

Sydney Metro City & Southwest - Package 5 & 6

CONSTRUCTION MONITORING REPORT

NOVEMBER 2021 TO APRIL 2022

Sydney Metro City & Southwest

Package 5 & 6

Customer: Sydney Metro

Document Preparation and Control	Document Review
Geraldine Figueira – Heritage Advisor	Mark Trethewy – Environment & Sustainability Manager
Document Approval	Signature
	Masta

Project Documents Code					
Downer		Sydney Metro			

Project Document Code	Latest Version Number	Latest Version Date
Package 5 - SMCSWSW5-DEW-WEC-EM-REP-001412	0	01/06/2022
Package 6 - SMCSWSW6-DEW-WEC-EM- REP-001300		

Document Version History							
Version No.	Date	Document Status	Brief Description of Change(s) from Previous Version				
Rev A	19/05/2022	For review	Issued for comment				
Rev B	29/05/2022	For review	In response to SM & ER comments				
Rev 0	01/06/2022	Approved					

Internal Use Only
© Downer 2020. All Rights Reserved

Page 1 of 26 Version: Rev 0

Sydney Metro City & Southwest - Package 5 & 6

Table of Contents

CONSTRUCTION MONITORING REPORT	1
Sydney Metro City & Southwest	1
Package 5 & 6	1
Compliance Matrix	3
Introduction	3
Surface Water Monitoring	3
Noise and vibration	16
Appendix 1 – Surface Water Monitoring Report - Wiley Park Station - NE30161_R005_SWM_WileyPark_Rev0_R	37
Appendix 2 – Surface Water Monitoring Report - NE30161_R006_SWM_WileyPark_Rev0	38
Appendix 3 – Surface Water Monitoring Report – Wiley Park Station NE30161_R007_SWM_WileyPark_Rev0_R	39
Appendix 4 – Surface Water Monitoring Report – Wiley Park Station NE30161_R008_SWM_WileyPark_Rev0	40
Appendix 5 – TL927-1-18F01 Hurlstone Park Station Vibration Monitoring Report (r1)	41
Appendix 6 – TL927-1-19F01 WE25 Noise and Vibration Monitoring Report (r2)	42
Appendix 7 – TL927-1-20F01 Shutdown 2 Noise and Vibration Monitoring Report (r2)	43
Appendix 8 – TL927-1-21F01 2022 WE32 Noise and Vibration Monitoring Report (r1)	44
Appendix 9 – EDS-16589-HPS-18_0: Sydney Metro Package 5 and 6 – Hurlstone Park Station Moore of Garage Wall	_

Sydney Metro City & Southwest - Package 5 & 6

Compliance Matrix

Condition	Requirement	Compliance
MCoA C14	The results of the Construction Monitoring Programs must be submitted to the Planning Secretary, and relevant regulatory agencies, for information in the form of a Construction Monitoring Report at the frequency identified in the relevant Construction Monitoring Program.	This Construction Monitoring Report

Introduction

This Construction Monitoring Report has been prepared in accordance with Condition C14 of Critical State Significant Infrastructure Planning Approval 8256. It contains the results of Noise and Vibration Monitoring Program and the Water Quality Monitoring Programs, conducted as part of the station upgrades and Metro Services Building (MSB) construction at:

- Dulwich Hill (Package 5)
- Hurlstone Park (Package 6)
- Campsie (Package 5)
- Belmore (Package 6)
- Wiley Park (Package 6)
- Punchbowl (Package 5)

This report details the results of the noise, vibration and surface water monitoring conducted for a period of six (6) months of construction of Package 5 and Package 6 of the Sydney Metro Southwest Project. Construction of these packages commenced on 21 April 2021 and this report details the results of the monitoring undertaken from 8 November 2021 to 7 April 2022. Monitoring results for the first six months (approximately) of the project have been covered in a separate Construction Monitoring Report¹.

SUBMISSION REQUIREMENTS

In accordance with condition the Ministers Conditions of Approval (MCoA) C14, Construction Monitoring Report will be submitted to the following agencies for information:

- Inner West Council;
- · City of Canterbury Bankstown; and
- DPE.

The Independent Environmental Representative for DPE will review the report prior to submission.

Surface Water Monitoring

The project sites are located within the rail corridor on the T3 Bankstown line between Dulwich Hill and Punchbowl, New South Wales (NSW). The project sites form part of the overall Cooks River catchment with water from the area discharging into the Cooks River via local stormwater drainage or overland flow. The catchment area is highly urbanised with mixed residential, commercial and industrial properties.

Page 3 of 26 Version: Rev 0

¹ Please refer to documents SMCSWSW5-DEW-WEC-EM-REP-001258 (Package 5) and SMCSWSW6-DEW-WEC-EM-REP-001153 (Package 6).

Sydney Metro City & Southwest - Package 5 & 6

The closest Project worksite to an existing watercourse is the Wiley Park Station services building, which is located approximately 100m from an unnamed concrete-lined channel, which forms the upper reaches of Coxs Creek and is identified as a first-order stream within the Cooks River Catchment. Water quality is measured on an ongoing basis for the wider Cooks River catchment by the NSW Department of Planning & Environment (DPE) as part of the Beachwatch programme. The monitoring point is at Kyeemagh Baths at the mouth of the Cooks River in Port Botany. Water quality within the Cooks River catchment is influenced by stormwater, fertilisers, industrial discharges and sewage contamination. Objectives for water quality management during construction are:

- Minimise pollution of surface water through appropriate erosion and sediment control;
- Maintain existing water quality of surrounding surface watercourses.

The water quality monitoring program, in accordance with Table 13 of the SWMP, is to be undertaken quarterly in response to wet weather events (four wet weather events - >20mm of rain per 24 hours - per year), and also including dry weather sampling. Additional surface water monitoring is undertaken during construction to monitor the effectiveness of measures for managing soil and water impacts implemented. It must be conducted for the duration of construction or unless otherwise agreed to by Downer, Sydney Metro and the Independent Environmental Representative for DPE. Details of the Water Quality Monitoring Program and the mitigation measures to reduce the impact of the construction activities are contained within the Soil and Water Management Plans listed below:

Southwest Metro – Dulwich Hill, Campsie and Punchbowl Station Upgrades Soil and Water Management Plan. This document can be accessed via the Downer Sydney Metro Environment Documents website.

https://www.downergroup.com/Content/cms/Documents/Sydney_Metro_package_5_6/Dulwich_Hill_C ampsie_and_Punchbowl_SWMP Rev07.pdf

Southwest Metro – Hurlstone Park, Belmore and Wiley Park Station Upgrades Soil and Water Management Plan. This document can be accessed on the Downer Sydney Metro Environment Documents website:

https://www.downergroup.com/Content/cms/Documents/Sydney_Metro_package_5_6/Hurlstone_Park Belmore_and_Wiley_Park_SWMP_Rev07.pdf

RESULTS - SURFACE WATER MONITORING

In accordance with Table 21.4 of the EIS, Vol. 1B, the water quality trigger values relevant for the project are the following:

Indicator	Criteria (lowland rivers)
Total phosphorus	50 ug/L
Total nitrogen	500 ug/L
Chlorophyll-a	5 ug/L
Turbidity	6-50 NTU
Salinity (electrical conductivity)	125-2,200 uS/cm
Dissolved oxygen (per cent saturation)	85-110 %
pH	6.5-8.5

Page 4 of 26 Internal Use Only Version: Rev 0 © Downer 2020. All Rights Reserved

Sydney Metro City & Southwest - Package 5 & 6

A summary of the Surface Water Monitoring Results is contained within the table below. The complete Surface Water Monitoring Reports are contained within Appendixes 1-4. Bold red text indicates initial criteria exceedances.

Internal Use Only
© Downer 2020. All Rights Reserved

Page 5 of 26 Version: Rev 0

Parameter	12 Nove	ember 2021	26 November 2021		9-10 February 2022		23 February 2022		9 March 2022	
	WP1	WP2	WP1	WP2	WP1	WP2	WP1	WP2	WP1	WP2
	(upstream)	(downstream)	(upstream)	(downstream)	(upstream)	(downstream)	(upstream)	(downstream)	(upstream)	(downstream)
Monitoring	Wet weather event (mid-		Wet weather event (mid-		Dry weather (mid-construction)		Wet weather event (mid-		Wet weather event (mid-	
Event		struction)		truction)	,	,		truction)		truction)
Water Depth (m)	0.15	0.20	0.15	0.20	0.05	0.1	0.3-0.4	0.2-0.3	0.15-0.2	0.15-0.2
рН	8.10	8.42	6.07	7.34	8.59	8.78	7.50	7.62	7.78	7.85
Electrical Conductivity (µS/cm)	514	509.2	389.2	484	680	650	230	431	622	659
Dissolved Oxygen (mg/L)	6.42	5.63	9.05	9.31	7.21	5.06	4.94	6	5.38	5.34
Dissolved Oxygen (%)	68	63	98.7	101.9	92	62.2	56.7	72	58.4	58.1
SHE1 Redox Potential (mV)	70.8	80.4	183.7	196.3	240.3	196	261.5	287.6	282.3	290.4
Total Suspended Solids (TSS) (mg/L)	8.4	7.6	16	7.8	<5	<5	18	9.6	17	7.8
Turbidity (NTU)	21	19	25	17	2.9	1.2	37	28	31	22
Total phosphorus (mg/L)	0.15	0.02	0.13	0.18	0.14	0.08	0.23	0.28	0.16	0.14
Total nitrogen (mg/L)	2.7	2.8	1.6	2.4	1.7	1.6	1.64	2.6	1.9	1.8
Chlorophyll- a (mg/L)	<0.002	<0.002	<0.002	<0.0027	<2	<2	<2	<2	<0.002	<0.002
Condition	Clear, Low Turbidity	Clear, Low Turbidity	Clear, Low Turbidity	Clear, Low Turbidity	Clear, Low Turbidity	Clear, Low Turbidity				
Oil and Grease (mg/L)	<10	<10	<10	<10	<10	<10	<10	<10	10	<10

Sydney Metro City & Southwest - Package 5 & 6

Figure 1: WP1 and WP2 location map. Please note that only WP1-DP1 and WP2-DP1 are Downer's discharge points.

