and Vibration Monitoring Report (r1)

Downer EDI Works Pty Ltd 76 Berry Street Nth Sydney NSW 2060

Sydney Metro Southwest - Station Upgrades - WK52-WK2 Possession Works

1 Introduction

Renzo Tonin & Associates was engaged by Downer EDI Works to conduct noise and vibration monitoring during the Station Upgrade WK01-WE02 Possession works for Sydney Metro Southwest. The noise monitoring was undertaken to verify predicted noise levels in the corresponding Gatewave model (Gatewave scenario ID: 2139 for typical activities and Gatewave scenario ID: 2131 for low impact activities). The vibration monitoring was undertaken to establish site specific minimum working distances for vibration intensive plant and monitor potentially affected structures. This report provides a summary of the monitoring results.

2 Details of monitoring

Noise monitoring was undertaken at Dulwich Hill Station, Hurlstone Park Station, Belmore Station, Campsie Station and Punchbowl Station between 7th July 2021 and 11st July 2021. Vibration monitoring was undertaken at Hurlstone Park Station and Wiley Park Station on 8st July 2021.

2.1 Measurement location

The noise measurements were conducted at the worst affected residential receiver, relative to the measured works. The vibration monitoring was conducted on the station platform and worksite. The noise measurement locations are listed in Table 2-1. Figures depicting the monitoring locations are included in APPENDIX A.

Assessment Point	Date	Time	Measured plant	Approx. distance to measured	Temporary noise barrier between measured plant/
5 Railway Street, Hurlstone Park	7/07/2021	10:05 pm 10:25 pm	35T piling rig, generator, delivery truck	plant 35 m	receiver Yes
5A Foord Avenue, Hurstone Park	7/07/2021	10:32 pm 10:47 pm	Concrete pumping, cleaning	25 m	No
5 Foord Avenue, Hurstone Park	7/07/2021	11:06 pm 11:21 pm	Excavator 15T with bucket	15 m	No
5 Railway Street, Hurlstone Park	7/07/2021	11:27 pm 11:42 pm	35T pilling rig with auger, Excavator 15T (2)	35 m	Yes
5 Foord Avenue, Hurlstone Park	8/07/2021	10:05 pm 10:25 pm	Crane Truck delivery	40 m	No
5 Railway Street, Hurlstone Park	8/07/2021	10:43 pm 10:59 pm	35T pilling rig with auger, 15T excavator with bucket, Delivery truck (Crane Truck)	36 m	Yes
5 Railway Street, Hurlstone Park	8/07/2021	11:06 pm 11:22 pm	35T pilling rig with auger, 15T excavator with bucket	36 m	Yes
254 Wardell Road, Dulwich Hill	9/07/2021	00:25 am 00:47 am	Concrete pumping, Crane truck idling, 13T excavator with Moxy truck	90 m	No
5 Foord Avenue, Hurlstone Park	09/07/2021	10:08 pm 10:23 pm	Crane Truck delivery	90 m	No
17 Burnett Street, Hurlstone Park	09/07/2021	10:26 pm 10:50 pm	Crane Truck delivery	18 m	No
5 Railway Street, Hurlstone Park	09/07/2021	11:14 pm 11:30 pm	35T pilling with auger, 15T excavator with bucket. Electric rotary cutter	37 m	Yes
7 Bedford Cresent, Dulwich Hill	09/07/2021	02:22 pm 02:37 pm	Concrete truck, excavators with bucket, hand tools	50 m	No
1 Ewart Lane, Dulwich Hill	09/07/2021	03:03 pm 03:18 pm	Concrete truck, delivery trucks	16 m	No
1 Acacia Street, Belmore	10/07/2021	07:12 am 07:27 am	Lighting tower	28 m	No
30 Redman Parade, Belmore	10/07/2021	07:31 am 07:46 am	Excavator with bucket, power tools	55 m	No
3 Wilfred Avenue, Campsie	10/07/2021	08:05 am 08:20 am	Excavator with bucket, dump trucks	40 m	No
13 Angelo Road, Campsie	10/07/2021	08:29 am 08:44 am	Excavator with bucket, wacker-packer	15 m	No
279 The Boulevard, Punchbowl	10/07/2021	09:19 am 09:24 am	Excavator with auger, hand tools, concrete pump	10 m	No
709 Punchbowl Road, Punchbowl	10/07/2021	09:38 am 09:53 am	Pressure washer, hand tools	50 m	No
103 Duntroon Street, Hurlstone Park	10/07/2021	10:20 am 10:35 am	Concrete truck and pump	5 m	Yes
5 Foord Ave, Hurlstone Park	10/07/2021	10:43 am 10:58 am	Excavator with bucket, skip bin truck	15 m	No
12 Railway Street, Hurlstone Park	10/07/2021	11:01 am 11:16 am	Concrete truck, excavator with bucket, street sweeper	20 m	No

Table 2-1: Noise measurement locations

Assessment Point	Date	Time	Measured plant	Approx. distance to measured plant	Temporary noise barrier between measured plant/ receiver
107 Duntroon St, Hurlstone Park	11/07/2021	09:54 pm 10:09 pm	Electric jackhammer, Generator	50m	Yes

2.2 Measurement equipment

Noise measurement equipment consisted of one NTi Audio XL2 Type 1 sound level meter and microphone calibrator. The microphone was checked prior and after measurements using a Bruel & Kjaer Type 4231 calibrator. No significant drift in calibration was observed. All instrumentation complies with AS IEC 61672.1 2004 '*Electroacoustics - Sound Level Meters*' and carries current NATA certification (or if less than 2 years old, manufacturers certification).

Table 2-2 summarises the details of noise measurement equipment.

Table 2-2: Summary of noise measurement equipment

Instrument	Make	Model	Serial Number	Last Calibrated
Type 1 Sound Level Meter (XL2)	NTi	XL2	A2A-10578-E0	03 March 2021
Type 1 Sound Level Meter Calibrator	B&K	Туре 4231	2162834	08 March 2021

The instrumentation used for the vibration measurement are summarised in Table 2-3. The accelerometers used in the measurements have current calibration certificates.

Table 2-3: Summary of vibration instrumentation

Туре	Make / Model
Triaxial Transducers	Sigicom C22 (SN: 102478)
Triaxial Transducers	Sigicom C22 (SN: 102479)

2.3 Environmental conditions

Environmental conditions recorded during the measurements are provided in Table 2-4. Environmental conditions did not have an adverse effect on the measured noise and vibration levels.

Assessment Point	Date and Start Time	Environmental Conditions
5 Railway Street, Hurlstone Park	07/07/2021 10:05 pm	Overcast; air temperature 8°C, wind speed <5 m/s; relative humidity 85%.
5A Foord Ave, Hurstone Park	07/07/2021 10:32 pm	Overcast; air temperature 9°C, wind speed <5 m/s; relative humidity 80%.
5 Foord Ave, Hurstone Park	07/07/2021 11:06 pm	Overcast; air temperature 9°C, wind speed <5 m/s; relative humidity 80%.
5 Railway Street, Hurlstone Park	07/07/2021 11:27 pm	Overcast; air temperature 8°C, wind speed <5 m/s; relative humidity 80%.

Assessment Point	Date and Start Time	Environmental Conditions
5 Foord Ave, Hurlstone Park	08/07/2021 10:05 pm	Overcast; air temperature 9°C, wind speed <5 m/s; relative humidity 65%.
5 Railway st. Hurlstone Park	08/07/2021 10:43 pm	Overcast; air temperature 8°C, wind speed <5 m/s; relative humidity 80%.
5 Railway st. Hurlstone Park	08/07/2021 11:06 pm	Overcast; air temperature 8° C, wind speed <5 m/s; relative humidity 80% .
254 Wardell Rd, Dulwich Hill	09/07/2021 00:25 am	Overcast; air temperature 8° C, wind speed <5 m/s; relative humidity 70%.
5 Foord Ave, Hurlstone Park	09/07/2021 10:08 pm	Overcast; air temperature 11°C, wind speed <5 m/s; relative humidity 90%.
17 Burnett St, Hurlstone Park	09/07/2021 10:26 pm	Overcast; air temperature 11°C, wind speed <5 m/s; relative humidity 90%.
5 Railway St. Hurlstone Park	09/07/2021 11:14 pm	Overcast; air temperature 8°C, wind speed <5 m/s; relative humidity 80%.
7 Bedford Cresent, Dulwich Hill	09/07/2021 02:22 pm	Overcast; air temperature 17° C, wind speed <5 m/s; relative humidity 72%.
1 Ewart Lane, Dulwich Hill	09/07/2021 03:03 pm	Overcast; air temperature 17°C, wind speed <5 m/s; relative humidity 72%.
1 Acacia Street, Belmore	10/07/2021 07:12 am	Overcast; air temperature 13° C, wind speed <5 m/s; relative humidity 79%.
30 Redman Parade, Belmore	10/07/2021 07:31 am	Overcast; air temperature 13° C, wind speed <5 m/s; relative humidity 79%.
3 Wilfred Avenue, Campsie	10/07/2021 08:05 am	Overcast; air temperature 14°C, wind speed <5 m/s; relative humidity 66%.
13 Angelo Road, Campsie	10/07/2021 08:29 am	Overcast; air temperature 14°C, wind speed <5 m/s; relative humidity 66%.
279 The Boulevard, Punchbowl	10/07/2021 09:19 am	Overcast; air temperature 15° C, wind speed <5 m/s; relative humidity 61%.
709 Punchbowl Road, Punchbowl	10/07/2021 09:38 am	Overcast; air temperature 15° C, wind speed <5 m/s; relative humidity 61%.
103 Duntroon Street, Hurlstone Park	10/07/2021 10:20 am	Overcast; air temperature 16°C, wind speed <5 m/s; relative humidity 55%.
5 Foord Ave, Hurlstone Park	10/07/2021 10:43 am	Overcast; air temperature 16°C, wind speed <5 m/s; relative humidity 55%.
12 Railway Street, Hurlstone Park	10/07/2021 11:01 am	Overcast; air temperature 16°C, wind speed <5 m/s; relative humidity 55%.
107 Duntroon St, Hurlstone Park	11/07/2021 09:54 pm	Overcast; air temperature 9°C, wind speed <5 m/s; relative humidity 80%.

3 Noise Monitoring results

The results of the noise monitoring are presented in Table 3-1 below.

Table 3-1: Measured noise levels LAeq(15min)

Assessment	Measured plant	Predicted noise level	Measured level dB(A		Above predicted	Comments
Point		dB(A)	L _{Aeq(15min)}	L _{Amax}	noise level?	
5 Railway Street, Hurlstone Park	35T piling rig, generator, delivery truck	82 [†]	56 (58)	80	No (L _{Aeq, 15min})	Note that there was no access to the most affected facade. As a result, the measured $L_{Aeq, 15min}$ noise level in the bracket was the estimated noise level at the nearest residential façade, based on distance correction.
5A Foord Ave, Hurstone Park	Concrete pumping, cleaning	82-84 [⊤]	60 (67)	73	No (L _{Aeq, 15min})	Note that there was no access to the most affected facade. As a result, the measured $L_{Aeq, 15min}$ noise level in the bracket was the estimated noise level at the nearest residential façade, based on distance correction. Plant in use different to predicted plant.
5 Foord Ave, Hurstone Park	Excavator 15T with bucket	82-84 ^T	56 (59)	81	No (L _{Aeq, 15min})	Measurement was performed at 7m from the worst effected façade. The measured L _{Aeq, 15min} is lower than the predicted noise level.
5 Railway Street, Hurlstone Park	35T pilling rig with auger, Excavator 15T (2)	82 ^T	67 (69)	89	No (LAeq, 15min)	Note that there was no access to the most affected facade. As a result, the measured $L_{Aeq, 15min}$ noise level in bracket was the estimated noise level at the nearest residential façade, based on distance correction.
5 Foord Ave, Hurlstone Park	Crane Truck delivery	73-75 ^L	55	68	No (L _{Aeq, 15min})	Measurement was performed at 7m from the worst effected façade. The measured L _{Aeq, 15min} is lower than the predicted noise level.
5 Railway st. Hurlstone Park	35T pilling rig with auger, 15T excavator with bucket, Crane Truck delivery	82 ^T	60 (62)	77	No (L _{Aeq, 15min})	Note that there was no access to the most affected façade. As a result, the measured $L_{Aeq, 15min}$ noise level in bracket was the estimated noise level at the nearest residential façade, based on distance correction.
5 Railway st. Hurlstone Park	35T pilling rig with auger, 15T excavator with bucket	82 ^T	63 (65)	78	No (L _{Aeq, 15min})	Note that there was no access to the most affected facade. As a result, the measured $L_{Aeq, 15min}$ noise level in bracket was the estimated noise level at the nearest residential façade, based on distance correction.
254 Wardell Rd, Dulwich Hill	Concrete pumping, Crane truck idling, 13T excavator with Moxy truck	58 [*]	50	61	No (L _{Aeq, 15min})	Measurement performed on the Wardell Rd. facing Dullwich Hill station. The measured L _{Aeq. 15min} is lower than the predicted noise level.