For reference, the previous monitoring events at these locations yielded the results below²:

Parameter	10 Mar	ch 2021	20 Marc	ch 2021	5 May	2021	1 July 2021	
	WP1 (upstream)	WP2 (downstrea m)	WP1 (upstream)	WP2 (downstrea m)	WP1 (upstream)	WP2 (downstrea m)	WP1 (upstream)	WP2 (downs tream)
Monitoring Event	Dry weather pre- construction baseline measurement		Wet weather event (mid- construction)		Wet weather event (mid- construction)		Quarterly sampling mid-construction event	
Water Depth (m)	0.03	0.03	0.3	0.3	0.05	0.3	0.05	0.1
рН	7.9	7.61	8.10	7.58	7.8	7.73	9.01	8.83
Electrical Conductivity (µS/cm)	54	363	246.2	133.4	2500	92.9	910	530.3
Dissolved Oxygen	5.64	4.09	4.79	3.92	6.35	5.95	11.21	7.92

² Discussion of these results are included in Construction Monitoring Report 1 (April to November 2021), SMCSWSW5-DEW-WEC-EM-REP-001258 (Package 5) and SMCSWSW6-DEW-WEC-EM-REP-001153 (Package 6).

Internal Use Only © Downer 2020. All Rights Reserved Page 7 of 26

Sydney Metro City & Southwest - Package 5 & 6

Parameter	10 Mar	ch 2021	20 Mar	ch 2021	5 May	/ 2021	1 July 2	2021
	WP1 (upstream)	WP2 (downstrea m)	WP1 (upstream)	WP2 (downstrea m)	WP1 (upstream)	WP2 (downstrea m)	WP1 (upstream)	WP2 (downs tream)
(mg/L)								
Dissolved Oxygen (%)	63	45.9	52.87	43.18	65.3	62.8	108.8	77.9
SHE1 Redox Potential (mV)	140.7	181.0	122.3	135.9	164.6	109.2	53.7	122.4
Total Suspended Solids (TSS) (mg/L)	<1	<1	9.2	35	4	47	4	4.4
Turbidity (NTU)	2.9	<1	9.3	13	4.3	21	4.1	6.3
Total phosphorus (mg/L)	0.34	0.12	<0.5	<0.5	0.21	0.15	0.18	0.13
Total nitrogen (mg/L)	2.5	1.68	2.3	2.3	5	1	1.3	3.1
Chlorophyll- a (mg/L)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001	<0.001
Condition	Clear Low turbidity Sheen observed	Clear Low turbidity Sheen observed	Brown Medium turbidity	Brown Medium turbidity	Clear Low to medium turbidity Sheen observed	Clear Low to medium turbidity	Clear Minor sheen observed	Clear Low turbidity
Oil and Grease (mg/L)	<10	29	<10	<10	<10	<10	<10	<10

Wet weather event (mid-construction): 12 November 2021

The sampling event was considered as a mid-construction wet-weather event based on the rainfall data recorded by two nearby weather stations:

- Canterbury Racecourse AWS station (ID: 066194): approximately 4.6 km from the site with the rainfall data recorded 19.8 mm (i.e. marginally below the 20 mm threshold) over the last 24 hours prior to the field sampling;
- Marrickville Golf Club station (ID: 066036): approximately 6.4 km from the site with the rainfall data recorded 22.0 mm (i.e. above the 20 mm threshold) over the last 24 hours prior to the field sampling.

At the time of sampling, minor flow contribution was observed on discharge point (WP1-DP1) immediately downstream / north of WP1. For the downstream of work area, the two discharge points (WP2-DP1 and WP2-DP2) within the rail corridor immediately upstream / south from WP2 were having minor flow contribution.

The results of the monitoring event indicated that:

- Concentrations of Chlorophyll-a were reported below the laboratory detection limit and adopted assessment criteria at all sample locations;
- Concentrations of Oil and Grease were reported below laboratory detection limit at all sample locations:
- Concentrations of inorganics were reported above the adopted assessment criteria with the total nitrogen concentration within both the WP1 and WP2 samples, and the total phosphorous

Page 8 of 26 Version: Rev 0

Sydney Metro City & Southwest - Package 5 & 6

concentration for WP1, but total phosphorous concentration WP2 (0.020) was below adopted assessment criteria;

- TSS concentrations were detected within both WP1 and WP2, with concentrations of 8.4 mg/L at WP1 and 7.6 mg/L at WP2
- Turbidity ranged from 21 NTU at WP1 to 19 NTU at WP2, values below adopted assessment criteria.

Results for upstream and downstream sampling on 12 November 2021 were comparable to baseline measurements, with the exception of:

- Dissolved Oxygen (DO) saturation measured at both WP1 and WP2 were outside the adopted criterion range. The downstream WP2 location had slightly lower DO (63%) compared to the upstream WP2 location (68%). Overall, this is not considered to be a significant issue, based on similar results obtained from both previous mid-construction wet-weather sampling events on 20 March 2021 and 5 May 2021. Also, the DO saturation measurements undertaken during the preconstruction dry-baseline event on 10 March 2021 returned 63.0% for WP1 and 45.9% for WP2 indicating these mid-construction wet-weather results are closer to the adopted thresholds than the baseline event;
- Phosphorous result was above the adopted threshold at upstream WP1 sample (0.15 mg/L).
 However, the concentration was lower at the downstream WP2 sample (0.02 mg/L) and below the adopted threshold; and
- Nitrogen levels were comparable to baseline values at WP1 (2.7 mg/L), with slightly higher levels at WP2 (2.8 mg/L).

The comparison of the wet-weather mid-construction event on 12 November 2021 with two previous wet-weather sampling events on 20 March 2021 and 5 May 2021 showed no significant difference. Based on comparison to the criteria, comparison with two previous mid-construction wet-weather events, and comparison of the upstream and downstream results, the results reported for the 12 November 2021 sampling event are not considered to reflect an adverse impact to water quality due to construction activities.

Wet weather event (mid-construction): 26 November 2021

The sampling event was considered as a mid-construction wet-weather event based on the rainfall data recorded by two nearby weather stations:

- Canterbury Racecourse AWS station (ID: 066194): approximately 4.6 km from the site with the rainfall data recorded 43.8 mm (i.e. above the 20 mm threshold) over the last 24 hours prior to the field sampling;
- Marrickville Golf Club station (ID: 066036): approximately 6.4 km from the site with the rainfall data recorded 46.0 mm (i.e. above the 20 mm threshold) over the last 24 hours prior to the field sampling.

At the time of sampling, flow contribution was observed on discharge point (WP1-DP1) immediately downstream / north of WP1 (upstream of work area). The two discharge points (WP2-DP1 and WP2-DP2) within the rail corridor immediately upstream / south from WP2 also had flow contribution at the time of sampling.

The results of the monitoring event indicated that:

Page 9 of 26

Version: Rev 0

Sydney Metro City & Southwest - Package 5 & 6

- Concentrations of Chlorophyll-a were reported below the laboratory detection limit and/or adopted assessment criteria at all sample locations;
- Concentrations of Oil and Grease were reported below laboratory detection limit at all sample locations;
- Concentrations of inorganics were reported above the adopted assessment criteria with the total nitrogen concentration within both the WP1 and WP2 samples, and the total phosphorous concentration within both the WP1 and WP2;
- TSS concentrations were detected within both WP1 and WP2, with concentrations of 16 mg/L at WP1 and 7.8 mg/L at WP2; and
- Turbidity ranged from 25 NTU at WP1 to 17 NTU at WP2.

Results for upstream and downstream sampling on 26 November 2021 were comparable, with the exception of:

- pH was outside the adopted criterion range at upstream WP1 sample (6.07); however, within the adopted criterion range at downstream WP2 sample (7.34).
- Concentrations of total phosphorous and total nitrogen were outside the adopted criterion range at
 upstream and downstream sampling locations and the downstream showed to have slightly higher
 concentrations compared to the upstream sample. However, the concentrations were generally
 consistent with the previous two mid-construction wet-weather events.

The comparison of the wet-weather mid-construction event on 26 November 2021 with two previous wet-weather sampling events on 20 March 2021 and 5 May 2021 showed no significant difference. Based on comparison to the criteria, comparison with two previous mid-construction wet-weather events, and comparison of the upstream and downstream results, the results reported for the 26 November 2021 sampling event are not considered to reflect an adverse impact to water quality due to construction activities.

Mid-Construction Dry-Weather Event – 9 and 10³ February 2022

The sampling event was undertaken on 9 February 2022 during a dry-weather event with 0 mm precipitation over the last 24 hours prior to the field sampling (rainfall data was obtained from the closest Bureau of Meteorology weather station, i.e. Canterbury Racecourse AWS - station ID: 066194).

The results of the monitoring event indicate that:

- Concentrations of Chlorophyll-a were reported below the laboratory detection limit and adopted assessment criteria at all sample locations;
- Concentrations of Oil and Grease were reported below laboratory detection limit at all sample locations;
- Concentrations of inorganics were reported above the adopted assessment criteria with the total nitrogen concentration and the total phosphorous concentration within both the WP1 and WP2 samples;
- Total Suspended Solids (TSS) concentrations were reported below laboratory detection limit at all sample locations; and
- Turbidity ranged from 2.9 NTU at WP1 to 1.2 NTU at WP2.

Page 10 of 26 Version: Rev 0

³ Chlorophyll-a was resampled at both WP1 and WP2 on 10 February 2022 due to damage of the sample containers during the transportation following the initial sampling work on 9 February.

Sydney Metro City & Southwest - Package 5 & 6

Results for the mid-construction dry-weather event sampled on 9 and 10 February 2022 generally showed monitored parameters were within the adopted threshold criteria, with the exception of dissolved oxygen, total nitrogen, total phosphorous, and pH:

- Dissolved oxygen saturation measured at WP1 (92.0%) was within the adopted criterion range whereas WP2 (62.2%) was below the adopted criterion range. This is not considered to be a significant issue, due to the pre-construction monitoring results showing saturations of 63% and 45.9% for WP1 and WP2 respectively, indicating this mid-construction results are close to the adopted thresholds than the preconstruction event;
- Total nitrogen measured at both WP1 and WP2 were above the adopted criterion range with the analytical results of 1.7 mg/L and 1.6 mg/L for WP1 and WP2 respectively. Overall, this is not considered to be a significant issue, due to the pre-construction monitoring results showing the total nitrogen concentrations of 2.5 mg/L and 1.68 mg/L for WP1 and WP2 respectively, indicating mid-construction results are closer to the adopted thresholds than the pre-construction event;
- Phosphorous measured at both WP1 and WP2 were above the adopted criterion range with the analytical results of 0.14 mg/L and 0.08 mg/L for WP1 and WP2 respectively. Overall, this is not considered to be a significant issue, due to the pre-construction monitoring results showing total phosphorus of 0.34 mg/L and 0.12 mg/L for WP1 and WP2 respectively, indicating midconstruction results are closer to the adopted thresholds than the pre-construction event;
- pH results were above the adopted criterion range in both sampling locations with the analytical results of 8.59 and 8.78 for WP1 and WP2 respectively. Overall, this is not considered to be a significant issue since the exceedance is only slightly above the adopted criteria.