Assessment	Measured plant	Predicted noise level	Measured level dB(A		Above predicted	Comments
Point		dB(A)	L _{Aeq(15min)}	L _{Amax}	noise level?	
5 Foord Ave, Hurlstone Park	Crane Truck delivery	73-75 ^L	48	45	No (L _{Aeq, 15min})	Measurement was performed at 7m from the worst effected façade. The measured $L_{Aeq, 15min}$ is lower than the predicted noise level.
17 Burnett St, Hurlstone Park	Crane Truck delivery	64 [⊤]	51	70	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level.
5 Railway St. Hurlstone Park	35T pilling with auger, 15T excavator with bucket. Electric rotary cutter	82 [™]	61 (63)	79	No (L _{Aeq, 15min})	Note that there was no access to the most affected facade. As a result, the measured $L_{Aeq, 15min}$ noise level in bracket was the estimated noise level at the nearest residential façade, based on distance correction.
7 Bedford Cresent, Dulwich Hill	Concrete truck, excavators with bucket, hand tools	73 ^T	60	78	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level.
1 Ewart Lane, Dulwich Hill	Concrete truck, delivery trucks	72 [⊤]	69	86	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level.
1 Acacia Street, Belmore	Lighting tower	62 [⊤]	57	77	No (L _{Aeq, 15min})	The measured $L_{Aeq, 15min}$ is lower than the predicted noise level.
30 Redman Parade, Belmore	Excavator with bucket, power tools	63 ^T	59	85	No (L _{Aeq, 15min})	The measured $L_{Aeq, 15min}$ is lower than the predicted noise level.
3 Wilfred Avenue, Campsie	Excavator with bucket, dump trucks	69 ^т	57	72	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level.
13 Angelo Road, Campsie	Excavator with bucket, wacker- packer	74 [†]	62	79	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. Measurement location is on the corridor boundary fence. Sensitive receivers are on upper floors only.
279 The Boulevard, Punchbowl	Excavator with auger, hand tools, concrete pump	76 [†]	68	85	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. Measurement location is affected by road traffic. Sensitive receivers are on upper floors only.
709 Punchbowl Road, Punchbowl	Pressure washer, hand tools	73 ^T	71	84	No (L _{Aeq, 15min})	Dominated by road traffic. Sensitive receivers are on upper floors only.
103 Duntroon Street, Hurlstone Park	Concrete truck and pump	82 ^T	72	90	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level.
5 Foord Ave, Hurlstone Park	Excavator with bucket, skip bin truck	84 ^T	61 (64)	79	No (L _{Aeq, 15min})	The measured $L_{Aeq, 15min}$ is lower than the predicted noise level.
12 Railway Street, Hurlstone Park	Concrete truck, excavator with bucket, street sweeper	71 ^T	70	88	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level.

Assessment	Measured plant noise level		Above predicted	Comments			
Point		dB(A)	L _{Aeq(15min)}	L _{Amax}	noise level?		
107 Duntroon St, Hurlstone Park	Electric jackhammer, Generator	73 ^L	58	63	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level.	

Note: T: Predicted L_{Aeq, 15min} for typical activities (Gatewave ID: 2139)

L: Predicted LAeq, 15min for low impact activities (Gatewave ID: 2131)

(XX): Estimated noise level at the nearest residential façade, based on distance correction

It can be seen from Table 3-1 that, the measured L_{Aeq, 15min} noise levels were below the predicted noise levels. The mitigation and management measures implemented were therefore considered suitable for the measured activities.

4 Vibration Monitoring results

The established vibration criteria for cosmetic damage in the Construction Noise & Vibration – OOHW Assessment Stage 2 Possession Works (CNV-OOHWA)¹ is as follows:

- Reinforced or frame structures: 25.0 mm/s
- Unreinforced or light framed structures: 7.5 mm/s
- Heritage structures: 2.5 mm/s

The results of the vibration monitoring are present below.

Assessment point	Plant	Distance from source	95th percentile PPV (mm/s)	Maximum PPV (mm/s)	Comments
Hurlstone Park Station (Refer to Figure A.11)	Vibratory plate compactor	1m, measured at the affected Station building	3.0	3.8	The vibration monitor was mounted on the platform building. During the asphalt compacting activity, the vibration signals from the vibratory plate produced vibration levels that are below the established vibration criteria. As a result, the Vibratory plate compactor was allowed to be operated.
Wily Park station (Refer to Figure A.12)	5T Asphalt Roller (non- vibratory)	1m	<0.5	<0.5	The vibration monitor was mounted on the platform. During the asphalt compacting activity, the vibration signals from the 5T non-vibratory roller produced vibration levels that are below the established vibration criteria. As a result, the 5T non- vibratory roller was allowed to be operated.

¹ TL927-1-02F01 CNV_OOHWA WE42 Possession April 2021 (r4), dated: 06 April 2021

Assessment point	Plant	Distance from source	95th percentile PPV (mm/s)	Maximum PPV (mm/s)	Comments
Wily Park station (Refer to Figure A.12)	Vibratory plate compactor	1m	3.0	3.2	The vibration monitor was mounted on the platform. During the asphalt compacting activity, the vibration signals from the vibratory plate produced vibration levels that are below the established vibration criteria. As a result, the Vibratory plate compactor was allowed to be operated.

It can be seen from Table 4-1 that the listed vibration intensive equipment has met the established vibration criteria. As a result, the listed vibration intensive equipment were allowed to be operated during the station upgrade works.

5 Conclusion

Renzo Tonin & Associates completed noise and vibration monitoring for the WK01-WE02 possession works. The results of the noise measurements were below the predicted L_{Aeq 15minutes} levels presented in the Gatewave model prepared for the works. The results of the vibration measurements were consistent with the established vibration criteria presented in the CNV-OOWA prepared for the works.

Document control

Date	Revision history	Non-issued revision	Issued revision	Prepared	Instructed	Reviewed / Authorised
16.07.2021	First Issue	0	1	J. Liang	T. Gowen	T. Gowen

File Path: \\SYD-SERVER\rtagroupsyd\AssocSydProjects\TL901-TL950\TL927 Southwest Metro - Stations Upgrades\1 Docs\14 July WK52-WK2 possesion\TL927-1-10F01 WK01-WE2 Noise and Vibration Monitoring Report (r1).docx

Important Disclaimers:

The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.

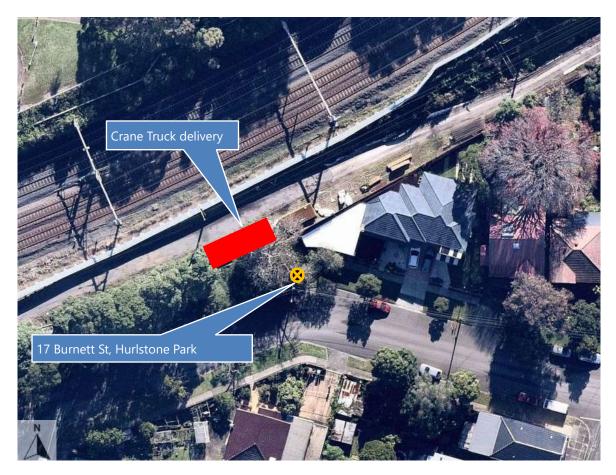
We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.

External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systems (eg facade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in Such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

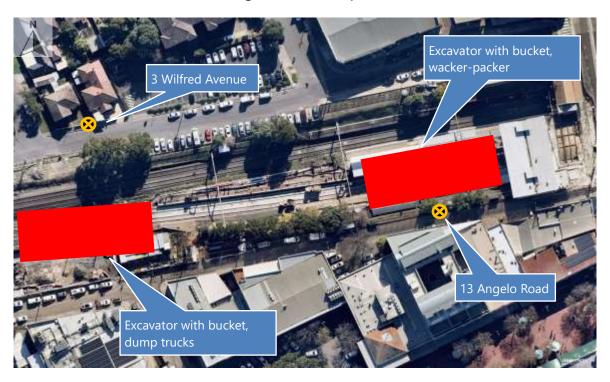
APPENDIX A Measurement locations

A.1 5 Railway Street, Hurlstone Park


A.2 254 Wardell Rd, Dulwich Hill

A.3 107 Duntroon Street, Hurlstone Park

A.4 17 Burnett St, Hurlstone Park



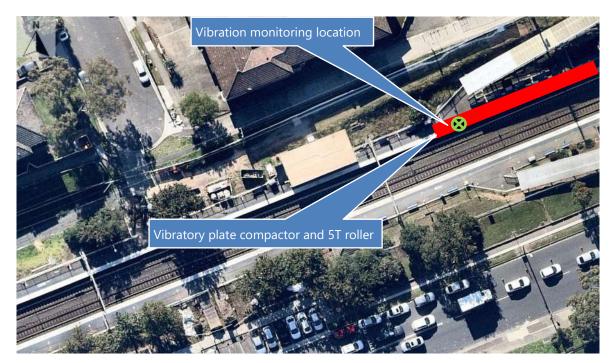
A.5 7 Bedford Cresent & 1 Ewart Lane, Dulwich Hill

A.6 1 Acacia Street & 30 Redman Parade, Belmore

A.7 3 Wilfred Avenue & 13 Angelo Road, Campsie

A.8 279 The Boulevard & 709 Punchbowl Road, Punchbowl

A.9 103 Duntroon Street, Hurlstone Park


A.10 5 Foord Ave & 12 Railway Street, Hurlstone Park

A.11 Hurlstone Park Station (Vibration monitoring location)

A.12 Wily Park station (Vibration monitoring location)

Appendix 9 – TL927-1-15F01 WK16 NOISE AND VIBRATION MONITORING REPORT (R6)

Acoustics Vibration Structural Dynamics

4 November 2021 TL927-1-15F01 WE16 Noise and Vibration Monitoring Report (r6)

Downer EDI Works Pty Ltd 76 Berry Street Nth Sydney NSW 2060

Sydney Metro Southwest - Station Upgrades - WE16 Possession Works

1 Introduction

Renzo Tonin & Associates was engaged by Downer EDI Works to conduct noise and vibration monitoring during the Station Upgrades WE16 Possession works for Sydney Metro Southwest. The noise monitoring was undertaken to verify predicted noise levels in the corresponding Gatewave model (Gatewave scenario ID: 2975 for Hurlstone Park Station works and Gatewave scenario ID: 2971 Punchbowl Station works). The vibration monitoring was undertaken to establish site specific minimum working distances for vibration intensive plants and monitor potentially affected structures. This report provides a summary of the monitoring results.

2 Details of monitoring

Noise monitoring and vibration monitoring was undertaken at Hurlstone Park Station and Punchbowl Station on 16th October 2021. Two unattended vibration monitors were installed at the neighbouring garage structure at 3A Commons Street, Hurlstone Park between 7:30am 16th October and 6:00pm 17th October 2021.

2.1 Measurement location

The noise measurements were conducted at the worst affected residential receiver, relative to the measured works. The vibration monitoring was conducted on the station platform and residential building. The noise measurement locations are listed in Table 2-1. Figures depicting the monitoring locations are included in APPENDIX A.

-

Measurement ID	Assessment Point	Date and time	Measured plant	Monitoring type	Approx. distance to measured plant	Temporary noise barrier between measured plant/receiver
M1	2 Hopetoun Street, Hurlstone Park (Appendix A.1)	16.10.21 08:29am – 08:46am	Two 15T excavator with bucket attachment	Noise	20m	No
M2	103-105 Duntroon Street, Hurlstone Park (Appendix A.2)	16.10.2021 09:33am – 09:48am	Two 5T excavator with bucket attachment	Noise	12m to 25m	No
M3	24 Floss Street, Hurlstone Park (Appendix A.3)	16.10.2021 10:28am – 10:43am	Chainsaw and BC1800 shredder	Noise	11m	No
M4	41 Urunga Parade, Punchbowl (Appendix A.4)	16.10.2021 12:05pm – 12:20pm	Chainsaw and BC1800 shredder	Noise	150m	No
M5	7 Commons Street, Hurlstone Park (Appendix A.5)	16.10.2021 02:14pm – 02:33pm	Two 15T excavator with bucket attachment, plate compactor	Noise	20m to 40m	No
M6	103-105 Duntroon Street, Hurlstone Park (Appendix A.6)	16.10.2021 09:30am – 11:50am	5T excavator with bucket attachment and 5T excavator with hammer attachment	Vibration	12m to 25m	N/A
M7	Punchbowl Station (Appendix A.7)	16.10.2021 12:00pm – 12:30pm	2T excavator with hammer attachment	Vibration	1m	N/A
M8	103-105 Duntroon Street, Hurlstone Park (Appendix A.6)	16.10.2021 03:08pm – 03:18pm	5T excavator with hammer attachment	Vibration	12m	N/A
M9	Neighbouring garage structure at 3A Commons Street, Hurlstone Park (Appendix A.8)	16.10.2021 – 17.10.2021 07:30am – 06:00pm	5T excavator with bucket attachment and 5T excavator with hammer attachment	Vibration	6.5m	N/A

Table 2-1: Measurement locations

2.2 Measurement equipment

Noise measurement equipment consisted of one NTi Audio XL2 Type 1 sound level meter and microphone calibrator. The microphone was checked prior and after measurements using a Bruel & Kjaer Type 4231 calibrator. No significant drift in calibration was observed. All instrumentation complies with AS IEC 61672.1 2004 '*Electroacoustics - Sound Level Meters*' and carries current NATA certification (or if less than 2 years old, manufacturers certification).