Results between upstream and downstream samples collected during the mid-construction dry-weather event were comparable, with the exception of:

pH results were slightly above the adopted threshold in both sampling locations, with similar results of 8.78 at the downstream sample and 8.59 at the upstream sample. Overall, this is not considered to be a significant issue since the difference of the upstream and downstream pH results is less than 2.5%.

Overall, conditions are similar in the pre-construction results and the mid-construction sampling event on 9 and 10 February 2022. Results between upstream and downstream samples collected during the midconstruction dry-weather event were comparable with exception of a slight increase (less than 0.2 pH unit) in pH measured at the downstream sample compared to the upstream sample. These minor exceedances are not considered to reflect an adverse impact to water quality due to construction activities.

Mid-Construction Wet-weather Event – 23 February 2022

The sampling event was considered as a mid-construction wet-weather event based on the rainfall data recorded by the nearby weather station:

Canterbury Racecourse AWS station (ID: 066194): approximately 4.6 km from the site with the rainfall data recorded 117.8 mm over the last 24 hours prior to the field sampling.

At the time of sampling, one discharge point (WP1-DP1) was observed immediately downstream / north of WP1 with high flow contribution to the stream. During the sampling event, the two discharge points (WP2-DP1 and WP2-DP2) within the rail corridor immediately upstream / south from WP2 were observed. High

Page 11 of 26

Internal Use Only Version: Rev 0

© Downer 2020. All Rights Reserved

Construction Monitoring Report November 2021 to April 2022

Sydney Metro City & Southwest - Package 5 & 6

flow contribution from both discharge points were observed at the time of sampling. It is noted that WP2-DP2 was observed to have greater flow contribution than WP2-DP1.

The results of the monitoring event indicate that:

- Concentrations of Chlorophyll-a were reported below the laboratory detection limit and adopted assessment criteria at both sample locations;
- Concentrations of Oil and Grease were reported below laboratory detection limit at all sample locations:
- Concentrations of total nitrogen and the total phosphorous were reported above the adopted assessment criteria within both WP1 and WP2 samples.
- TSS concentrations were detected within both WP1 and WP2, with concentrations of 18 mg/L at WP1 and 9.6 mg/L at WP2; and
- Turbidity was detected with concentration of 37 NTU at WP1 to 28 NTU at WP2.

Results for the mid-construction wet-weather event sampled on 23 February generally showed monitored parameters were within the adopted threshold criteria, with the exception of dissolved oxygen saturation, total nitrogen, and total phosphorous.

- Dissolved oxygen saturation measured at both WP1 (56.7%) and WP2 (72%) were below the adopted criterion range. However, this is not considered to be a significant issue because the concentration of dissolved oxygen saturation at WP2 (downstream) was closer to the adopted criterion range in comparison to WP1 (upstream);
- Total nitrogen measured at both WP1 (1.64 mg/L) and WP2 (2.6 mg/L) were above the adopted criterion range. However, the results from the previous mid-construction wet-weather sampling events show that total nitrogen at WP1 fluctuated between 1.6 mg/L and 5.0 mg/L whereas total nitrogen for WP2 fluctuated between 1.0 mg/L and 2.8 mg/L. Furthermore, the total nitrogen for both WP1 and WP2 sampled on the 23 February 2022 monitoring event were similar to the previous event ranges. As such, this increase in total nitrogen is not considered to be a significant issue.
- Total phosphorous measured at both WP1 (0.23 mg/L) and WP2 (0.28 mg/L) were above the adopted criterion range. However, the results are similar to the results from previous midconstruction wet-weather.

Results for upstream and downstream sampling on 23 February 2022 were comparable, with the exception of:

- Dissolved Oxygen (DO) saturation measured at the downstream WP2 location had higher DO saturation (72%) compared to the upstream WP1 location (56.7%). However, this is not considered to be a significant issue since the downstream result was closer to the criterion range in comparison to the upstream;
- Concentrations of total nitrogen at downstream sample was slightly higher than the upstream sample. However, this is not considered to be a significant issue, since the concentrations were generally consistent with the previous four mid-construction wet-weather events;
- Concentrations of total phosphorous results at downstream sample was slightly higher than the upstream sample. However, this is not considered to be a significant issue since the results were generally consistent with the previous four mid-construction wet-weather events;
- The pH result at downstream sample (7.62) was slightly higher than the result at upstream sample (7.50). However, this is not considered to be a significant issue since the pH measurements at

Page 12 of 26 Internal Use Only

Sydney Metro City & Southwest - Package 5 & 6

both sample points were within the adopted criterion range and the difference of the upstream and downstream pH results is only 1.6%;

The Electrical Conductivity (EC) result at the downstream sample (431 μS/cm) was higher than the
upstream sample (230 μS/cm). However, this is not considered to be a significant issue since the
EC measurements at both sample points were within the adopted criterion range and the EC
values were generally consistent with the previous four mid-construction wet-weather events.

During this wet-weather monitoring event, sampling results showed monitored parameters were generally within the adopted screening criteria with the exception of dissolved oxygen saturation, total nitrogen, and total phosphorous. The comparison of the mid-construction wet-weather event conducted on 23 February 2022 to the four previous wet-weather sampling events on 20 March, 5 May, 12 November and 26 November 2021 showed no significant difference.

During this wet-weather monitoring event, the results between upstream and downstream were generally comparable with the exceptions of pH, EC, DO, total nitrogen, and total phosphorous. The pH and EC measurements at the downstream sample were slightly higher than the upstream sample, but both downstream and upstream results were within the criterion range. The DO result at the downstream sample was higher than the upstream sample, but it was closer to the adopted criterion range compared to the upstream sample. The total nitrogen and total phosphorous results at the downstream sample were slightly higher than the upstream sample, but the results at both upstream and downstream samples were generally consistent with the previous four mid-construction wet-weather events. Overall, the comparison of the upstream and downstream samples conducted on 23 February showed no significant difference.

Based on comparison to the criteria, comparison with four previous mid-construction wet-weather events, and comparison of the upstream and downstream results, the results reported for the 23 February 2022 sampling event are not considered to reflect an adverse impact to water quality due to construction activities.

Mid-Construction Wet-weather Event - 9 March 2022

The sampling event was considered as a mid-construction wet-weather event based on the rainfall data recorded by the nearby weather station:

 Canterbury Racecourse AWS station (ID: 066194): approximately 4.6 km from the site with the rainfall data recorded 68.6 mm over the last 24 hours prior to the field sampling.

At the time of sampling, WP1 (upstream of work area) contained high flowing clear water with low turbidity, as well as WP2 (downstream of work area). One discharge point (WP1-DP1) was observed immediately downstream/ north of WP1. Medium flow contribution was observed at the time of sampling. For WP2 (downstream of work area), the two discharge points (WP2-DP1 and WP2-DP2) within the rail corridor immediately upstream / south from WP2 were observed. Medium level of flow contribution was observed from discharge point WP2-DP1 and high level of flow contribution was observed from discharge point WP2-DP2.

The results of the monitoring event indicate that:

- Concentrations of Chlorophyll-a were reported below the laboratory detection limit at both sample locations;
- Concentrations of Oil and Grease were reported at 10 mg/L within the upstream sample (WP1) and below laboratory detection limit within the downstream sample (WP2);

Page 13 of 26 Version: Rev 0

Sydney Metro City & Southwest - Package 5 & 6

- Concentrations of total nitrogen and the total phosphorous were reported above the adopted criteria within both WP1 and WP2 samples;
- TSS were reported with concentration of 17 mg/L at upstream sample (WP1) and 7.8 mg/L at downstream sample WP2; and
- Turbidity was reported with concentration of 31 NTU at upstream sample (WP1) and 22 NTU at downstream sample (WP2).

One sampling event during the pre-construction period (baseline event) was undertaken on 10 March 2021 which was during dry condition. It should be noted that wet-weather and storm-event pre-construction monitoring was not able to be conducted because of the lack of rainfall. The monitoring results of baseline event (10 March 2021) has not been used for comparison with the monitoring results under this report because the conditions encountered were different (i.e. non-trigger for wet-weather event criteria). However, five previous mid-construction wet weather sampling events were used to compare and check if there is any potential adverse impact to the water quality caused by the construction activities. Overall, conditions are similar between upstream and downstream samples on 9 March 2022 and previous mid-construction wet weather events.

Results for the mid-construction wet-weather event sampled on 9 March 2022 generally showed monitored parameters were within the adopted threshold criteria, with the exception of dissolved oxygen saturation, total nitrogen, and total phosphorous:

- Dissolved oxygen saturation measured at both upstream sample (WP1: 58.4%) and downstream sample (WP2: 58.1%) were outside of the adopted criterion range (i.e., 85% to 110%). However, this is not considered to be a significant issue as the difference measured between WP1 and WP2 is minor with only 0.5% difference;
- Total nitrogen measured at both upstream sample (WP1: 1.9 mg/L) and downstream sample (WP2: 1.8 mg/L) were above the adopted criteria (i.e. 0.350 mg/L). However, the results from the previous mid-construction wet-weather sampling events show that total nitrogen at WP1 fluctuated between 1.6 mg/L and 5.0 mg/L whereas total nitrogen for WP2 fluctuated between 1.0 mg/L and 2.8 mg/L. Furthermore, the total nitrogen for both WP1 and WP2 sampled on the 9 March 2022 monitoring event were similar to the previous event ranges. As such, this elevated in total nitrogen concentrations is not considered to be a significant issue;
- Total phosphorous measured at both upstream sample (WP1: 0.16 mg/L) and downstream sample (WP2: 0.14 mg/L) were above the adopted criteria (i.e. 0.025 mg/L). However, the results from the previous mid-construction wet-weather sampling events show that total phosphorous at WP1 fluctuated between 0.13 mg/L and 0.23 mg/L whereas total phosphorous at WP2 fluctuated between 0.02 mg/L and 0.28 mg/L. Furthermore, the total phosphorous for both WP1 and WP2 sampled on the 9 March 2022 monitoring event were similar to the previous event ranges. As such, this elevated in total phosphorus concentrations is not considered to be a significant issue;
- The pH result at upstream sample (WP1: 7.78) was measured slightly lower than the result at
 downstream sample (WP2: 7.85). However, this is not considered to be a significant issue since
 the pH measurements at both sample points were within the adopted criterion range and the
 difference of the upstream and downstream pH results is only 0.9%.
- The EC result at the upstream sample (WP1: 622 μS/cm) was measured lower than the downstream sample (WP2: 659 μS/cm). However, this is not considered to be a significant issue since the EC measurements at both sample points were within the adopted criterion range (125

Page 14 of 26 Version: Rev 0

Internal Use Only
© Downer 2020. All Rights Reserved

Sydney Metro City & Southwest - Package 5 & 6

 $\mu S/cm$ to 2,200 $\mu S/cm$) and the difference of the upstream and downstream pH results is only 5.6%.

During this wet-weather monitoring event, sampling results showed monitored parameters were generally within the adopted screening criteria with the exception of dissolved oxygen saturation, total nitrogen, and total phosphorous. The comparison of the mid-construction wet-weather event conducted on 9 March 2022 to the four previous wet-weather sampling events on 20 March, 5 May, 12 November, 26 November 2021 and 23 February 2022 showed no significant difference.

During this wet-weather monitoring event, the results between upstream and downstream were generally comparable with the exceptions of pH and EC. The pH and EC measurements at the downstream sample were slightly higher than the upstream sample, but both downstream and upstream results were within the criterion range. Overall, the comparison of the upstream and downstream samples conducted on 9 March 2022 showed no significant difference.

Based on comparison to the criteria, comparison with four previous mid-construction wet-weather events, and comparison of the upstream and downstream results, the results reported for the 9 March 2022 sampling event are not considered to reflect an adverse impact to water quality due to construction activities at the subject site.

DISCUSSION - SURFACE WATER MONITORING

The results of the surface water monitoring showed that monitored parameters were generally within the adopted screening criteria; however, some results showed parameters outside of the screening criteria. Overall, the comparison of the upstream and downstream samples conducted on 23 February showed no significant difference. Based on comparison to the criteria, comparison with four previous mid-construction wet-weather events, and comparison of the upstream and downstream results, the results reported for the 23 February 2022 sampling event are not considered to reflect an adverse impact to water quality due to construction activities. No recommendations were put forward in response to the surface water monitoring results.

Downer conducts regular inspection of the environmental controls, including sediment and erosion controls at Wiley Park to ensure that all sediments and erosion controls were in place, well maintained and functioning correctly. These inspections are conducted by the Project Team and Environmental Team. This proactive approach ensures that environmental controls are functioning properly rather than reactively inspecting the worksite following monitoring and reporting.

Internal Use Only
© Downer 2020. All Rights Reserved

Page 15 of 26 Version: Rev 0

Sydney Metro City & Southwest - Package 5 & 6

Noise and vibration

The area surrounding the project sites contains a variety of land-use types and receivers, including residential, commercial, industrial and sensitive non-residential receivers. These land-uses are mixed within the identified noise catchments, although in general there are clusters of industrial and commercial areas surrounding stations, primarily residential areas between stations. The area surrounding the project sites are affected by rail noise and vibration. The majority of works will occur within the rail corridor, on the station platforms and buildings and within the Metro Services Building Areas, works will mainly occur adjacent to residential properties.

Noise and vibration monitoring must be carried out for the duration of Construction. The predominant reason for monitoring noise and vibration associated with the construction works is to ensure compliance with modelled results for noisy works and to ensure compliance with modelled results and the project's Conditions of Approval(s) and NVMP. Modelling undertaken prior to noisy construction activities assesses if Respite Offers (RO) and Alternate Accommodation (AA) are required to be provided to sensitive receivers that are impacted by noise from works conducted outside of standard working hours. Other reasons to conduct noise and vibration monitoring include:

- In response to noise or vibration complaints;
- If requested by Sydney Metro, the ER, DPE or EPA;
- To augment baseline noise levels, if the noise environment at a receiver is considered to be different from the noise logger locations used for the EIS;
- To validate predicted noise levels associated with each works scenario assessed in the CNVIS, at the commencement of works and new construction activities or location;
- To confirm baseline vibration levels currently experienced at heritage-listed structures and at any vibration-sensitive equipment;
- Where vibration levels are predicted to exceed the vibration screening level, attended vibration
 monitoring would be carried out to ensure vibration levels remain below appropriate limits for that
 structure, in accordance with Revised Environmental Mitigation Measure (REMM) NVC12; and
- As part of a plant noise audit.

The methodology and rationale for conducting noise and vibration monitoring is contained within the relevant Noise and Vibration Monitoring Plans, being:

- Southwest Metro Dulwich Hill, Campsie and Punchbowl Station Upgrades Noise and Vibration Management Plan. This document can be accessed via the Downer Sydney Metro Environment Documents website.
 - https://www.downergroup.com/Content/cms/Documents/Sydney_Metro_package_5_6/Dulwich_Hill Campsie_and_Punchbowl_Station_Upgrades_NVMP_Rev06_131221_C2.pdf
- Southwest Metro Hurlstone Park, Belmore and Wiley Park Station Upgrades Noise and Vibration Management Plan. This document can be accessed via the Downer Sydney Metro Environment Documents website,
 - https://www.downergroup.com/Content/cms/Documents/Sydney_Metro_package_5_6/Hurlstone_Park_Belmore_and_Wiley_Park_Station_Upgrades_NVMP_Rev06_131221_C2.pdf

Page 16 of 26 Version: Rev 0

Sydney Metro City & Southwest - Package 5 & 6

RESULTS - NOISE MONITORING

The table below contains a summary of the noise monitoring results. The complete reports are provided in Appendixes 6 - 8.

Assessment	Measured Plant	Predicted Measured noise leve			Above	Comments	
Point		noise level dB(A)	LAeq(15min)	LAmax	predicted noise level		
18 th – 19 th December 2021	TL927-1-19F01 WE25	NOISE AND VI	BRATION MONIT	ORING RE	PORT (R2) - A	PPENDIX 6	
105 Duntroon Street, Hurlstone Park	Two 4T excavator with bucket attachment, two hirall Moxy trucks and handheld cutter 18.12.2021 08:17am - 08:31am	82T (T: Predicted LAeq, 15min for Typical activities)	69	77	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. Note that the majority of the works were occurring on the western side of the platform at a lower ground level compared to monitoring location. As a result, the works were mostly shielded at this monitoring location. Furthermore, only two 4T excavators with bucket attachments, two hi-rail Moxy trucks and a handheld cutter were operating intermittently during this measurement. In the prediction model, the distance between the work area and the receiver is approximately 3 metres. The measured works were approximately 35m away from the monitoring location. These factors contribute to the measured noise level from the works being less noisy than the predicted noise level.	
3A Commons Street, Hurlstone Park	Two 4T excavator with bucket attachment, two hirall Moxy trucks and handheld cutter 18.12.2021 08:36am - 08:52am	80⊤ (T: Predicted LAeq, 15min for Typical activities)	63	83	No (LAeq, 15min)	The measured LAeq, 15min is lower than the predicted level. Factors contributing to this include the intermittent nature of the works during the measurement and less noisy plant operating during this measurement compared to the prediction assumptions. Furthermore, the measured works were approximately 45m away from the monitoring location, which is further than in the prediction model, where the distance between the closest typical impact work area and the most affected facade is approximately 10 metres.	
57A Ewart Lane, Dulwich Hill	Handheld drill, vacuum truck, concrete saw and 5T excavator with hammer attachment 18.12.2021 09:43am - 09:59am	77H (H: Predicted LAeq, 15min for High impact activities)	73* (*: 5dB(A) penalty applied for hammering works)	98	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. Note that the measured construction activity was approximately 35 metres away from the measurement location. In the prediction model, the distance between the closest high impact work area and the most affected facade is approximately 20 metres.	
59 Ewart Street, Dulwich Hill	Handheld drill, vacuum truck, concrete saw and 5T excavator with hammer attachment 18.12.2021 10:00am - 10:15am	74H (H: Predicted LAeq, 15min for High impact activities)	68* (*: 5dB(A) penalty applied for hammering works)	89	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. Note that the rockhammering activity only occurred for approximately 2 minutes of the 15 minute measurement period. Furthermore, the measured construction activity was approximately 40 metres away from the measurement location. In the prediction model, the distance	

						between the closest high impact work area and the most affected facade is approximately 25 metres.
13-15 Anglo Road, Campsie	Vacuum truck and 7T excavator with bucket attachment 18.12.2021 11:30am - 11:45am	74T (T: Predicted LAeq, 15min for Typical activities)	61	73	No (LAeq, 15min)	The measured LAeq, 15min is lower than the predicted noise level. Note that the measured noise level is significantly lower than the predicted noise level because less noisy plant were operating during this measurement compared to the prediction assumptions. Furthermore, the measured construction activity was approximately 80 to 95 metres away from the measurement location. In the prediction model, the distance between the closest typical work area and the most affected facade is approximately 15 metres.
3 Wilfred Avenue, Campsie	Vacuum truck and 7T excavator with bucket attachment 18.12.2021 11:55am - 12:10pm	69τ (T: Predicted LAeq, 15min for Typical activities)	60	90	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. Note that the measured noise level is lower than the predicted noise level because only the vacuum truck and 7T excavator with bucket attachment were operating during this measurement, compared to noisier plant in the prediction assumptions. Furthermore, the measured construction activity was approximately 60 to 65 metres away from the measurement location. In the prediction model, the distance between the closest typical work area and the most affected facade is approximately 25 metres.
41 Urunga Parade, Punchbowl	4T excavator with hammer attachment, vacuum truck and handheld cutter 18.12.2021 02:04pm - 02:20pm	72H (H: Predicted LAeq, 15min for High impact activities)	61* (*: 5dB(A) penalty applied for hammering works)	81	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. Note that the measured noise level is significantly lower than the predicted noise level because only the 4T excavator with hammer attachment, vacuum truck and handheld cutter were operating during this measurement, compared to noisier plant in the prediction assumptions. Furthermore, the measured construction activity was approximately 100 to 110 metres away from the measurement location. In the prediction model, the distance between the closest high impact work area and the most affected facade is approximately 80 metres.
228 The Boulevarde, Punchbowl	Handheld jackhammer, 4T excavator with hammer attachment and 4T excavator with bucket attachment 18.12.2021 02:37pm - 02:52pm	70H (H: Predicted LAeq, 15min for High impact activities)	75* (*: 5dB(A) penalty applied for hammering works)	84	Yes (LAeq, 15min)	The measurement location is a commercial receiver. The measured LAeq, 15min is higher than the predicted noise level, after applying the 5 dB(A) penalty. Note that this monitoring location was heavily affected by the constant road traffic along The Boulevarde throughout the measurement. It was not possible to measure the construction activity in the absence of traffic noise.
3 Shadforth Street, Wiley Park	Pressure washer 18.12.2021 03:09pm - 03:24pm	79⊤ (T: Predicted LAeq, 15min for Typical activities)	71	76	No (LAeq, 15min)	The measured LAeq, 15min is lower than the predicted level. Note that the measured construction activity was approximately 15 metres away from the measurement location. In the prediction model, the distance