Table 2-2 summarises the details of noise measurement equipment.

Table 2-2: Summary of noise measurement equipment

Instrument	Make	Model	Serial Number	Last Calibrated
Type 1 Sound Level Meter (XL2-B)	NTi	XL2	A2A-16217-E0	13 August 2021
Type 1 Sound Level Meter Calibrator	B&K	Туре 4231	3009707	2 December 2020

The instrumentation used for the vibration measurement are summarised in Table 2-3. The accelerometers used in the measurements have current calibration certificates.

Туре	Make / Model
Triaxial Transducers	Sigicom C22 (SN: 102478)
Triaxial Transducers	Sigicom C22 (SN: 102479)
Accelerometer	Endevco 61C13
Type 1 Signal Analyser	Soundbook-2

Table 2-3: Summary of vibration instrumentation

2.3 Environmental conditions

Environmental conditions recorded during the measurements are provided in Table 2-4. Environmental conditions did not have an adverse effect on the measured noise and vibration levels.

Measurement ID	Assessment Point	Date and Start Time	Environmental Conditions
M1	2 Hopetoun Street, Hurlstone Park	16.10.2021 08:29 am	Clear sky; air temperature 15°C, wind speed <5 m/s; relative humidity 50%.
M2	103-105 Duntroon Street, Hurlstone Park	16.10.2021 09:33 am	Clear sky; air temperature 17°C, wind speed <5 m/s; relative humidity 42%.
M3	24 Floss Street, Hurlstone Park	16.10.2021 10:28 am	Clear sky; air temperature 18°C, wind speed <5 m/s; relative humidity 41%.
M4	41 Urunga Parade, Punchbowl	16.10.2021 12:05 pm	Clear sky; air temperature 21°C, wind speed <5 m/s; relative humidity 41%.
M5	7 Common Street, Hurlstone Park	16.10.2021 02:14 pm	Clear sky; air temperature 22°C, wind speed <5 m/s; relative humidity 33%.

Table 2-4: Environmental conditions

3 Noise Monitoring results

The results of the noise monitoring are presented in Table 3-1 below.

Table 3-1: Measured noise levels LAeq(15min)

Measurement	Accorcmont Baint	Prediction accumption (plant and accuimment)	Predicted noise level	Massured plant	Measured noise level dB(A)		Above predicted noise	
ID	Assessment Point	Prediction assumption (plant and equipment)	dB(A)	Measured plant	LAeq(15min)	L _{Amax}	evel?	
M1	2 Hopetoun Street, Hurlstone Park	Vacuum truck, electrical chainsaw, hand tools, mobile crane, skid steer/bobcat, piling rig, street sweeper, plate compactor, compressor, concrete agitator, concrete pump, drill rig, excavator with pulveriser attachment, excavator with bucket attachment, dump truck and a roller	73 [†]	Two 15T excavator with bucket attachment	64	89	No (Laeq, 15min)	The Note pred buck
M2	103-105 Duntroon Street, Hurlstone Park	Vacuum truck, electrical chainsaw, hand tools, mobile crane, skid steer/bobcat, piling rig, street sweeper, plate compactor, compressor, concrete agitator, concrete pump, drill rig, excavator with pulveriser attachment, excavator with bucket attachment, dump truck and a roller	84 ^T	Two 5T excavator with bucket attachment	65	78	No (LAeq, 15min)	The Note the p with mea faca faca close appr the t appr loca
M3	24 Floss Street, Hurlstone Park	Not applicable	Not applicable	Electrical chainsaw and BC1800 shredder	85	98	Not applicable	This beca cons from work
M4	41 Urunga Parade, Punchbowl	Vacuum truck, electrical chainsaw, hand tools, mobile crane, skid steer/bobcat, piling rig, street sweeper, plate compactor, compressor, concrete agitator, concrete pump, drill rig, excavator with pulveriser attachment, excavator with bucket attachment, dump truck and a roller	78 ^T	Electrical chainsaw and BC1800 shredder	58	71	No (LAeq, 15min)	The Note the p and mea elect appr loca close appr
M5	7 Common Street, Hurlstone Park	Vacuum truck, electrical chainsaw, hand tools, mobile crane, skid steer/bobcat, piling rig, street sweeper, plate compactor, compressor, concrete agitator, concrete pump, drill rig, excavator with pulveriser attachment, excavator with bucket attachment, dump truck and a roller	77 ^τ	Two 15T excavator with bucket attachment, plate compactor	62	80	No (L _{Aeq, 15min})	The Note the p with oper note attact to 40 pred and
Note:	T: Predicted Lynney for typical act	ivities.						

Note: T: Predicted LAeq, 15min for typical activities

It can be seen from Table 3-1 that, the measured LAeq, 15min noise levels were below the predicted noise levels. The mitigation and management measures implemented were therefore considered suitable for the measured activities.

omments

he measured LAeq, 15min is lower than the predicted noise level. Note that the measured noise level is lower than the redicted noise level because only the two 15T excavator with ucket attachment were operating during this measurement.

he measured LAeg, 15min is lower than the predicted noise level. Note that the measured noise level is significantly lower than he predicted noise level because only the two 5T excavator vith bucket attachment were operating during this neasurement. Furthermore, access to the most affected acade for this receiver was not provided. As a result, the neasurement was taken on the facade facing Duntroon treet. In the prediction model, the distance between the losest work area and the most affected facade is pproximately 4 metres. However, it was noted on site that he two 5T excavators with bucket attachment were pproximately 12 to 25 metres away from the measurement ocation.

his activity was not included in the OOHW application because it was scheduled to be carried out during standard onstruction hours. As a result, the predicted noise levels rom the OOHW application do not include the vegetation vorks.

he measured LAeq, 15min is lower than the predicted noise level. Note that the measured noise level is significantly lower than he predicted noise level because only the electrical chainsaw nd the BC1800 shredder were operating during this neasurement. Furthermore, it was noted on site that the lectrical chainsaw and the BC1800 shredder were pproximately 150 metres away from the measurement ocation. In the prediction model, the distance between the losest work area and the most affected facade is pproximately 30 metres.

he measured LAeq, 15min is lower than the predicted noise level. lote that the measured noise level is significantly lower than he predicted noise level because only the two 5T excavator vith bucket attachment and a plate compactor were perating during this measurement. Furthermore, it was oted on site that the two 15T excavator with bucket ttachment and the plate compactor were approximately 20 40 metres away from the measurement location. In the rediction model, the distance between the closest work area nd the most affected facade is approximately 10 metres.

4 Vibration Monitoring results

The established vibration criteria for cosmetic damage in the Construction Noise & Vibration – OOHW Assessment Stage 2 Possession Works (CNV-OOHWA)¹ is as follows:

- Reinforced or frame structures: 25.0 mm/s
- Unreinforced or light framed structures: 7.5 mm/s
- Heritage structures: 2.5 mm/s

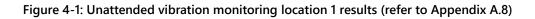
The results of the vibration monitoring are presented in Table 4-1.

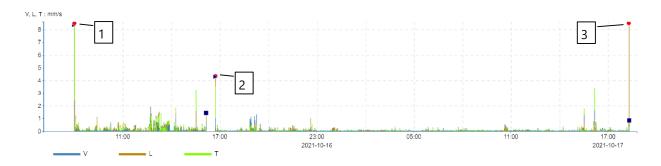
Table 4-1:	Measured	vibration	levels
------------	----------	-----------	--------

Measurement ID	Assessment point	Plant	Distance from source	Baseline 95 th percentile PPV	95th percentile PPV (mm/s)	Maximum PPV (mm/s)	Comments
M6	Hurlstone Park Station	Two 5T excavator with bucket attachment	12m	0.03	0.03	0.04	The accelerometer was mounted on the residential building at 103-105 Duntroon Street, Hurlstone Park. The measured results show that the baseline value did not change during the excavation work. Therefore, the vibration signals from the two 5T excavators with bucket attachment could not be detected at this measurement location. As a result, the 5T excavators with bucket attachment was allowed to be operated.
Μ7	Punchbowl Station	2T Excavator with hammer	1m	0.13	1.09	2.28	The accelerometer was mounted on the station structure at the station building. During the hammering activity, the vibration signals from the hammer produced vibration levels that are below the established vibration criteria. As a result, the 2T excavator with hammer attachment was allowed to be operated.

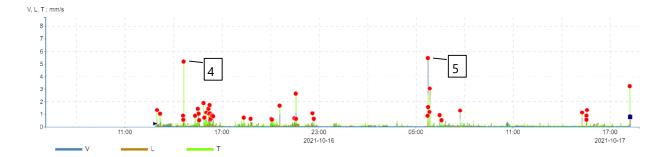
¹ TL927-1-02F01 CNV_OOHWA WE42 Possession April 2021 (r4), dated: 06 April 2021

Measurement ID	Assessment point	Plant	Distance from source	Baseline 95 th percentile PPV	95th percentile PPV (mm/s)	Maximum PPV (mm/s)	Comments
Μ8	Hurlstone Park Station	5T excavator with hammer attachment	12m	0.03	0.04	0.09	The accelerometer was mounted on the residential building at 103-105 Duntroon Street, Hurlstone Park. The measured results show that the baseline value did not change during the excavation work. Therefore, the vibration signals from the ST excavator with hammer attachment could not be detected at this measurement location. As a result, the ST excavator with hammer attachment was allowed to be operated.


It can be seen from Table 4-1 that the listed vibration intensive equipment has met the established vibration criteria. As a result, the listed vibration intensive plants were allowed to be operated during the station upgrade works.


4.1 Neighbouring garage structure at 3A Commons Street Vibration Monitoring

In accordance with the Hurlstone Park Station Vibration Monitoring Plan², the established vibration limits for the affected garage structure are shown below:


- Greater than or equal to 4 mm/s (cosmetic damage is possible);
- Greater than or equal to 8 mm/s (cosmetic damage becoming more likely).

The results of the unattended vibration measurements for the neighbouring garage structure at 3A Commons Street are presented in Figure 4-1 and Figure 4-2.

² Sydney Metro Southwest – Station Upgrades – Hurlstone Park Station Vibration Monitoring Plan (ref: TL927-1-14F01 Hurlstone Park Stn VIB MON PLAN (r2)), dated 14 October 2021

The discussion of the unattended vibration measurements are summarised in the table below.

Exceedance ID	Date and Time	Cause of exceedance
1	16.10.2021 08:00am	At this time, the vibration monitor was mounted on the ground spike to commence monitoring. As a result, this exceedance was not caused by the nearby construction activities.
2	16.10.2021 04:42pm	At this time, a Renzo Tonin & Associates engineer checked and tested if the vibration monitor was operating correctly. As a result, this exceedance was not caused by the nearby vibration intensive activities.
3	17.10.2021 06:16pm	At this time, the vibration monitor was removed from the ground spike to complete the monitoring. As a result, this exceedance was not caused by the nearby vibration intensive activities.
4	16.10.2021 02:37pm	At this time, materials were dropped nearby the vibration monitor. The operator was then notified to unload the materials with caution and as far away as practicable from the vibration sensitive structure to minimise vibrational impact.
5	17.10.2021 05:43am	At this time, the vibration monitor measured an instantaneous vibration level of 5.45 mm/s. Upon analysing this exceedance, it was noted that the impulsive characteristic of the exceedance was likely caused by an extraneous event not related to construction activities.

Table 4-2: Unattended vibration summary

It can be seen in Figure 4-1 and Figure 4-2 that the vibration levels produced from the vibration intensive works in the vicinity of the affected garage structure is below 4 mm/s. Note that there were events that resulted in an instantaneous vibration level of above 4 mm/s which are justified in Table 4-2.

5 Conclusion

Renzo Tonin & Associates completed noise and vibration monitoring for the WE16 possession works. The results of the noise measurements were below the predicted $L_{Aeq 15minutes}$ levels presented in the Gatewave model prepared for the works. The results of the vibration measurements were below the established vibration criteria presented in the CNV-OOWHA and Hurlstone Park Station Vibration Monitoring Plan prepared for the works (except for a few events that resulted in an instantaneous vibration level of above 4 mm/s which are justified in Table 4-2).

Document control

Date	Revision history	Non-issued revision	Issued revision	Prepared	Instructed	Reviewed / Authorised
25.10.2021	First Issue	0,1,2,3	4	J. Liang	T. Gowen	M. Tabacchi
04.11.2021	Report revised to address Client's comments	5	6	R. Zhafranata	T. Gowen	T. Gowen

File Path: R:\AssocSydProjects\TL901-TL950\TL927 Southwest Metro - Stations Upgrades\1 Docs\15 October WE16 possession\TL927-1-15F01 WE16 Noise and Vibration Monitoring Report (r6).docx

Important Disclaimers:

The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.