						between the closest typical impact work area and the most affected facade is approximately 10 metres.
26 th – 30 th December 2021	TL927-1-20F01 SHUTE	DOWN 2 NOISE	E AND VIBRATIO	N MONITOR	RING REPORT	Γ(R2) - APPENDIX 7
13-15 Anglo Road, Campsie	Two multi-crane hirail vehicles, handheld drills, concrete saw, hammering 26.12.2021 09:11pm – 09:26pm	74T (T: Predicted LAeq, 15min for Typical activities)	60	83	No	The measured Laeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works occurring were located approximately 25m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Some plant operation and hi-rail movements were partially shielded by the station building.
	Concrete agitator and concrete pump truck 29.12.2021 09:45pm – 10:00pm	74τ (T: Predicted LAeq, 15min for Typical activities)	73	82	No (LAeq, 15min)	The measured LAeq, 15min is lower than the predicted noise level. Note that the concrete agitator and the concrete pump truck was located directly opposite of 13-15 Anglo Road receiver, approximately 10 metres away from the monitoring location.
	Concrete pump truck, plate compactor, hand tools including rattle gun and hammer 30.12.2021 09:00pm – 09:15pm	74T (T: Predicted LAeq, 15min for Typical activities)	59	76	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 20m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Note that the platform works were intermittent during this measurement.
35 North Parade, Campsie	3T Excavator with hammer attachment 26.12.2021 09:15pm – 09:30pm	57τ (T: Predicted LAeq, 15min for Typical activities)	67* (*: 5dB(A) penalty applied for hammering works)	77	Yes (LAeq, 15min)	The Gatewave model was based on typical impact activities, not high impact activities (i.e no rockhammer). The difference between typical and high impact activities sound power level is 10-12dB. The measured level is 10dB above the predicted level. This is consistent with a predicted level for high impact activities including rockhammer. The exceedance was identified immediately by the Project Noise & Vibration consultant and reported to the Construction Environmental Manager. The Environmental Manager managed the exceedance in accordance with the Project Construction Environmental Management Plan and Noise & Vibration Management Plan and Noise & Vibration Management Plan.
5 London Street, Campsie	Concrete truck, jumping jack	67⊤	52	70	No (L _{Aeq} , 15min)	The measured LAeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant

	compactor, hand tools 28.12.2021 10:25pm – 10:40pm	(T: Predicted LAeq, 15min for Typical activities)				items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 65m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 35 metres. Note that the platform works were intermittent during this measurement. The paving works at the corner of Beamish Street and North Parade were occurring during this measurement and was not audible at this monitoring location.
	Concrete agitator and concrete pump truck, hand grinder 29.12.2021 09:54pm – 10:10pm	67T (T: Predicted LAeq, 15min for Typical activities)	55	75	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 60m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 35 metres. Note that the platform works were intermittent during this measurement.
	Concrete agitator and concrete pump truck, handheld power drill, 8T excavator with bucket attachment 30.12.2021 08:56pm – 09:11pm	67T (T: Predicted LAeq, 15min for Typical activities)	53	77	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 60m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 35 metres. Note that the platform works were intermittent during this measurement.
1 Acacia Street, Belmore	Pressure washer 26.12.2021 09:56pm – 10:04pm	(T: Predicted LAeq, 15min for Typical activities)	N/A	N/A	N/A	Note that during this measurement, it started to rain after 8 minutes into the measurement. As a result, this measurement was adversely affected by the environmental conditions and have been deemed as an invalid measurement.
	Handheld jackhammer, light tower, concrete saw, handheld power tools 28.12.2021 09:29pm – 09:45pm	(T: Predicted LAeq, 15min for Typical activities)	60* (*: 5dB(A) penalty applied for hammering works)	68	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. Note that the handheld jackhammering activity was located approximately 65m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 35 metres. Note that the handheld jackhammering activity was shielded and intermittent during this measurement.

	Hand tools including hand grinder and power drills 29.12.2021 10:30pm – 10:46pm	(T: Predicted LAeq, 15min for Typical activities)	50	64	No (LAeq, 15min)	The measured LAeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 40m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 35 metres. Note that the platform works were intermittent during this measurement.
	Handheld electric jackhammer, handheld power tools including grinder and drill, 15T excavator with bucket attachment 30.12.2021 09:41pm – 09:56pm	(T: Predicted LAeq, 15min for Typical activities)	58* (*: 5dB(A) penalty applied for hammering works)	73	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. Note that the handheld jackhammering activity was located approximately 65m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 35 metres. Note that the handheld jackhammering activity was shielded and intermittent during this measurement.
30 Redman Parade, Belmore	Handheld jackhammer and handheld grinder 28.12.2021 09:35pm – 09:50pm	(T: Predicted LAeq, 15min for Typical activities)	59* (*: 5dB(A) penalty applied for hammering works)	71	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. Note that the handheld jackhammering activity was located approximately 65m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 50 metres. Note that the handheld jackhammering activity was shielded and intermittent during this measurement.
	Excavator with quackers alarm 29.12.2021 10:24pm – 10:39pm	63τ (T: Predicted LAeq, 15min for Typical activities)	54	73	No (LAeq, 15min)	The measured LAeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 85m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 50 metres. Note that the platform works were intermittent during this measurement.
	Plate compactor and handheld electric jackhammer 30.12.2021 09:39pm – 09:54pm	63T (T: Predicted LAeq, 15min for Typical activities)	59* (*: 5dB(A) penalty applied for hammering works)	73	No (Laeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. Note that the handheld jackhammering activity was located approximately 65m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 50 metres. Note that

41 Urunga	5T excavator with	65т	54	72	No (LAeq,	the handheld jackhammering activity was shielded and intermittent during this measurement. The measured LAeq, 15min is lower than
Parade, Punchbowl	bucket attachment, lighting towers, Distant 8T excavator with bucket attachment, dump truck 26.12.2021 11:14pm – 11:29pm	(T: Predicted LAeq, 15min for Typical activities)			15min)	the predicted noise level. It is noted that the majority of plant operation occurred at the station building approximately 90m away from the measurement location. The background noise level at this location was dominated by generator hum from lighting towers located approximately 25m away from the measurement location. Measured excavator activity at this location occurred near the alignment approximately 50-60m away.
	Rattlegun, handheld power tools, hi-rail multi-crane vehicle, lighting towers 28.12.2021 11:44pm – 11:59pm	65τ (T: Predicted LAeq, 15min for Typical activities)	53	70	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 20m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 15 metres. Some plant operation and hi-rail movements were partially shielded by the station building. Note that the platform works were intermittent during this measurement.
	Lighting towers, hirall 8T excavator with crane attachment 29.12.2021 08:17pm – 08:32pm	(T: Predicted LAeq, 15min for Typical activities)	53	76	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 30m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 15 metres. Some plant operation and hi-rail movements were partially shielded by the station building. Note that the platform works were intermittent during this measurement.
	Light towers, 5.5T excavator with bucket attachment, 8T excavator with bucket attachment 30.12.2021 10:54pm – 11:09pm	(T: Predicted LAeq, 15min for Typical activities)	54	74	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 20m away from the measurement location. The background noise level during the measurement was dominated by idle engine noise from the 5.5T excavator with bucket attachment. In the prediction model, the distance

14 Arthur Street, Punchbowl	No construction noise was audible at this monitoring location 26.12.2021 11:17pm – 11:32pm	50π (T: Predicted LAeq, 15min for Typical activities)	54 (44) ₁ (1: Calculated LAeq, 15min contribution from the construction activity, given that the construction noise was not audible or barely audible at the monitoring location)	70	No (LAeq, 15min)	between the closest work area and the most affected facade is approximately 15 metres. Note that the platform works was intermittent during this measurement. The measured LAeq, 15min is higher than the predicted noise level. Note that the platform works occurring at Punchbowl Station was not audible at this monitoring location. The measured LAeq, 15min of 54 dB(A) was solely caused by vehicles movement along The Boulevarde and Arthur Street. Given that the construction noise was not audible at this monitoring location, the contribution from the construction works can be assumed to be 10dB below the measured LAeq, 15min. As a result, the contribution from the construction works can be calculated to be 44 dB(A), which is below the predicted noise level of 50 dB(A). Note that the measured works were shielded and approximately 90 metres away from the measurement location.
	Lighting tower (which was barely audible when there was no road traffic along The Boulevarde and Arthur Street) 28.12.2021 11:48pm – 12:03am	50τ (T: Predicted LAeq, 15min for Typical activities)	55 (45)1 (1: Calculated LAeq, 15min contribution from the construction activity, given that the construction noise was not audible or barely audible at the monitoring location)	76	Yes (LAeq, 15min)	The measured LAeq, 15min is higher than the predicted noise level. Note that the platform works occurring at Punchbowl Station was not audible at this monitoring location (a lighting tower was barely audible when there was no road traffic along The Boulevarde and Arthur Street). The measured LAeq, 15min of 55 dB(A) was solely caused by vehicles movement along The Boulevarde and Arthur Street. Given that the construction noise was barely audible at this monitoring location, the contribution from the construction works can be assumed to be 10dB below the measured LAeq, 15min. As a result, the contribution from the construction works can be calculated to be 45 dB(A), which is below the predicted noise level of 50 dB(A). Note that the measured works were shielded and approximately 90 metres away from the measurement location.
	Handheld grinder (which was barely audible when there was no road traffic along The Boulevarde and Arthur Street) 29.12.2021 08:10pm – 08:25pm	50τ (T: Predicted LAeq, 15min for Typical activities)	56 (46)1 (1: Calculated LAeq, 15min contribution from the construction activity, given that the construction noise was not audible or barely audible at the monitoring location)	85	No (LAeq. 15min)	The measured LAeq, 15min is higher than the predicted noise level. Note that the platform works occurring at Punchbowl Station were not audible at this monitoring location (a handheld grinder was barely audible when there was no road traffic along The Boulevarde and Arthur Street). The measured LAeq, 15min of 56 dB(A) was solely caused by vehicles movement along The Boulevarde and Arthur Street. Given that the construction noise was barely audible at this monitoring location, the contribution from the construction works can be assumed to be 10dB below the measured LAeq, 15min. As a result, the contribution from the construction works can be calculated

	No construction noise was audible at this monitoring location 30.12.2021 10:56pm – 11:11pm	50T (T: Predicted LAeq, 15min for Typical activities)	57 (47)1 (1: Calculated LAeq, 15min contribution from the construction activity, given that the construction noise was not audible or barely audible at the	82	No (LAeq, 15min)	to be 46 dB(A), which is below the predicted noise level of 50 dB(A). Note that the measured works were shielded and approximately 90 metres away from the measurement location. The measured Laeq, 15min is lower than the predicted noise level. Note that the platform works occurring at Punchbowl Station was not audible at this monitoring location. The measured Laeq, 15min of 57 dB(A) was solely caused by vehicles movement along The Boulevarde and Arthur Street. Given that the construction noise was not audible at this
			monitoring location)			monitoring location, the contribution from the construction works can be assumed to be 10dB below the measured LAeq. 15min. As a result, the contribution from the construction works can be calculated to be 47 dB(A), which is below the predicted noise level of 50 dB(A). Note that the measured works were shielded and approximately 90 metres away from the measurement location.
1-3 Shadforth Street, Wiley Park	Two 22.5T excavators with bucket attachment, handheld cutter, lighting towers 26.12.2021 11:50pm – 11:54pm	79T (T: Predicted LAeq, 15min for Typical activities)	N/A	N/A	N/A	Note that during this measurement, it started to rain after 4 minutes into the measurement. As a result, this measurement was adversely affected by the environmental conditions and have been deemed as an invalid measurement.
	Concrete saw, hi-rail excavators and lighting tower 27.12.2021 08:03pm – 08:18pm	81H (H: Predicted LAeq, 15min for High impact activities)	69* (*: 5dB(A) penalty applied for hammering works)	75	No (LAeq, 15min)	The measured LAeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the concrete sawing activity was shielded and approximately 65 metres away from the measurement location. In the prediction model, the distance between the closest high impact work area and the most affected facade is approximately 10 metres. Note that the concrete sawing activity was intermittent during this measurement.
	22.5T excavator with crane attachment, light towers, two 5T excavators with bucket attachment, hi-rail dump truck vehicles, bobcat, rattlegun, hand tools 28.12.2021 11:09pm – 11:25pm	79π (T: Predicted LAeq, 15min for Typical activities)	60	72	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 20m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Some plant operation and hi-rail movements were partially shielded by the station

						building. Note that the platform works were intermittent during this
	22.5T excavator with	81н	68*	79	No (LAeq,	measurement. The measured Laeq, 15min is lower than
	crane attachment, 8T excavator with auger attachment, hand grinders, hand tools, concrete saw 29.12.2021 08:55pm – 09:10pm	(H: Predicted LAeq, 15min for High impact activities)	(*: 5dB(A) penalty applied for hammering works)		15min)	the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the concrete sawing activity was shielded and approximately 20m metres away from the measurement location. In the prediction model, the distance between the closest high impact work area and the most affected facade is approximately 10 metres. Note that the concrete sawing activity was intermittent during this measurement.
2 Shadforth	5T excavator with auger attachment, hand power tools including power drill, handheld grinder 30.12.2021 10:21pm – 10:36pm	79π (T: Predicted LAeq, 15min for Typical activities)	57	78	No (Laeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 20m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Note that the platform works was shielded and intermittent during this measurement.
2 Snadforth Street, Wiley Park	crane attachment, shovel 28.12.2021 11:10pm – 11:25pm	(T: Predicted LAeq, 15min for Typical activities)			No (Laeg, 15min)	the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 40m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Some plant operation and hi-rail movements were partially shielded by the station building. Note that the platform works were intermittent during this measurement.
	22.5T excavator with crane attachment, concrete saw, rattle gun 29.12.2021 08:50pm – 09:05pm	83H (H: Predicted LAeq, 15min for High impact activities)	65* (*: 5dB(A) penalty applied for hammering works)	73	No (LAeq, 15min)	The measured LAeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the concrete sawing activity was shielded and approximately 25m metres away from the measurement location. In the prediction model, the distance between the closest high impact work area and the most affected facade is approximately 10 metres. Note that the concrete sawing

						activity was intermittent during this measurement.
	Hand tools including rattle gun and hammer 30.12.2021 10:19pm – 10:34pm	81T (T: Predicted LAeq, 15min for Typical activities)	55	76	No (LAeq, 15min)	The measured LAeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 30m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Note that the platform works was shielded and intermittent during this measurement.
1 Bedford Crescent, Dulwich Hill	Handtools (grinder and hammer), hi-rail multi-crane vehicle, 13T excavator with crane attachment 28.12.2021 08:14pm – 8:29pm	75T (T: Predicted LAeq, 15min for Typical activities)	57	76	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works occurring were located approximately 50m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Some plant operation and hi-rail movements were partially shielded by the station building.
	Handheld jackhammer and lighting tower 29.12.2021 11:11pm – 11:26pm	76н (H: Predicted LAeq, 15min for High impact activities)	60* (*: 5dB(A) penalty applied for hammering works)	73	No (LAeq, 15min)	The measured LAeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the handheld jackhammering works occurring were located approximately 50m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest high impact work area and the most affected facade is approximately 40 metres. Note that the jackhammering works were shielded and intermittent during this measurement.
	Concrete agitator and concrete pump truck 30.12.2021 08:03pm – 08:18pm	75T (T: Predicted LAeq, 15min for Typical activities)	59	76	No (LAeq, 15min)	The measured LAeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 80m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres.

51 Ewart Lane, Dulwich Hill	Concrete saw, 8T excavator with crane attachment, hi-rail multi-crane vehicle, 13T excavator with crane attachment, lighting towers 28.12.2021 08:28pm – 08:43pm	74H (H: Predicted LAeq, 15min for High impact activities)	68* (*: 5dB(A) penalty applied for hammering works)	78	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the concrete sawing activity was located approximately 30m away from the measurement location. The background noise level during this measurement was dominated by generator noise from the lighting towers. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Note that the concrete sawing activity was intermittent during this measurement.
	Generators, lighting towers, cement mixers, 1.75T excavator with hammer attachment 29.12.2021 11:20pm – 11:36pm	72τ (T: Predicted LAeq, 15min for Typical activities)	59	74	No (LAeq, 15min)	The measured LAeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the rockhammering activity was located approximately 20m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Note that the rockhammering was intermittent during this measurement.
	Cement agitator, handheld cement vibrator, light towers 30.12.2021 08:07pm – 08:22pm	72T (T: Predicted LAeq, 15min for Typical activities)	60	77	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 20m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres.
05 th February 41 Urunga Parade, Punchbowl	TL927-1-21F01 2022 V Excavator with bucket attachment 05.02.2022 12:24pm – 12:39pm	VE32 NOISE AN 73T (T: Predicted LAeq, 15min for Typical activities)	ND VIBRATION M	ONITORING 74	REPORT (R No (Laeq, 15min)	

3A Commons	3.5T Excavator with	82н	69*	84	No (L _{Aeq} ,	The measured LAeq, 15min is lower than
Street, Hurlstone Park	hammer attachment and hi-rail hydrema 05.02.2022 01:25pm – 01:40pm	(H: Predicted LAeq, 15min for High impact activities)	(*: 5dB(A) penalty applied for hammering works)		15min)	the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the prediction assumptions. Furthermore, the platform works were located approximately 15 metres away. In the prediction model, the distance between the closest work area and the most affected facade is approximately 5 metres. Note that the platform works were intermittent during this measurement.
2 Hopetoun Street, Hurlstone Park	Vacuum truck and telehandler 05.02.2022 01:55pm – 02:10pm	75T (T: Predicted LAeq, 15min for Typical activities)	72	89	No (LAeq, 15min)	The measured LAeq, 15min is lower than the predicted noise level. Note that the vacuum truck and telehandler activity were located directly opposite the monitoring location, approximately 10 metres away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 9 metres.
51 Ewart Lane, Dulwich Hill	Telehandler, hi-rail excavator with bucket attachment and handheld grinder 05.02.2022 02:58pm – 03:13pm	72T (T: Predicted LAeq, 15min for Typical activities)	63	81	No (LAeq, 15min)	The measured LAeq, 15min is lower than the predicted noise level. Note that the telehandler activity was located directly opposite the monitoring location, and repeatedly moved between 20 metres to 40 metres from the monitoring location during the measurement. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres.
1 Bedford Crescent, Dulwich Hill	Handheld grinder, hirail hydrema and handtools (hammer 05.02.2022 03:30pm – 03:45pm	(T: Predicted LAeq, 15min for Typical activities)	56	77	No (LAeq, 15min)	The measured LAeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works were located approximately 60 metres away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Some plant operation and hi-rail movements were partially shielded by the station building. Note that the platform works were intermittent during this measurement.
30 Redman Parade, Belmore	Handheld grinder 05.02.2022 04:24pm – 04:39pm	63T (T: Predicted LAeq, 15min for Typical activities)	63	87	No (LAeq, 15min)	The measured Laeq, 15min is the same as the predicted noise level. Note that the handheld grinder activity was located 60 metres away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 50 metres. Note that this measurement location was

						heavily affected by road traffic noise along Redman Parade.
1 Acacia Street, Belmore	Vacuum truck, handheld grinder and hand tools (hammer) 05.02.2022 04:49pm – 05:04pm	65T (T: Predicted LAeq, 15min for Typical activities)	61	89	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. Note that the handheld grinder activity was located approximately 50 metres away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 35 metres. Note that this measurement location was heavily affected by road traffic noise along Acacia Street.
13-15 Anglo Road, Campsie	Excavator with bucket attachment, hi-rail hydrema and handtools (hammer) 05.02.2022 06:20pm – 06:35pm	74T (T: Predicted LAeq, 15min for Typical activities)	57	78	No (LAeq, 15min)	The measured LAeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 90 metres away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Note that the platform works were intermittent during this measurement.
2 Wilfred Avenue, Campsie	Hi-rail hydrema, plate compactor and excavator with bucket attachment 05.02.2022 06:57pm – 07:12pm	70τ (T: Predicted LAeq, 15min for Typical activities)	59	75	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 45 metres away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 25 metres. Note that the platform works were intermittent during this measurement. Note that the platform works were intermittent during this measurement.
1-3 Shadforth Street, Wiley Park	3 x EWP, excavator with bucket, rattle gun, 400T telescopic crane and handtools 05.02.2022 07:44pm – 07:59pm	79T (T: Predicted LAeq, 15min for Typical activities)	60	77	No (LAeq, 15min)	The measured Laeq. 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 35 metres away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Note that the platform works were intermittent during this measurement. Note that the platform works were intermittent during this measurement.