We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.

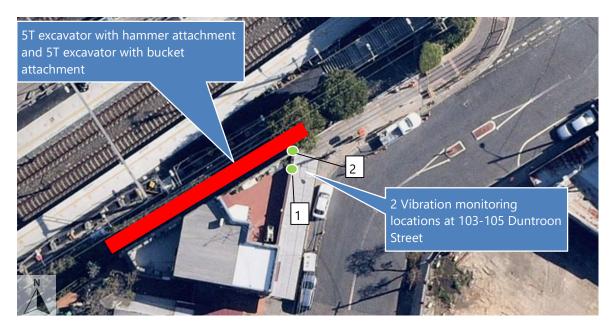
External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systems (eg facade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in Such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

APPENDIX A Measurement locations

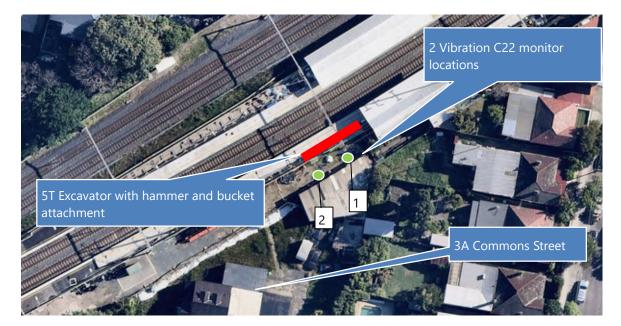
A.1 2 Hopetoun Street, Hurlstone Park

A.2 103-105 Duntroon Street, Hurlstone Park

A.3 24 Floss Street, Hurlstone Park


A.4 41 Urunga Parade, Punchbowl

A.5 7 Commons Street, Hurlstone Park


A.6 103-105 Duntroon Street, Hurlstone Park

A.7 Punchbowl station

A.8 Hurlstone Park Station

Appendix 10 – TL927-1-16F01 WK17 NOISE AND VIBRATION MONITORING REPORT (R3)

Acoustics Vibration Structural Dynamics

4 November 2021 TL927-1-16F01 WE17 Noise and Vibration Monitoring Report (r3)

Downer EDI Works Pty Ltd 76 Berry Street Nth Sydney NSW 2060

Sydney Metro Southwest - Station Upgrades - WE17 Possession Works

1 Introduction

Renzo Tonin & Associates was engaged by Downer EDI Works to conduct noise and vibration monitoring during the Station Upgrades WE17 possession works for Sydney Metro Southwest. The noise monitoring was undertaken to verify predicted noise levels in the corresponding Gatewave model (Gatewave scenario ID: 2975 for Hurlstone Park Station works, Gatewave scenario ID: 2971 for Belmore Station works, Gatewave scenario ID: 2973 for Wiley Park Station works and Gatewave scenario ID: 2973 Dulwich Hill Station works). The vibration monitoring was undertaken to establish site specific minimum working distances for vibration intensive plants and monitor potentially affected structures. This report provides a summary of the monitoring results.

2 Details of monitoring

Noise monitoring was undertaken at Hurlstone Park Station, Belmore Station, Wiley Park Station and Dulwich Hill Station on 23rd October 2021. Attended vibration monitoring was undertaken at Wiley Park Station on 23rd October 2021. Two unattended vibration monitors were installed at the neighbouring garage structure at 3A Commons Street, Hurlstone Park between 7:30am 23rd October and 6:00pm 24th October 2021.

2.1 Measurement location

The noise measurements were conducted at the worst affected residential receiver, relative to the measured works. The attended vibration monitoring was conducted on the station structure at Wiley Park Station. The noise measurement locations are listed in Table 2-1. Figures depicting the monitoring locations are included in APPENDIX A.

-

Measurement ID	Assessment Point	Date and time	Measured plant	Monitoring type	Approx. distance to measured plant	Temporary noise barrier between measured plant/receiver
М1	7 Commons Street, Hurlstone Park (Appendix A.1)	23.10.2021 08:25am - 08:40am	2T excavator unloading with delivery truck, 7T hi- rail excavator transporting materials, concrete saw	Noise	14m (concrete sawing activity was approx. 100m away)	No
M2	3A Commons Street, Hurlstone Park (Appendix A.1)	23.10.2021 08:40am - 08:56am	7T excavator with bucket, 5T excavator idling, fencing removal	Noise	17m	No
M3	20 Redman Parade, Belmore (Appendix A.2)	23.10.2021 09:20am - 09:35am	Hi-rail dump truck, stockpile management, 5T excavator with bucket	Noise	40m	No
M4	17 Redman Parade, Belmore (Appendix A.2)	23.10.2021 09:37am - 09:53am	Hi-rail dump truck, stockpile management, 5T Excavator with bucket	Noise	20m	No
M5	1A Shadforth Street, Wiley Park (Appendix A.3)	23.10.2021 10:20am - 10:35am	5T Excavator with hammer attachment, handheld jackhammer	Noise	50m	No
M6	1A Shadforth Street, Wiley Park (Appendix A.3)	23.10.2021 10:41am - 10:59am	5T excavator with hammer attachment, handheld jackhammer	Noise	50m	No
M7	51 Ewart Lane, Dulwich Hill (Appendix A.4)	23.10.2021 01:17pm - 01:32pm	8T excavator with hammer attachment, concrete truck	Noise	12m to 30m	No
M8	57 Ewart Lane, Dulwich Hill (Appendix A.4)	23.10.2021 01:33pm - 01:49pm	8T excavator with hammer attachment, concrete truck	Noise	27m to 30m	No
M9	2 Hopetoun Street, Hurlstone Park (Appendix A.5)	23.10.2021 02:10pm - 02:28pm	Vacuum truck, hi-rail dump truck	Noise	11m	No
M10	3A Commons Street, Hurlstone Park (Appendix A.1)	23.10.2021 02:33pm - 02:48pm	Power hand tools, 5T excavator with bucket attachment, 5T excavator with hammer attachment, hi-rail dump truck	Noise	7m to 40m	No

Table 2-1: Measurement locations

Measurement ID	Assessment Point	Date and time	Measured plant	Monitoring type	Approx. distance to measured plant	Temporary noise barrier between measured plant/receiver
M11	3A Commons Street, Hurlstone Park (Appendix A.1)	23.10.2021 02:48pm - 03:03pm	Power handtools, 5T excavator with bucket attachment, 5T excavator with hammer attachment, hi-rail dump truck	Noise	7m to 40m	No
M12	105 Duntroon Street, Hurlstone Park (Appendix A.6)	23.10.2021 03:06pm - 03:21pm	Two 5T Excavator with bucket attachment, two hi- rail dump truck, handheld power drill	Noise	23m	No
M13	48 Floss Street, Hurlstone Park (Appendix A.7)	23.10.2021 04:07pm - 04:22pm	Concrete saw, two 5T excavator with bucket attachment, two hi- rail dump truck	Noise	47m to 50m	No
M14	Neighbouring garage structure at 3A Commons Street, Hurlstone Park (Appendix A.8)	23.10.2021 – 24.10.2021 07:30am – 06:00pm	5T excavator with bucket attachment and 5T excavator with hammer attachment	Vibration	5m to 6.5m	N/A
M15	Wiley Park Station, location 1 (Appendix A.9)	23.10.2021 11:44am – 11:55am	Handheld jackhammer	Vibration	10m	N/A
M16	Wiley Park Station, location 2 (Appendix A.9)	23.10.2021 11:55am – 12:05pm	5T excavator with hammer attachment	Vibration	10m	N/A

2.2 Measurement equipment

Noise measurement equipment consisted of one NTi Audio XL2 Type 1 sound level meter and microphone calibrator. The microphone was checked prior and after measurements using a Bruel & Kjaer Type 4231 calibrator. No significant drift in calibration was observed. All instrumentation complies with AS IEC 61672.1 2004 '*Electroacoustics - Sound Level Meters*' and carries current NATA certification (or if less than 2 years old, manufacturers certification).

Table 2-2 summarises the details of noise measurement equipment.

Table 2-2: Summary of noise measurement equipment

Instrument	Make	Model	Serial Number	Last Calibrated
Type 1 Sound Level Meter (XL2-B)	NTi	XL2	A2A-16217-E0	13 August 2021
Type 1 Sound Level Meter Calibrator	B&K	Туре 4231	3009707	2 December 2020

The instrumentation used for the vibration measurement are summarised in Table 2-3. The accelerometers used in the measurements have current calibration certificates.

Table 2-3: Summary of vibration instrumentation

Туре	Make / Model
Triaxial Transducers	Sigicom C12 (SN: 70250)
Triaxial Transducers	Sigicom C22 (SN: 102479)
Accelerometer	Endevco 61C13
Type 1 Signal Analyser	Soundbook-2

2.3 Environmental conditions

Environmental conditions recorded during the measurements are provided in Table 2-4. Environmental conditions did not have an adverse effect on the measured noise and vibration levels.

Measurement ID	Assessment Point	Date and Start Time	Environmental Conditions
M1	3A Commons Street, Hurlstone Park	23.10.2021 08:25am	Clear sky; air temperature 20°C, wind speed <5 m/s; relative humidity 34%.
M2	3A Commons Street, Hurlstone Park	23.10.2021 08:40am	Clear sky; air temperature 25°C, wind speed <5 m/s; relative humidity 34%.
M3	20 Redman Parade, Belmore	23.10.2021 09:20am	Clear sky; air temperature 25°C, wind speed <5 m/s; relative humidity 34%.
M4	17 Redman Parade, Belmore	23.10.2021 09:37am	Clear sky; air temperature 27°C, wind speed <5 m/s; relative humidity 40%.
M5	1A Shadforth Street, Wiley Park	23.10.2021 10:20am	Clear sky; air temperature 26°C, wind speed <5 m/s; relative humidity 40%.
M6	1A Shadforth Street, Wiley Park	23.10.2021 10:41am	Clear sky; air temperature 26°C, wind speed <5 m/s; relative humidity 40%.

Table 2-4: Environmental conditions

Measurement ID	Assessment Point	Date and Start Time	Environmental Conditions
M7	51 Ewart Lane, Dulwich Hill	23.10.2021 01:17pm	Clear sky; air temperature 27°C, wind speed <5 m/s; relative humidity 40%.
M8	57 Ewart Lane, Dulwich Hill	23.10.2021 01:33pm	Clear sky; air temperature 27°C, wind speed <5 m/s; relative humidity 40%.
M9	2 Hopetoun Street, Hurlstone Park	23.10.2021 02:10pm	Clear sky; air temperature 27°C, wind speed <5 m/s; relative humidity 42%.
M10	3A Commons Street, Hurlstone Park	23.10.2021 02:33pm	Clear sky; air temperature 26°C, wind speed <5 m/s; relative humidity 41%.
M11	3A Commons Street, Hurlstone Park	23.10.2021 02:48pm	Clear sky; air temperature 26°C, wind speed <5 m/s; relative humidity 41%.
M12	105 Duntroon Street, Hurlstone Park	23.10.2021 03:06pm	Clear sky; air temperature 26°C, wind speed <5 m/s; relative humidity 41%.
M13	48 Floss Street, Hurlstone Park	23.10.2021 04:07pm	Clear sky; air temperature 26°C, wind speed <5 m/s; relative humidity 41%.

3 Noise Monitoring results

The results of the noise monitoring are presented in Table 3-1 below.

Table 3-1: Measured noise levels LAeq(15min)

Massurement ID	Assessment Point	Prediction assumption (plant and equipment)	Predicted noise	Measured plant	Measured noise	level dB(A)	Above predicted	Com
Measurement ID	Assessment Point	Prediction assumption (plant and equipment)	level dB(A)	Measured plant	L _{Aeq} (15min)	L _{Amax}	noise level?	
M1	7 Commons Street, Hurlstone Park	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	77 ^µ	2T excavator unloading with delivery truck, 7T hi-rail excavator transporting materials, concrete saw	63	86	No (L _{Aeq, 15min})	The meas becau excav meas sawin locati impa
M2	3A Commons Street, Hurlstone Park	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	82 ^µ	7T excavator with bucket attachment, 5T excavator idling, fencing removal	65	96	No (L _{Aeq, 15min})	The n nearb signif excav this n impac the d affect
M3	20 Redman parade, Belmore	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	66 ^T	Hi-rail dump truck, stockpile management, 5T excavator with bucket attachment	58	75	No (Laeq, 15min)	The n meas hi-rai attacl notec metre distar appro
M4	17 Redman parade, Belmore	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	60 [†]	Hi-rail dump truck, stockpile management, 5T Excavator with bucket	60	82	No (L _{Aeq, 15min})	The n
M5	1A Shadforth Street, Wiley Park	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	83 ^H	5T Excavator with hammer attachment, handheld jackhammer	62	74	No (Laeq, 15min)	The n site th conce Furth hand notee distar facad signif
M6	1A Shadforth Street, Wiley Park	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	83 ^H	5T excavator with hammer attachment, handheld jackhammer	63	82	No (Laeq, 15min)	The n site th conce Furth handl notec distar facad signif
M7	51 Ewart Lane, Dulwich Hill	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	74 ^H	8T excavator with hammer attachment, concrete truck	69	81	No (L _{Aeq, 15min})	The n meas 8T ex durin
M8	57 Ewart Lane, Dulwich Hill	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	77 ^н	8T excavator with hammer attachment, concrete truck	70	82	No (LAeq, 15min)	The n meas 8T ex durin
M9	2 Hopetoun Street, Hurlstone Park	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	73 [†]	Vacuum truck, hi-rail dump truck	69	76	No (Laeq, 15min)	The n

mments

e measured $L_{Aeq, 15min}$ is lower than the predicted noise level. Note that the easured noise level is significantly lower than the predicted noise level cause only the 2T excavator unloading with delivery truck, 7T hi-rail cavator transporting materials and concrete saw were operating during this easurement. Furthermore, it was noted on site that the measured concrete wing activity was approximately 100 metres away from the measured cation. In the prediction model, the distance between the closest high pact work area and the most affected facade is approximately 15 metres.

e measured L_{Aeq, 15min} is lower than the predicted noise level. L_{Amax} caused by arby steel fence dropping. Note that the measured noise level is unificantly lower than the predicted noise level because only the 7T cavator with bucket attachment and 5T excavator were operating during is measurement. Furthermore, it was noted on site that there were no high pact activities occurring during this measurement. In the prediction model, e distance between the closest high impact work area and the most fected facade is approximately 10 metres.

e measured $L_{Aeq, 15min}$ is lower than the predicted noise level. Note that the easured noise level is lower than the predicted noise level because only the rail dump truck, stockpile management and 5T excavator with bucket eachment were operating during this measurement. Furthermore, it was ted on site that the measured construction activity was approximately 40 etres away from the measurement location. In the prediction model, the stance between the closest work area and the most affected facade is proximately 30 metres.

e measured LAeq, 15min is consistent with the predicted noise level.

e measured L_{Aeq, 15min} is lower than the predicted noise level. It was noted on e that the hammering works were occurring underneath the station ncourse. As a result, the noise source was shielded by the station structure. rthermore, only the 5T Excavator with hammer attachment and the ndheld jackhammer were operating during this measurement. It was also ted on site that the measured construction activity was approximately 50 etres away from the measurement location. In the prediction model, the stance between the closest high impact work area and the most affected cade is approximately 15 metres. Therefore, the measured noise level is unificantly below the predicted noise level.

e measured L_{Aeq, 15min} is lower than the predicted noise level. It was noted on e that the hammering works were occurring underneath the station ncourse. As a result, the noise source was shielded by the station structure. rthermore, only the 5T Excavator with hammer attachment and the ndheld jackhammer were operating during this measurement. It was also ted on site that the measured construction activity was approximately 50 etres away from the measurement location. In the prediction model, the stance between the closest high impact work area and the most affected cade is approximately 15 metres. Therefore, the measured noise level is unificantly below the predicted noise level.

e measured $L_{Aeq, 15min}$ is lower than the predicted noise level. Note that the easured noise level is lower than the predicted noise level because only the excavator with hammer attachment and concrete truck were operating ring this measurement.

e measured $L_{Aeq.\,15min}$ is lower than the predicted noise level. Note that the easured noise level is lower than the predicted noise level because only the excavator with hammer attachment and concrete truck were operating ring this measurement.

e measured LAeq, 15min is lower than the predicted noise level.

leasurement ID Assessment Point		Duadiation accumution (alant and accimums)	Predicted noise	M 11.	Measured noise level dB(A)		Above predicted	Со
Measurement ID	Assessment Point	Prediction assumption (plant and equipment)	level dB(A)	Measured plant	L _{Aeq(15min)}	L _{Amax}	noise level?	
M10	3A Commons Street, Hurlstone Park	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	82 ^H	Power hand tools, 5T excavator with bucket attachment, 5T excavator with hammer attachment, hi-rail dump truck	62	78	No (L _{Aeq, 15min})	The mea becc duri cons mea clos
M11	3A Commons Street, Hurlstone Park	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	82 ^H	Power hand tools, 5T excavator with bucket attachment, 5T excavator with hammer attachment, hi-rail dump truck	63	78	No (L _{Aeq, 15min})	The mea: beca exca durir cons mea: close 10 m
M12	105 Duntroon Street, Hurlstone Park	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	84 ^H	Two 5T Excavator with bucket attachment, two hi-rail dump truck, handheld power drill	67	86	No (L _{Aeq, 15} min)	The mea beca truck Furtl prov Dun work it wa appr
M13	48 Floss Street, Hurlstone Park	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	76 [†]	Concrete saw, two 5T excavator with bucket attachment, two hi- rail dump truck	52	69	No (LAeq, 15min)	The mea: beca two acce resul pred affec that away

H: Predicted L_{Aeq, 15min} for High impact activities

It can be seen from Table 3-1 that, the measured LAeq, 15min noise levels were below the predicted noise levels. The mitigation and management measures implemented were therefore considered suitable for the measured activities.

omments

he measured L_{Aeq. 15min} is lower than the predicted noise level. Note that the neasured noise level is significantly lower than the predicted noise level ecause only the power hand tools, 5T excavator with bucket attachment, 5T xcavator with hammer attachment and a hi-rail dump truck were operating luring this measurement. Furthermore, it was noted that the measured onstruction activity was approximately 7 to 40 metres away from the neasurement location. In the prediction model, the distance between the losest high impact work area and the most affected facade is approximately 0 metres.

he measured L_{Aeq. 15min} is lower than the predicted noise level. Note that the neasured noise level is significantly lower than the predicted noise level ecause only the power hand tools, 5T excavator with bucket attachment, 5T xcavator with hammer attachment and a hi-rail dump truck were operating uring this measurement. Furthermore, it was noted that the measured onstruction activity was approximately 7 to 40 metres away from the neasurement location. In the prediction model, the distance between the losest high impact work area and the most affected facade is approximately 0 metres.

he measured L_{Aeq, 15min} is lower than the predicted noise level. Note that the neasured noise level is significantly lower than the predicted noise level ecause only the two 5T Excavator with bucket attachment, two hi-rail dump ruck and a handheld power drill were operating during this measurement. urthermore, access to the most affected facade for this receiver was not rovided. As a result, the measurement was taken on the facade facing buttroon Street. In the prediction model, the distance between the closest rork area and the most affected facade is approximately 4 metres. However, was noted on site that the measured construction activity were pproximately 23 metres away from the measurement location.

he measured L_{Aeq, 15min} is lower than the predicted noise level. Note that the neasured noise level is significantly lower than the predicted noise level ecause only the concrete saw, two 5T excavator with bucket attachment and wo hi-rail dump truck were operating during this measurement. Furthermore, ccess to the most affected facade for this receiver was not provided. As a esult, the measurement was taken on the facade facing Floss Street. In the rediction model, the distance between the closest work area and the most ffected facade is approximately 20 metres. However, it was noted on site nat the measured construction activity were approximately 47 to 50 metres way from the measurement location.

4 Vibration Monitoring results

4.1 Attended vibration monitoring

The established vibration criteria for cosmetic damage in the Construction Noise & Vibration – OOHW Assessment Stage 2 Possession Works (CNV-OOHWA)¹ is as follows:

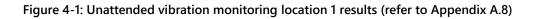
- Reinforced or frame structures: 25.0 mm/s
- Unreinforced or light framed structures: 7.5 mm/s
- Heritage structures: 2.5 mm/s

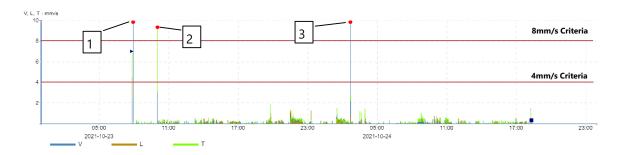
The results of the vibration monitoring are presented in Table 4-1.

Table 4-1: Measured vibration levels	Table 4-1:	Measured	vibration	levels
--------------------------------------	------------	----------	-----------	--------

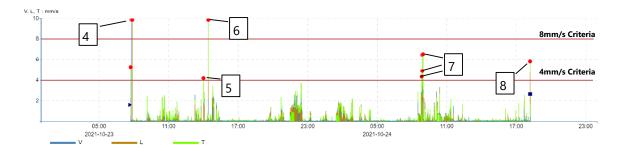
Measurement ID	Assessment point	Plant	Distance from source	Baseline 95 th percentile PPV	95th percentile PPV (mm/s)	Maximum PPV (mm/s)	Comments
M15	Wiley Park Station, location 1	Handheld jackhammer	10m	0.06	0.64	0.88	The accelerometer was mounted on the concourse station structure at Wiley Park Station. During the hammering activity, the handheld jackhammer produced vibration levels that were below the established vibration criteria. As a result, the handheld jackhammer was allowed to be operated.
M16	Wiley Park Station, location 2	5T excavator with hammer attachment	10m	0.06	0.25	0.56	The accelerometer was mounted on the concourse station structure at Wiley Park Station. During the hammering activity, the handheld jackhammer produced vibration levels that were below the established vibration criteria. As a result, the 5T excavator with hammer attachment was allowed to be operated.

It can be seen from Table 4-1 that the listed vibration intensive equipment has met the established vibration criteria at the referenced distance between the vibration source and the sensitive structure. As a result, the listed vibration intensive plant were allowed to be operated during the station upgrade works.


¹ TL927-1-02F01 CNV_OOHWA WE42 Possession April 2021 (r4), dated: 06 April 2021


4.2 Neighbouring garage structure at 3A Commons Street Vibration Monitoring

In accordance with the Hurlstone Park Station Vibration Monitoring Plan², the established vibration limits for the affected garage structure are shown below:


- Greater than or equal to 4 mm/s (cosmetic damage is possible);
- Greater than or equal to 8 mm/s (cosmetic damage becoming more likely).

The results of the unattended vibration measurements for the neighbouring garage structure at 3A Commons Street are presented in Figure 4-1 and Figure 4-2.

Figure 4-2: Unattended vibration monitoring location 2 results (refer to Appendix A.8)

² Sydney Metro Southwest – Station Upgrades – Hurlstone Park Station Vibration Monitoring Plan (ref: TL927-1-14F01 Hurlstone Park Stn VIB MON PLAN (r2)), dated 14 October 2021

The discussion of the unattended vibration measurements is summarised in Table 4-2 below.

Exceedance ID	Date and Time	Cause of exceedance
1	23.10.2021 7:45am	At this time, the vibration monitor was mounted on the ground spike to commence monitoring. Exceedance was not caused by the nearby construction activities.
2	23.10.2021 9:58am	At this time, the vibration monitor measured an instantaneous vibration level of 17.00 mm/s. Analysis of the exceedance found that the impulsive characteristic of the exceedance was likely caused by an extraneous event not related to construction activities.
3	24.10.2021 2:40am	At this time, a construction worker accidentally tripped on the vibration monitor. Therefore, this exceedance was not caused by the nearby construction activities.
4	23.10.2021 7:50am	At this time, the vibration monitor was mounted on the ground spike to commence monitoring. Exceedance was not caused by the nearby construction activities.
5	23.10.2021 2:00am	At this time, the vibration monitor measured 4.2 mm/s. It was noted on site that this exceedance was caused by the excavation bucket impacting the sandstone during earth works. The works were stopped after the exceedance message was received. Wall inspection was carried out per structural engineer's advice. It was noted that there was no apparent cosmetic damage.
6	23.10.2021 2:25pm	At this time, the vibration monitor measured an instantaneous vibration level of 13.9 mm/s. It was noted on site that this exceedance was caused by the excavation spotter bumping the monitor. Exceedance was not caused by the nearby construction activities.
7	24.10.2021 8:50am	At this time, the site engineer confirmed that the exceedances were caused by a rockhammering activity. The rockhammering works were stopped and the methodology was changed to reduce the vibration impact. The revised methodology rockhammering works were below the 4 mm/s criterion.
8	24.10.2021 6:00pm	At this time, the vibration monitor was removed from the ground spike to complete the monitoring. Exceedance was not caused by the nearby construction activities.

Table 4-2: Unattended vibration monitoring summary

It can be seen in Figure 4-1 and Figure 4-2 that the vibration levels produced from the vibration intensive works in the vicinity of the affected garage structure is below 4 mm/s. Note that there were events that resulted in an instantaneous vibration level of above 4 mm/s which are justified in Table 4-2.

5 Conclusion

Renzo Tonin & Associates completed noise and vibration monitoring for the WE17 possession works. The results of the noise measurements were below the predicted L_{Aeq 15minutes} levels presented in the Gatewave model prepared for the works. The results of the vibration measurements were typically below the established vibration criteria presented in the CNV-OOWHA and Hurlstone Park Station Vibration Monitoring Plan prepared for the works. There were several events that resulted in an instantaneous vibration level of above 4 mm/s. The likely cause of each event is outlined in Table 4-2. Where exceedance was found to be caused by construction activity, the methodology was changed and subsequent vibration generated by the revised methodology construction was below the trigger levels.