Sydney Metro City & Southwest - Package 5 & 6

during this measurement.	7 Shadforth Street, Wiley Park	2 x EWP, rattle gun and 400T telescopic crane 05.02.2022 08:03pm – 08:18pm	(T: Predicted LAeq, 15min for Typical activities)	56	79	No (LAeq, 15min)	The measured Laeq, 15min is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 65 metres away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 50 metres. Note that the platform works were intermittent during this measurement. Note that the platform works were intermittent
--------------------------	--------------------------------------	--	--	----	----	---------------------	--

RESULTS - VIBRATION MONITORING

The sections below contains a summary of the vibration monitoring results. The complete reports are provided in Appendixes 5 – 8. The established criteria for cosmetic damage in the Sydney Metro Construction Noise and Vibration Statement is as follows:

- Reinforced or framed structures: 25.0 mm/s;
- Unreinforced or light framed structures: 7.5 mm/s;
- Heritage structures (structurally sound): 7.5 mm/s; and
- Heritage structures (structurally unsound): 2.5 mm/s.

Also, in accordance with the Hurlstone Park Station Vibration Monitoring Plan developed in consultation with the Project consulting structural engineers (Appendix 9), the established vibration limits for the affected garage structure at a residential property on Commons Street are shown below:

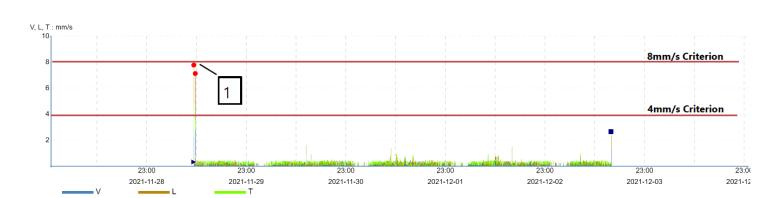
- Greater than or equal to 4 mm/s (cosmetic damage is possible);
- Greater than or equal to 8 mm/s (cosmetic damage becoming more likely).

During the reporting period, vibration monitoring was undertaken at the following locations:

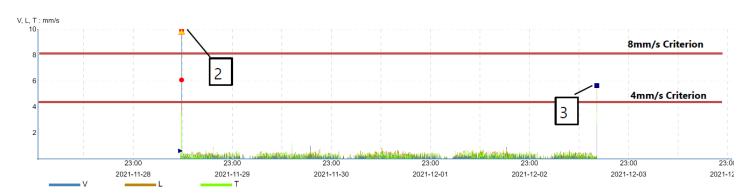
	Date	Location
1	29 th November – 3 rd December 2021	Residential property on Commons Street, Hurlstone Park
2	18-19 th December 2021	Hurlstone Park and Campsie Stations
3	18-19 th December 2021	Residential property on Commons Street, Hurlstone Park
4	26 th December 2021 – 09 January 2022	Residential property on Commons Street, Hurlstone Park
5	2 nd January – 9 th January 2022	Platform 1 Station Building, Hurlstone Park Station
6	4 th – 7 th February 2022	Residential property on Commons Street, Hurlstone Park

1 - Residential property on Commons Street, Hurlstone Park (29th November - 3rd December)

The results of the unattended vibration measurements for the neighbouring garage structure at a residential property on Commons Street are presented below:


Internal Use Only
© Downer 2020. All Rights Reserved

Page 30 of 26 Version: Rev 0



Sydney Metro City & Southwest - Package 5 & 6

Fig. 1 – Unattended vibration monitoring location 1 results (residential property on Commons Street, 29th November – 03rd December 2021)

Fig. 2 – Unattended vibration monitoring location 2 results (residential property on Commons Street, 29th November – 03rd December 2021)

It can be seen in Figure 1 and Figure 2 that the vibration levels produced from the vibration intensive works in the vicinity of the affected garage structure is below 4 mm/s. Note that there were events that resulted in an instantaneous vibration level of above 4 mm/s which are justified in the table below.

Exceedance ID	Date and Time	Cause of exceedance
1	29.11.2021, 10:30am	At this time, the vibration monitor was mounted on the ground spike to commence monitoring. Exceedance was not caused by the nearby construction activities. The exceedance was the result of the monitor instillation process
2	29.11.2021, 11:00am	At this time, the vibration monitor was mounted on the ground spike to commence monitoring. Exceedance was not caused by the nearby construction activities. The exceedance was the result of the monitor instillation process.
3	03.12.2021, 03:00pm	At this time, the vibration monitor was removed from the ground spike at the completion of monitoring. Exceedance was not caused by the nearby construction activities. The exceedance was the result of the monitor instillation process

2 - Hurlstone Park Station and Campsie Station (18-19th December)

The results of the vibration monitoring at Hurlstone Park and Campsie Stations are presented in the table below. The applicable vibration criteria for cosmetic damage from the Sydney Metro Construction Noise & Vibration Statement is defined below as the screening level.

Sydney Metro City & Southwest - Package 5 & 6

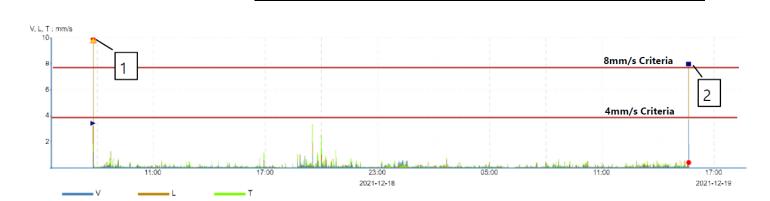
Station	Plant	Screening Level (mm/s)	Distance from source	95th percentile PPV (mm/s)	Maximum PPV (mm/s)	Above predicted vibration level	Comments
	19 th December 2021	TL927-1-19I	F01 WE25 NC	DISE AND VIBF	RATION MON	ITORING REPORT	Γ (R2) – APPENDIX 5
Hurlstone Park Station	4T excavator with bucket attachment	2.5	1m	0.90	0.95	No	At a distance of 1 metre away, the 4T excavator with bucket attachment produced vibration levels that are below the established vibration screening criteria.
Campsie Station	7T excavator with hammer attachment	.	5.5m	0.60	0.58	No	At a distance of 5.5 metres away, the 7T excavator with hammer attachment produced vibration levels that are below the established vibration screening criteria. Vibration monitor was attached on the nearest affected structure.
			2.5m	1.60	1.53	No	At a distance of 2.5 metres away, the 7T excavator with hammer attachment produced vibration levels that are below the established vibration screening criteria. Vibration monitor was attached on the nearest affected structure.
	Core drilling		6m	0.13	0.16	No	At a distance of 6 metres away, the core drilling activity produced vibration levels that are below the established vibration screening criteria.

It can be seen from the table above that the measured vibration levels were below the established criteria for heritage, reinforced or unreinforced structures. As a result, the risk of cosmetic damage from the measured plant items are considered to be low.

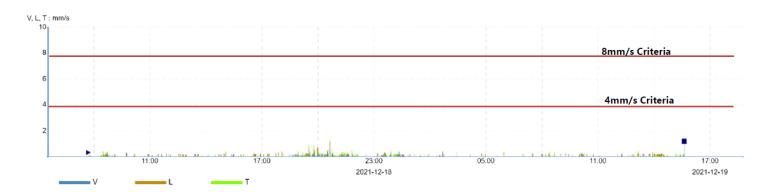
Based on the attended vibration measurement at Hurlstone Park and Campsie Station, the measured vibration levels were below the established vibration criteria for heritage, reinforced or unreinforced structures.

3 - Residential property on Commons Street, Hurlstone Park (18-19th December)

The results of the unattended vibration measurements for the neighbouring garage structure at a residential property on Commons Street are presented below:


Internal Use Only
© Downer 2020. All Rights Reserved

Page 32 of 26 Version: Rev 0



Sydney Metro City & Southwest - Package 5 & 6

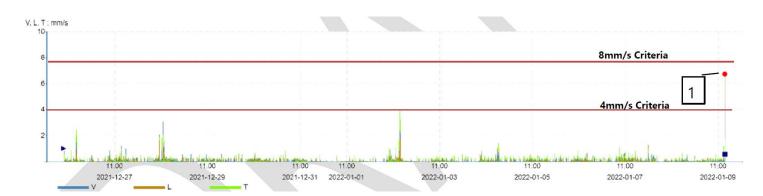
Fig. 3 – Unattended vibration monitoring location 1 results (residential property on Commons Street, 18th December – 19th December 2021)

Fig. 4 – Unattended vibration monitoring location 2 results (residential property on Commons Street, 18th December – 19th December 2021)

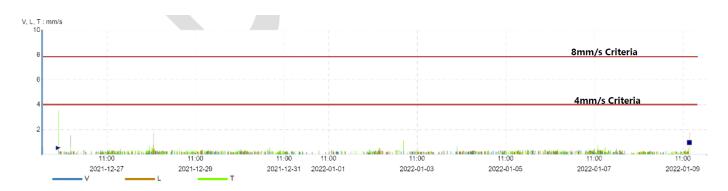
The discussion of the unattended vibration measurements is summarised in the table below:

Exceedance ID	Date and Time	Cause of exceedance
1	18.12.2021 07:47am	At this time, the vibration monitor was mounted on the ground spike to commence monitoring. Exceedance was not caused by the nearby construction activities. The exceedance was the result of the monitor instillation process
2	19.12.2021 03:41pm	At this time, the vibration monitor was removed from the ground spike to complete the monitoring. Exceedance was not caused by the nearby construction activities. The exceedance was the result of the monitor instillation process

It can be seen in Figure 3 and Figure 4 that the vibration levels produced from the vibration intensive works in the vicinity of the affected garage structure is below 4 mm/s. Note that there were events that resulted in an instantaneous vibration level of above 4 mm/s, however these were not caused by the nearby construction activities, as justified in the table above.