Document control

Date	Revision history	Non-issued revision	Issued revision	Prepared	Instructed	Reviewed / Authorised
28.10.2021	First Issue	0,1	2	J. Liang	M. Tabacchi/ T. Gowen	T. Gowen
04.11.2021	Report revised to address Client's comments	-	3	R. Zhafranata	T. Gowen	T. Gowen

File Path: R:\AssocSydProjects\TL901-TL950\TL927 Southwest Metro - Stations Upgrades\1 Docs\16 October WE17 possession\TL927-1-16F01 WE17 Noise and Vibration Monitoring Report (r3).docx

Important Disclaimers:

The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.

We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.

External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systems (eg facade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in Such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

APPENDIX A Measurement locations

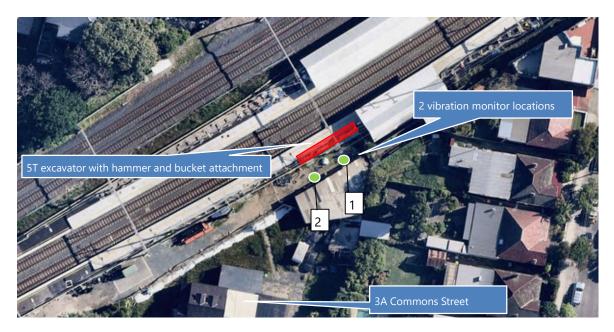
A.1 3A and 7 Commons Street, Hurlstone Park

A.2 20 Redman Parade, Belmore

A.3 1A Shadforth Street, Wiley Park

A.4 51 and 57 Ewart Lane, Dulwich Hill

A.5 2 Hopetoun Street, Hurlstone Park


A.6 105 Duntroon Street, Hurlstone Park

A.7 48 Floss Street, Hurlstone Park

A.8 Hurlstone Park Station

A.9 Wiley Park Station

Appendix 11 – TL927-1-17F01 WK19 NOISE AND VIBRATION MONITORING REPORT (R2)

Acoustics Vibration Structural Dynamics

11 November 2021 TL927-1-17F01 WE19 Noise and Vibration Monitoring Report (r2)

Downer EDI Works Pty Ltd 76 Berry Street Nth Sydney NSW 2060

Sydney Metro Southwest - Station Upgrades - WE19 Possession Works

1 Introduction

Renzo Tonin & Associates was engaged by Downer EDI Works to conduct noise and vibration monitoring during the Station Upgrades WE19 possession works for Sydney Metro Southwest. The noise monitoring was undertaken to verify predicted noise levels in the corresponding Gatewave model (Gatewave scenario ID: 2973 for Dulwich Hill Station works). The vibration monitoring was undertaken to establish site specific minimum working distances for vibration intensive plants and monitor potentially affected structures. This report provides a summary of the monitoring results.

2 Details of monitoring

Noise monitoring was undertaken at Dulwich Hill Station on 6th November 2021. Attended vibration monitoring was undertaken at Dulwich Hill Station on 6th November 2021. Two unattended vibration monitors were installed at the neighbouring garage structure at 3A Commons Street, Hurlstone Park between 5:00pm 5th November and 4:30pm 7th November 2021.

2.1 Measurement location

The noise measurements were conducted at the worst affected residential receiver, relative to the measured works. The attended vibration monitoring was conducted at Dulwich Hill Station during rockhammering activity. The measurement locations are listed in Table 2-1. Figures depicting the monitoring locations are included in APPENDIX A.

Measurement ID	Assessment Point	Date and time	Measured plant	Monitoring type	Approx. distance to measured plant	Temporary noise barrier between measured plant/receiver
M1	51A Ewart Lane, Dulwich Hill (Appendix A.1)	06.11.2021 08:52am - 09:07am	5T excavator with hammer attachment, delivery truck and vacuum truck	Noise	30m	No
M2	57A Ewart Lane, Dulwich Hill (Appendix A.1)	06.11.2021 09:08am - 09:23am	5T excavator with hammer attachment, 3T excavator moving materials	Noise	35m	No
M3	59 Ewart Steet, Dulwich Hill (Appendix A.1)	06.11.2021 09:24am - 09:40am	5T excavator with hammer attachment, rotary cutter, reversing beeper and vacuum truck	Noise	50m	No
M4	Dulwich Hill Station (Appendix A.2)	06.11.2021 10:00am – 11:00am	5T excavator with hammer attachment	Vibration	3m, 5m and 6m	N/A
M5	Neighbouring garage structure at 3A Commons Street, Hurlstone Park (Appendix A.3)	05.11.2021 – 07.11.2021 05:00pm – 04:30pm	Power hand tools, excavator with bucket attachment	Vibration	5m	N/A

Table 2-1: Measurement locations

2.2 Measurement equipment

Noise measurement equipment consisted of one NTi Audio XL2 Type 1 sound level meter and microphone calibrator. The microphone was checked prior and after measurements using a Bruel & Kjaer Type 4231 calibrator. No significant drift in calibration was observed. All instrumentation complies with AS IEC 61672.1 2004 '*Electroacoustics - Sound Level Meters*' and carries current NATA certification (or if less than 2 years old, manufacturers certification).

Table 2-2 summarises the details of noise measurement equipment.

Table 2-2: Summary of noise measurement equipment

Instrument	Make	Model	Serial Number	Last Calibrated
Type 1 Sound Level Meter (XL2-B)	NTi	XL2	A2A-16217-E0	13 August 2021
Type 1 Sound Level Meter Calibrator	B&K	Туре 4231	3009707	2 December 2020

The instrumentation used for the vibration measurement are summarised in Table 2-3. The accelerometers used in the measurements have current calibration certificates.

Table 2-3: Summary of vibration instrumentation

Туре	Make / Model
Triaxial Transducers	Sigicom C12 (SN: 70250)
Triaxial Transducers	Sigicom C22 (SN: 102479)
Accelerometer	Endevco 61C13
Type 1 Signal Analyser	Soundbook-2

2.3 Environmental conditions

Environmental conditions recorded during the measurements are provided in Table 2-4. Environmental conditions did not have an adverse effect on the measured noise and vibration levels.

Measurement ID	Assessment Point	Date and Start Time	Environmental Conditions
M1	51A Ewart Lane, Dulwich Hill	06.11.2021 08:52am	Clear sky; air temperature 24°C, wind speed <5 m/s; relative humidity 46%.
M2	57A Ewart Lane, Dulwich Hill	06.11.2021 09:08am	Clear sky; air temperature 24°C, wind speed <5 m/s; relative humidity 46%.
M3	59 Ewart Steet, Dulwich Hill	06.11.2021 09:24am	Clear sky; air temperature 24°C, wind speed <5 m/s; relative humidity 46%.

Table 2-4: Environmental conditions

3 Noise Monitoring results

The results of the noise monitoring are presented in Table 3-1 below.

Table 3-1: Measured noise levels LAeq(15min)

Measurement			Predicted noise	M 11.	Measured noise level dB(A)		•	Comments
ID	D Assessment Point	Prediction assumption (plant and equipment)	level dB(A)	Measured plant	L _{Aeq(15min)}	L _{Amax}	noise level?	
M1	51A Ewart Lane, Dulwich Hill	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	74 ^н	5T excavator with hammer attachment, delivery truck and vacuum truck	74*	82	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is
M2	57A Ewart Lane, Dulwich Hill	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	77 ^н	5T excavator with hammer attachment, 3T excavator moving materials	70*	86	No (L _{Aeq, 15} min)	The measured L _{Aeq, 15min} is construction worker drop predicted noise level bec Furthermore, the rockhar measurement location. T monitoring location.
M3	59 Ewart Steet, Dulwich Hill	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	74 ^H	5T excavator with hammer attachment, rotary cutter, reversing beeper and vacuum truck	63*	78	No (LAeq, 15min)	The measured L _{Aeq, 15min} is is significantly lower thar intermittent during the m compared to the measur shielded at this monitorin construction activity was prediction model, the dis approximately 25 metres
Note:	H: Predicted L _{Aeq, 15min} fo	r high impact activities						approximately 25 r

*: Added 5dB(A) penalty for high impact activities

It can be seen from Table 3-1 that, the measured L_{Aeq, 15min} noise levels were below the predicted noise levels (measured L_{Aeq, 15min} for 51A Ewart Lane was consistent with the predicted noise level). The mitigation and management measures implemented were therefore considered suitable for the measured activities.

is consistent with the predicted noise level.

in is lower than the predicted noise level. The measured L_{Amax} was caused by a ropping materials. Note that the measured noise level is lower than the because the rockhammering activity is intermittent during the measurement. hammering work area is at a lower ground level compared to the n. Therefore, the rockhammering activity was partially shielded at this

in is lower than the predicted noise level. Note that the measured noise level han the predicted noise level because the rockhammering activity is e measurement. The rockhammering work area is at a lower ground level surement location. Therefore, the rockhammering activity was partially oring location. Furthermore, it was noted on site that the measured was approximately 50 metres away from the measurement location. In the distance between the closest work area and the most affected facade is res.

4 Vibration Monitoring results

4.1 Attended vibration monitoring and minimum working distance

The established vibration criteria for cosmetic damage in the Construction Noise & Vibration – OOHW Assessment Stage 2 Possession Works (CNV-OOHWA)¹ is as follows:

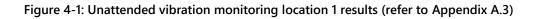
- Reinforced or frame structures: 25.0 mm/s
- Unreinforced or light framed structures: 7.5 mm/s
- Heritage structures: 2.5 mm/s

The results of the vibration monitoring are presented in Table 4-1.

Table 4-1: Measured vibration levels	Table 4-1:	Measured	vibration	levels
--------------------------------------	------------	----------	-----------	--------

Measurement ID	Assessment point	Plant	Distance from source	Baseline 95 th percentile PPV	95th percentile PPV (mm/s)	Maximum PPV (mm/s)	Comments
M4	Dulwich Hill Station	5T excavator with hammer attachment	6m	0.04	0.90	0.95	At a distance of 6 metres away, the 5T excavator with hammer attachment produced vibration levels that are below the established vibration screening criteria.
		5T excavator with hammer attachment	5m	0.04	1.08	1.13	At a distance of 5 metres away, the 5T excavator with hammer attachment produced vibration levels that are below the established vibration screening criteria.
		5T excavator with hammer attachment	3m	0.04	1.60	1.66	At a distance of 3 metres away, the 5T excavator with hammer attachment produced vibration levels that are below the established vibration screening criteria.

It can be seen from Table 4-1 that the 5T excavator with hammer attachment produced vibration levels that were below the established vibration criteria, at a distance of 3 metres away. As a result, the site specific minimum working distance for the 5T excavator with hammer attachment is 3 metres for heritage, reinforced or unreinforced structures.


¹ TL927-1-02F01 CNV_OOHWA WE42 Possession April 2021 (r4), dated: 06 April 2021


4.2 Neighbouring garage structure at 3A Commons Street Vibration Monitoring

In accordance with the Hurlstone Park Station Vibration Monitoring Plan², the established vibration limits for the affected garage structure are shown below:

- Greater than or equal to 4 mm/s (cosmetic damage is possible);
- Greater than or equal to 8 mm/s (cosmetic damage becoming more likely).

The results of the unattended vibration measurements for the neighbouring garage structure at 3A Commons Street are presented in Figure 4-1 and Figure 4-2.

Figure 4-2: Unattended vibration monitoring location 2 results (refer to Appendix A.3)

² Sydney Metro Southwest – Station Upgrades – Hurlstone Park Station Vibration Monitoring Plan (ref: TL927-1-14F01 Hurlstone Park Stn VIB MON PLAN (r2)), dated 14 October 2021

The discussion of the unattended vibration measurements is summarised in Table 4-2 below.

Exceedance ID	Date and Time	Cause of exceedance
1	05.11.2021 05:32pm	At this time, the vibration monitor was mounted on the ground spike to commence monitoring. Exceedance was not caused by the nearby construction activities.
2	07.11.2021 04:06pm	At this time, the vibration monitor was removed from the ground spike at the completion of monitoring. Exceedance was not caused by the nearby construction activities.
3	05.11.2021 05:12pm	At this time, the vibration monitor was mounted on the ground spike to commence monitoring. Exceedance was not caused by the nearby construction activities.
4	05.11.2021 05:54pm	At this time, a Renzo Tonin & Associates engineer checked and tested if the vibration monitor was operating correctly. Exceedance was not caused by the nearby construction activities.
5	07.11.2021 03:54pm	At this time, the vibration monitor was removed from the ground spike at the completion of monitoring. Exceedance was not caused by the nearby construction activities.

Table 4-2: Unattended vibration monitoring summary

It can be seen in Figure 4-1 and Figure 4-2 that the vibration levels produced from the vibration intensive works in the vicinity of the affected garage structure is below 4 mm/s. Note that there were events that resulted in an instantaneous vibration level of above 4 mm/s which are justified in Table 4-2.

5 Conclusion

Renzo Tonin & Associates completed noise and vibration monitoring for the WE19 possession works. The results of the noise measurements were below the predicted L_{Aeq 15minutes} levels presented in the Gatewave model prepared for the works. Based on the attended vibration measurement at Dulwich Hill Station, the site specific minimum working distance for the 5T excavator with hammer attachment was established at 3 metres away for heritage, reinforced or unreinforced structures. The results of the unattended vibration measurements were typically below the established vibration criteria presented in the Hurlstone Park Station Vibration Monitoring Plan prepared for the works. There were events that resulted in an instantaneous vibration level of above 4 mm/s. The cause of each event is outlined in Table 4-2.

Document control

Date	Revision history	Non-issued revision	Issued revision	Prepared	Instructed	Reviewed / Authorised
11.11.2021	First Issue	0, 1	2	J. Liang	M. Tabacchi/ T. Gowen	T. Gowen

File Path: R:\AssocSydProjects\TL901-TL950\TL927 Southwest Metro - Stations Upgrades\1 Docs\17 October WE19 possession\TL927-1-17F01 WE19 Noise and Vibration Monitoring Report (r2).docx

Important Disclaimers:

The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

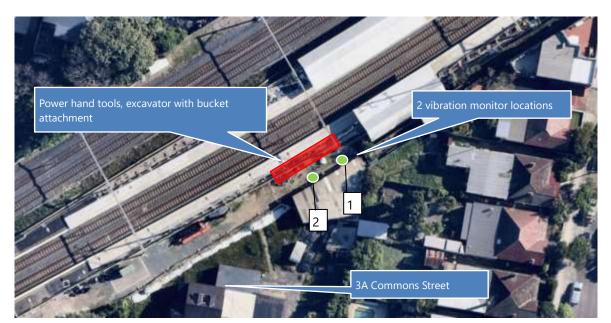
We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.

We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.

External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systems (eg facade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in Such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

APPENDIX A Measurement locations



A.1 51A Ewart Lane, 57 Ewart Lane and 59 Ewart Street, Dulwich Hill

A.2 Dulwich Hill Station (Vibration)

A.3 Hurlstone Park Station (Vibration)

Appendix 12 – TL927-1-03F01 HURLSTONE PARK STN VIB MON REPORT (R1)

Acoustics Vibration Structural Dynamics

13 May 2021 TL927-1-03F01 Hurlstone Park Stn VIB MON Report (r1)

Downer EDI Works Pty Ltd 76 Berry Street North Sydney NSW 2060

Sydney Metro Southwest - Station Upgrades - Hurlstone Park Station Vibration Report

1 Introduction

Renzo Tonin & Associates was engaged by Downer EDI Works to conduct vibration monitoring during the Station Upgrade works for Sydney Metro Southwest. The monitoring was undertaken to determine the site specific minimum working distances, when a specific handheld jackhammer is being operated.

2 Details of monitoring

Vibration monitoring was undertaken at Hurlstone Park Station during the jackhammering works on 12th May 2021.

2.1 Measurement location

The vibration monitoring was conducted on the station platform at Hurlstone Park Station. The measurement location is listed in Table 2-1. Figures depicting the monitoring location is included in APPENDIX A.

Table 2-1: Measurement location

Assessment Point	Date	Time	Measured plant	Measured distance
Hurlstone Park Station	12.05.2021	09:20am – 09:35am	96 pounds handheld jackhammer*	0.5, 1, 2, 3 metres away from the source

Notes * The plant specification provided by the operator

The instrumentation used for the vibration measurement is summarised in Table 2-2. The accelerometers used in the measurements have current calibration certificates.

Table 2-2 – Instrumentation

Туре	Make / Model
Type 1 Signal Analyser	Soundbook-2
Accelerometer	Endevco 61C3

3 Vibration Monitoring results

The established vibration criteria for cosmetic damage is as follows:

- Reinforced or frame structures: 25.0 mm/s
- Unreinforced or light framed structures: 7.5 mm/s
- Heritage structures: 2.5 mm/s

The results of the vibration monitoring are present in below.

Table 3-1: Measured vibration levels

Plant	Distance from source	95 th percentile PPV (mm/s)	Maximum PPV (mm/s)	Comments
96 pound handheld jackhammer	0.5m	1.17	1.35	At 0.5 metres away, the 96 pounds handheld jackhammer produced vibration levels that are below the established vibration criteria.
	1m	0.97	1.11	At 1 metre away, the 96 pounds handheld jackhammer produced vibration levels that are below the established vibration criteria.
	2m	0.85	1.11	At 2 metres away, the 96 pounds handheld jackhammer produced vibration levels that are below the established vibration criteria.
	3m	0.30	0.32	At 3 metres away, the 96 pounds handheld jackhammer produced vibration levels that are below the established vibration criteria.

It can be seen from Table 3-1 that, the 96 pound handheld jackhammer produced vibration levels that were below the vibration criterion of 2.5 mm/s for heritage structures, at a distance of 0.5 metres away. As a result, the site specific minimum working distance for the 96 pounds handheld jackhammer is 0.5 metres for heritage, reinforced or unreinforced structures.

4 Conclusion

Renzo Tonin & Associates completed vibration monitoring for the Station Upgrade works for Sydney Metro Southwest. The vibration measurements established the site specific minimum working distances for the 96 pounds handheld jackhammer, allowing works at \geq 0.5 metres for heritage, reinforced or unreinforced structures.

Document control

Date	Revision history	Non-issued revision	lssued revision	Prepared	Instructed	Reviewed / Authorised
13.05.2021	First Issue	0	1	R. Zhafranata	T. Gowen	T. Gowen

File Path: \\syd-server\rtagroupsyd\AssocSydProjects\TL901-TL950\TL927 Southwest Metro - Stations Upgrades\1 Docs\03 VIB MON Hurlstone Park Stn 20210512\TL927-1-03F01 Hurlstone Park Stn VIB MON Report (r1).docx

Important Disclaimers:

The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.

We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.

External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systems (eg facade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in Such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

APPENDIX A Measurement location

A.1 Hurlstone Park Station

Appendix 13 – TL927-1-04F01 WILEY PARK STN VIB MON REPORT (R1)

25 May 2021 TL927-1-04f01 Wiley Park Stn VIB MON Report (r1)

Downer EDI Works Pty Ltd 76 Berry Street North Sydney NSW 2060

Sydney Metro Southwest - Station Upgrades - Wiley Park Station Vibration Report

1 Introduction

Renzo Tonin & Associates was engaged by Downer EDI Works to conduct vibration monitoring during the Station Upgrade works for Sydney Metro Southwest. The monitoring was undertaken to determine the site specific minimum working distances, when a specific excavator with hammer attachment is being operated.

2 Details of monitoring

Vibration monitoring was undertaken at Hurlstone Park Station during the jackhammering works on 14th May 2021.

2.1 Measurement location

The vibration monitoring was conducted on the station platform at Wiley Park Station. The measurement location is listed in Table 2-1. Figures depicting the monitoring location is included in APPENDIX A.

Table 2-1: Measurement location

Assessment Point	Date	Time	Measured plant	Measured slant distance
Wiley Park Station	14.05.2021	09:17am – 10:00am	1.7T Kubota excavator with hammer attachment [*]	3, 4, 5 metres away from the source

Notes * The plant specification provided by the operator

The instrumentation used for the vibration measurement is summarised in Table 2-2. The accelerometers used in the measurements have current calibration certificates.

Table 2-2 – Instrumentation

Туре	Make / Model
Type 1 Signal Analyser	Soundbook-2
Accelerometer	Endevco 61C3

3 Vibration Monitoring results

The established vibration criteria for cosmetic damage is as follows:

- Reinforced or frame structures: 25.0 mm/s
- Unreinforced or light framed structures: 7.5 mm/s
- Heritage structures: 2.5 mm/s

The results of the vibration monitoring are present in below.

Table 3-1: Measured vibration levels

Plant	Slant distance from source	95 th percentile PPV (mm/s)	Maximum PPV (mm/s)	Comments
1.7T Kubota excavator with hammer attachment	3m	0.73	1.24	At a slant distance of 3 metres away, the 1.7T Kubota excavator with hammer attachment produced vibration levels that are below the established vibration criteria.
	4m	0.23	0.56	At a slant distance of 4 metres away, the 1.7T Kubota excavator with hammer attachment produced vibration levels that are below the established vibration criteria.
	5m	0.20	0.24	At a slant distance of 5 metres away, the 1.7T Kubota excavator with hammer attachment produced vibration levels that are below the established vibration criteria.

It can be seen from Table 3-1 that, the 1.7T Kubota excavator with hammer attachment produced vibration levels that were well below the vibration criterion of 2.5 mm/s for heritage structures, at a slant distance of 3 metres away. As a result, the site specific minimum working distance for the 1.7T Kubota excavator with hammer attachment is 3 metres for heritage, reinforced or unreinforced structures.

4 Conclusion

Renzo Tonin & Associates completed vibration monitoring for the Station Upgrade works for Sydney Metro Southwest. The vibration measurements established the site specific minimum working distances for the 1.7T Kubota excavator with hammer attachment, allowing works at \geq 3 metres for heritage, reinforced or unreinforced structures.

Document control

Date	Revision history	Non-issued revision	Issued revision	Prepared	Instructed	Reviewed / Authorised
25.05.2021	First Issue	0	1	R. Zhafranata	T. Gowen	T. Gowen

File Path: R:\AssocSydProjects\TL901-TL950\TL927 Southwest Metro - Stations Upgrades\1 Docs\04 VIB MON Wiley Park Stn 20210514\TL927-1-04f01 Wiley Park Stn VIB MON Report (r1).docx

Important Disclaimers:

The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

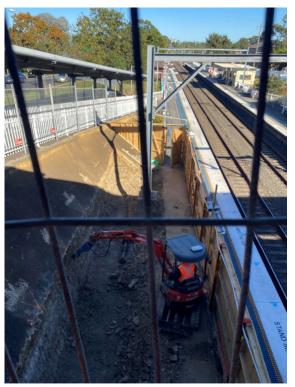
This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.

We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.


External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systems (eg facade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in Such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

APPENDIX A Measurement location

Wiley Park Station **A**.1

Appendix 14 – TL927-1-05F01 PUNCHBOWL STN VIB MON REPORT (R1)

Acoustics Vibration Structural Dynamics

19 May 2021 TL927-1-05F01 Punchbowl Stn VIB MON Report (r1)

Downer EDI Works Pty Ltd 76 Berry Street North Sydney NSW 2060

Sydney Metro Southwest - Station Upgrades - Punchbowl Station Vibration Report

1 Introduction

Renzo Tonin & Associates was engaged by Downer EDI Works to conduct vibration monitoring during the Station Upgrade works for Sydney Metro Southwest. The monitoring was undertaken to determine the site specific minimum working distances when a specific plate compactor is being operated.

2 Details of monitoring

Vibration monitoring was undertaken at Punchbowl Station during the plate compacting works on 18th May 2021.

2.1 Measurement location

The vibration monitoring was conducted on the station platform at Punchbowl Station. The measurement location is listed in Table 2-1. Figures depicting the monitoring location are included in APPENDIX A.

Table 2-1: Measurement location

Assessment Point	Date	Time	Measured plant	Measured distance
Punchbowl Station	18.05.2021	11:38am – 11:45am	80kg plate compactor*	1, 2, 3 metres away from the source

Notes * The plant specification provided by the operator

The instrumentation used for the vibration measurement is summarised in Table 2-2. The accelerometers used in the measurements have current calibration certificates.

Table 2-2 – Instrumentation

Туре	Make / Model
Type 1 Signal Analyser	Soundbook-2
Accelerometer	Endevco 61C3

3 Vibration Monitoring results

The established vibration screening criteria for cosmetic damage are as follows:

- Reinforced or frame structures: 25.0 mm/s
- Unreinforced or light framed structures: 7.5 mm/s
- Heritage structures: 2.5 mm/s

The results of the vibration monitoring are present in below.

Table 3-1: Measured vibration levels

Plant	Distance from source	95 th percentile PPV (mm/s)	Maximum PPV (mm/s)	Comments
80kg plate compactor	1m	2.26	2.38	At a distance of 1 metre away, the 80kg plate compactor produced vibration levels that are below the established vibration screening criteria.
	2m	0.85	1.22	At a distance of 2 metres away, the 80kg plate compactor produced vibration levels that are below the established vibration screening criteria.
	3m	0.75	0.86	At a distance of 3 metres away, the 80kg plate compactor produced vibration levels that are below the established vibration screening criteria.

It can be seen from Table 3-1 that, the 80kg plate compactor produced vibration levels that were below the vibration criterion of 2.5 mm/s for heritage structures, at a distance of 1 metre away. As a result, the site specific minimum working distance for the 80kg plate compactor is 1 metre for heritage, reinforced or unreinforced structures.

4 Conclusion

Renzo Tonin & Associates completed vibration monitoring for the Station Upgrade works for Sydney Metro Southwest. The vibration measurements established the site specific minimum working distances for the 80kg plate compactor, allowing works at \geq 1 metre for heritage, reinforced or unreinforced structures.

Document control

Date	Revision history	Non-issued revision	Issued revision	Prepared	Instructed	Reviewed / Authorised
19.05.2021	First Issue	0	1	R. Zhafranata	T. Gowen	T. Gowen

File Path: R:\AssocSydProjects\TL901-TL950\TL927 Southwest Metro - Stations Upgrades\1 Docs\05 VIB MON Punchbowl Stn 20210518\TL927-1-05F01 Punchbowl Stn VIB MON Report (r1).docx

Important Disclaimers:

The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.

We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.

External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systems (eg facade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in Such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

APPENDIX A Measurement location

A.1 Punchbowl Station

Appendix 15 – TL927-1-06F01 BELMORE METRO BUILDING SITE VIB MON REPORT (R1)

Acoustics Vibration Structural Dynamics

24 May 2021 TL927-1-06F01 Belmore Metro Building Site VIB MON Report (r1)

Downer EDI Works Pty Ltd 76 Berry Street North Sydney NSW 2060

Sydney Metro Southwest - Station Upgrades - Belmore Metro Service Building Site Vibration Report

1 Introduction

Renzo Tonin & Associates was engaged by Downer EDI Works to conduct vibration monitoring during the Station Upgrade works for Sydney Metro Southwest. The monitoring was undertaken to determine the site specific minimum working distances when a specific smooth drum roller is being operated.

2 Details of monitoring

Vibration monitoring was undertaken at the Belmore Metro Service site during the vibratory roller works on 20th May 2021.

2.1 Measurement location

The measurement location is listed in Table 2-1. Figures depicting the monitoring location are included in APPENDIX A.

Table 2-1: Measurement location

Assessment Point	Date	Time	Surface Geology	Measured plant	Measured distance
Belmore Metro Service Building site	20.05.2021	11:23am – 12:00pm	Clay	10T smooth drum roller [*]	3, 4, 5 metres away from the source

Notes * The plant specification provided by the operator

The instrumentation used for the vibration measurement is summarised in Table 2-2. The accelerometers used in the measurements have current calibration certificates.

Table 2-2 – Instrumentation

Туре	Make / Model
Type 1 Signal Analyser	Soundbook-2
Accelerometer	Endevco 61C3

3 Vibration Monitoring results

The established vibration screening criteria for cosmetic damage are as follows:

- Reinforced or frame structures: 25.0 mm/s
- Unreinforced or light framed structures: 7.5 mm/s
- Heritage structures: 2.5 mm/s

The results of the vibration monitoring are present in below.

Table 3-1: Measured vibration levels

Plant	Distance from source	Mode	95 th percentile PPV (mm/s)	Maximum PPV (mm/s)	Comments
10T smooth drum roller	3m	Static	<0.5	<0.5	During this measurement, vibration signals from the source could not be detected.
		Vibratory	1.74	1.87	At a distance of 3 metres away with vibratory mode, the 10T smooth drum roller produced vibration levels that are below the established vibration screening criteria.
	4m	Static	<0.5	<0.5	During this measurement, vibration signals from the source could not be detected.
		Vibratory	1.26	1.39	At a distance of 4 metres away with vibratory mode, the 10T smooth drum roller produced vibration levels that are below the established vibration screening criteria.
	5m	Static	<0.5	<0.5	During this measurement, vibration signals from the source could not be detected.
		Vibratory	0.76	0.85	At a distance of 5 metres away with vibratory mode, the 10T smooth drum roller produced vibration levels that are below the established vibration screening criteria.

It can be seen from Table 3-1 that, the 10T smooth drum roller produced vibration levels that were below the vibration criterion of 2.5 mm/s for heritage structures, at a distance of 3 metres away. As a result, the site specific minimum working distance for the 10T smooth drum roller operating on a clay surface is 3 metres for heritage, reinforced or unreinforced structures.

4 Conclusion

Renzo Tonin & Associates completed vibration monitoring for the Station Upgrade works for Sydney Metro Southwest. The vibration measurements established the site specific minimum working distances for the 10T smooth drum roller, allowing works at \geq 3 metres for heritage, reinforced or unreinforced structures.

Document control

Date	Revision history	Non-issued revision	Issued revision	Prepared	Instructed	Reviewed / Authorised
24.05.2021	First Issue	0	1	R. Zhafranata	T. Gowen	T. Gowen

File Path: \\syd-server\rtagroupsyd\AssocSydProjects\TL901-TL950\TL927 Southwest Metro - Stations Upgrades\1 Docs\06 VIB MON Belmore Metro Service Building Site 20210520\TL927-1-06F01 Belmore Metro Building Site VIB MON Report (r1).docx

Important Disclaimers:

The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.

We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.

External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systems (eg facade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in Such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

APPENDIX A Measurement location

A.1 Belmore Metro Service Building site

Appendix 16 – TL927-1-12F01 HURLSTONE PARK STN VIB MON REPORT (R1)

11 October 2021 TL927-1-12F01 Hurlstone Park Stn VIB MON Report (r1)

Downer EDI Works Pty Ltd 76 Berry Street North Sydney NSW 2060

Sydney Metro Southwest - Station Upgrades - Hurlstone Park Station Vibration Report

1 Introduction

Renzo Tonin & Associates was engaged by Downer EDI Works to conduct vibration monitoring during the Station Upgrade works for Sydney Metro Southwest. The monitoring was undertaken to determine the site specific minimum working distances when a specific handheld jackhammer is being operated.

2 Details of monitoring

Vibration monitoring was undertaken at Hurlstone Park Station during the jackhammering works on 7th October 2021.

2.1 Measurement location

The vibration monitoring was conducted on the station platform at Hurlstone Park Station. The measurement location is listed in Table 2-1. Figures depicting the monitoring location is included in APPENDIX A.

Table 2-1: Measurement location

Assessment Point	Date	Time	Measured plant	Measured distance
Hurlstone Park Station	07.10.2021	10:00am – 10:30am	96 pound handheld jackhammer*	1 and 2 metres away from the source

Notes * The plant specification provided by the operator

The instrumentation used for the vibration measurement is summarised in Table 2-2. The accelerometers used in the measurements have current calibration certificates.

Table 2-2 – Instrumentation

Туре	Make / Model
Type 1 Signal Analyser	Soundbook-2
Accelerometer	Endevco 61C3

3 Vibration Monitoring results

The established conservative vibration screening levels for cosmetic damage are as follows:

- Reinforced or frame structures: 25.0 mm/s
- Unreinforced or light framed structures (including sound heritage structures): 7.5 mm/s
- (Unsound) heritage structures: 2.5 mm/s

The results of the vibration monitoring are presented in Table 3-1.

	Table 3-1:	Measured	vibration	levels
--	------------	----------	-----------	--------

Plant	Distance from source	95 th percentile PPV (mm/s)	Maximum PPV (mm/s)	Comments
96 pound handheld jackhammer	1m	3.93	4.05	At 1 metre away, the 96 pound handheld jackhammer produced vibration levels that are below the established vibration screening level for unreinforced or light framed structures (including sound heritage structures).
	2m	1.99	2.02	At 2 metres away, the 96 pound handheld jackhammer produced vibration levels that are below the established vibration screening levels.

It can be seen from Table 3-1 that, the measured vibration levels were higher than the previous handheld jackhammer vibration measurements¹. The higher vibration levels were recorded likely due to a harder and more consistent rock (As shown in Appendix A.1). As a result, the revised specific minimum working distances for the 96 pound handheld jackhammer is 1 metre for unreinforced or light framed structures/ sound heritage structures and 2 metres for (unsound) heritage structures.

4 Conclusion

Renzo Tonin & Associates has completed vibration monitoring for the Station Upgrade works for Sydney Metro Southwest. The vibration measurements established the site specific minimum working distances for the 96 pound handheld jackhammer, allowing works at \geq 1 metre for reinforced or unreinforced structures (including sound heritage structures) and \geq 2 metres for (unsound) heritage structures.

¹ TL927-1-03F01 Hurlstone Park Stn VIB MON Report (r1), dated 13.05.2021

Document control

Date Re	evision history	Non-issued revision	Issued revision	Prepared	Instructed	Reviewed / Authorised
11.10.2021 Fi	irst Issue	0	1	R. Zhafranata	T. Gowen	T. Gowen

File Path: R:\AssocSydProjects\TL901-TL950\TL927 Southwest Metro - Stations Upgrades\1 Docs\12 VIB MON Hurlstone Park Stn 20211007\TL927-1-12D01 Hurlstone Park Stn VIB MON Report (r0).docx

Important Disclaimers:

The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.

We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.

External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systems (eg facade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in Such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

APPENDIX A Measurement location

A.1 Hurlstone Park Station

Appendix 17 – TL927-1-13F01 DULWICH HILL STN VIB MON REPORT (R1)

11 October 2021 TL927-1-13F01 Dulwich Hill Stn VIB MON Report (r1)

Downer EDI Works Pty Ltd 76 Berry Street North Sydney NSW 2060

Sydney Metro Southwest - Station Upgrades - Dulwich Hill Station Vibration Report

1 Introduction

Renzo Tonin & Associates was engaged by Downer EDI Works to conduct vibration monitoring during the Station Upgrade works for Sydney Metro Southwest. Downer EDI was advised of a complaint from the resident 1 Ewart Lane, Dulwich Hill regarding vibration impact from the works at Dulwich Hill Station site. The monitoring was undertaken in response to the complaint.

2 Details of monitoring

Vibration monitoring was undertaken at the boundary of 1 Ewart Lane, Dulwich Hill during the rockhammering works on 7th October 2021.

2.1 Measurement location

The vibration monitoring was conducted at the boundary of 1 Ewart Lane, Dulwich Hill. The vibration monitoring was not conducted inside the property because access to the property was not permitted. The measurement location is listed in Table 2-1. Figures depicting the monitoring location is included in APPENDIX A.

Table 2-1:	Measurement	location
------------	-------------	----------

Assessment Point	Date	Time	Measured plant	Measured distance
1 Ewart Lane, Dulwich Hill	07.10.2021	11:00am – 11:30am	5T excavator with a hammer attachment*	The vibration monitor was 7 metres away from the rockhammering activity

Notes * The plant specification provided by the operator

The instrumentation used for the vibration measurement is summarised in Table 2-2. The accelerometers used in the measurements have current calibration certificates.

Table 2-2 – Instrumentation

Туре	Make / Model
Type 1 Signal Analyser	Soundbook-2
Accelerometer	Endevco 61C3

3 Vibration Monitoring results

The established conservative vibration screening levels for cosmetic damage are as follows:

- Reinforced or frame structures: 25.0 mm/s
- Unreinforced or light framed structures (including sound heritage structures): 7.5 mm/s
- (Unsound) heritage structures: 2.5 mm/s

The results of the vibration monitoring are presented in Table 3-1.

Table 3-1: Measured vibration levels

Plant	Distance from source	95 th percentile PPV (mm/s)	Maximum PPV (mm/s)	Comments
5T excavator with hammer attachment	7m	1.74	1.78	At the affected property boundary, the 5T excavator with hammer attachment produced vibration levels that are below the established vibration screening levels.

It can be seen from Table 3-1 that, the 5T excavator with hammer produced vibration levels that are below the established vibration screening levels at the affected property boundary. Given that the distance between the rockhammering activity and the closest facade of the affected property is approximately 13 metres, the risk of cosmetic damage from the works is negligible.

4 Conclusion

Renzo Tonin & Associates has completed vibration monitoring for the Station Upgrade works for Sydney Metro Southwest. The vibration measurement has shown that the 5T excavator with hammer attachment complies with the established screening levels at 7 metres away from the works. As the complainant's property is approximately 13 metres away from the works, the risk of cosmetic damage is negligible.

Document control

Date	Revision history	Non-issued revision	Issued revision	Prepared	Instructed	Reviewed / Authorised
11.10.2021	First Issue	0	1	R. Zhafranata	T. Gowen	T. Gowen

File Path: R:\AssocSydProjects\TL901-TL950\TL927 Southwest Metro - Stations Upgrades\1 Docs\13 VIB MON Dulwich Hill Stn 20211007\TL927-1-13D01 Dulwich Hill Stn VIB MON Report (r0).docx

Important Disclaimers:

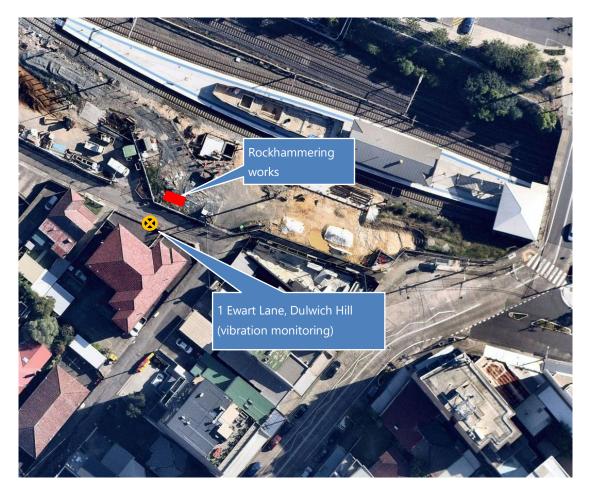
The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.


We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.

External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systems (eg facade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in Such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

APPENDIX A Measurement location

A.1 Dulwich Hill Station