4 - Residential property on Commons Street, Hurlstone Park (26th December - 9th January)

The results of the unattended vibration measurements for the neighbouring garage structure at a residential property on Commons Street are presented below:



Sydney Metro City & Southwest - Package 5 & 6

Fig. 5 – Unattended vibration monitoring location 1 results (residential property on Commons Street, 26th December 2021 – 9th January 2022)

Fig. 6 – Unattended vibration monitoring location 2 results (residential property on Commons Street, 26th December 2021 – 9th January 2022)

Exceedance ID	Date and Time	Cause of exceedance
1	09.01.2022 02:25pm	At this time, the vibration monitor was removed from the ground spike to complete the
		monitoring. Exceedance was not caused by the nearby construction activities. The
		exceedance was the result of the monitor instillation process.

It can be seen in Figure 5 and 6 that the vibration levels produced from the vibration intensive works in the vicinity of the affected garage structure is below 4 mm/s. Note that there was an event that resulted in an instantaneous vibration level of above 4 mm/s, however this event was not caused by the nearby construction activities, as justified in the table above.

5 – Platform 1 station building at Hurlstone Park Station vibration monitoring (2nd – 9th January 2022)

The applicable vibration criteria for cosmetic damage from the Sydney Metro Construction Noise & Vibration Statement is as follow:

- Unreinforced or light framed structures: 7.5 mm/s
- Heritage structures (structurally sound): 7.5mm/s

The results of the unattended vibration monitoring for the station building are presented below:

Sydney Metro City & Southwest - Package 5 & 6

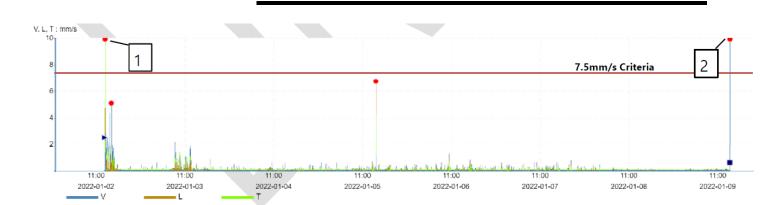


Fig. 6 – Unattended vibration monitoring at platform 1 results (2nd – 9th January 2022)

It can be seen in Figure 6 that the vibration levels produced from the jackhammering works in the vicinity of the station building on platform 1 is below 7.5 mm/s. Note that there were events that resulted in an instantaneous vibration level of above 7.5 mm/s, however these were not caused by the nearby construction activities, as justified in the table below.

Exceedance ID	Date and Time	Cause of exceedance
1	09.01.2022 02:25pm	At this time, the vibration monitor was mounted inside the station building to
		commence monitoring. Exceedance was not caused by the nearby construction
		activities. The exceedance was the result of the monitor instillation process.
2	09.01.2022 02:12pm	At this time, the vibration monitor was removed from the station building to complete
		the monitoring. Exceedance was not caused by the nearby construction activities. The
		exceedance was the result of the monitor instillation process.

The results of the unattended vibration measurements were typically below the established vibration criteria presented in the Hurlstone Park Station Vibration Monitoring Plan prepared for the works.

6 - Residential property on Commons Street, Hurlstone Park (7th February 2022)

The results of the unattended vibration measurements for the neighbouring garage structure at a residential property on Commons Street are presented below:

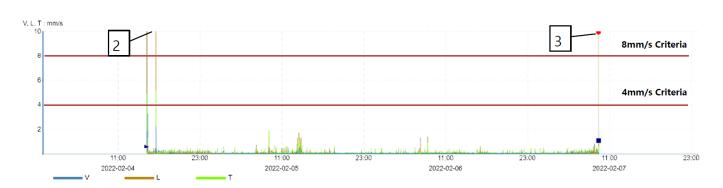


Fig. 7 – Unattended vibration monitoring location 1 results (residential property on Commons Street, 7th February 2022)

Sydney Metro City & Southwest - Package 5 & 6

Fig. 8 – Unattended vibration monitoring location 2 results (residential property on Commons Street, 7th February 2022)

The results of the noise measurements were below the predicted $LA_{eq \, 15 minutes}$ levels presented in the Gatewave model prepared for the works. The results of the unattended vibration measurements were typically below the established vibration criteria established for the location. There were events that resulted in an instantaneous vibration level of above the established vibration criteria, however, the cause of these events was not related to construction activity, as outlined in the table below.

Exceedance ID	Date and Time	Cause of exceedance
1	07.02.2022 09:24am	At this time, the vibration monitor was removed from the ground spike to complete the monitoring. Exceedance was not caused by the nearby construction activities. The exceedance was the result of the monitor instillation process.
2	04.02.2022 03:10pm	At this time, the vibration monitor was installed on the ground spike to start the monitoring. Exceedance was not caused by the nearby construction activities. The exceedance was the result of the monitor instillation process.
3	07.02.2022 09:20am	At this time, the vibration monitor was re moved from the ground spike to complete the monitoring. Exceedance was not caused by the nearby construction activities. The exceedance was the result of the monitor instillation process.

DISCUSSION - NOISE AND VIBRATION MONITORING

The noise monitoring results did not identify any exceedances of the predicted noise levels with the exception of two instances, one where traffic noise was compounding to the construction activities (making the readings less reliable) and the second one where noise levels were 10dB above predicted, which is consistent with high noise impact activities including the use of a rockhammer.

As the great majority of results did not exceed the predicted levels, the provision of construction noise mitigation measures is considered to be appropriate.

The vibration monitoring results have indicated that the construction activities have not caused vibration impacts above the screening levels.

It should also be noted that Downer conducts regular inspection of the environmental controls, including noise and vibration mitigation measures, across all work sites. These inspections are conducted by the Project Team and the Environmental Team. This proactive approach ensures that environmental controls are functioning properly rather than reactively inspecting the worksite following monitoring and reporting.

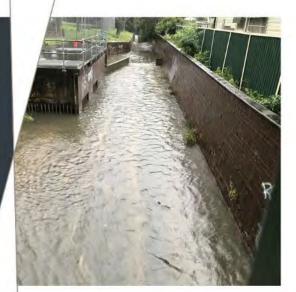
Construction Monitoring Report November 2021 to April 2022

Sydney Metro City & Southwest - Package 5 & 6

Appendix 1 – Surface Water Monitoring Report - Wiley Park Station - NE30161_R005_SWM_WileyPark_Rev0_R

Page 37

Version: Rev A


Surface Water Monitoring Report - Wiley Park Station

Wiley Park Station

NE30161

Prepared for Downer EDI Works Pty Ltd

13 January 2022

Contact Information

Document Information

Cardno (NSW/ACT) Pty Ltd

ABN 95 001 145 035

File Reference

Downer EDI Works Pty Ltd

NE30161 R005 SWM Wile

Project Name

Prepared for

Wiley Park Station

yPark_Rev0.docm

Level 9 - The Forum

203 Pacific Highway

St Leonards NSW 2065

PO Box 19

Job Reference

NE30161

www.cardno.com

Phone +61 2 9496 7700

+61 2 9439 5170

Date

13 January 2022

Version Number

Rev0

Author(s):

Fax

armin havehed Armin Kavehei

Effective Date

13/01/2022

Environmental Geoscientist

Approved By:

Muchal 1 Mike Jorgensen

Date Approved

13/01/2022

Principal Hydrogeologist

Document History

RevA 10/01/2022 Draft for Client Review AK/CZ MJ Rev0 13/01/2022 First Final AK/CZ MJ	Version	Effective Date	Description of Revision	Prepared by	Reviewed by
Rev0 13/01/2022 First Final AK/CZ MJ	RevA	10/01/2022	Draft for Client Review	AK/CZ	MJ
	Rev0	13/01/2022	First Final	AK/CZ	MJ

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

[©] Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Table of Contents

1	Introdu	uction	1	
	1.1	Background	1	
	1.2	Purpose and Objective	1	
	1.3	Scope of Works	1	
2	Guidel	lines and Legislation	2	
3	Monito	oring Locations	3	
	3.1	Monitoring Locations	3	
4	Quality	y Management	3	
	4.1	Data Quality Indicators	5	
5	Field I	Investigation	7	
6	Surface Water Assessment Criteria		8	
7	Summ	Summary of Results		
	7.1	Summary of Field Observations	9	
	7.2	Field Parameters	10	
	7.3	Surface Water Analytical Results	11	
	7.4	Results Discussion	13	
8	Conclu	usion	13	
9	References		15	
10	Limitations		16	

Appendices

Appendix A Figures
 Appendix B Photographs
 Appendix C Field Records
 Appendix D Laboratory Summary table
 Appendix E Quality Assurance/Quality control
 Appendix F Laboratory reports

Tables

Table 1-1	Wiley Park Water Quality Monitoring Program	2
Table 3-1	Surface Water Monitoring Location Details	3
Table 4-1	Data Quality Objectives	3
Table 4-2	Summary of Data Quality Indicators	5
Table 5-1	Investigation Activity Summary	7
Table 6-1	Water Quality Monitoring Parameters and Adopted Criteria at Wiley Park	8
Table 7-1	Field physico-chemical Parameters and Field Observations on 12 and 26 November 2021.	10
Table 7-2	Comparison of current wet condition sampling events to previous wet condition sampling events.	12

1 Introduction

1.1 Background

Cardno (NSW/ACT) Pty Ltd ("Cardno") was commissioned by Downer EDI Works Pty Ltd ("Downer") to undertake monitoring and reporting of surface water quality of the unnamed channel within proximity to Wiley Park Station Upgrade Site. The proposed works includes the upgrade of the main station and installation of the Metro Services Building (MSB).

Surface water quality of the channel within proximity to Wiley Park Upgrade Site is to be monitored as per the requirements summarised in **Table 1-1**, which is taken from excerpt from the Southwest Metro – Hurlstone Park, Belmore and Wiley Park Station Upgrades Soil and Water Management Plan (SWMP). The monitoring program are prepared to meet the requirements outlined in *The Sydney Metro City and Southwest – Sydenham to Bankstown Upgrade Conditions of Approval SSi-8256*, specifically Condition 8 to Condition 10. The sampling locations (WP1 – Upstream and WP2 – Downstream) of the water quality monitoring are shown in **Appendix A**.

The closest Project worksite to an existing watercourse is Wiley Park Station services building, which is located approximately 100 m from an unnamed concrete-lined channel, which forms the upper reaches of Cox Creek and is identified as a first-order stream.

For the purpose of establishing baseline water quality data within the first-order stream at Wiley Park, water quality monitoring was intended to be undertaken for a period prior to construction of the Wiley Park services building as outlined in **Table 13** of the SWMP. At a minimum, one dry-weather sample and one wet weather sample (weather permitting) are to be collected during the pre-construction period. The frequency of pre-construction water quality monitoring within this channel was subject to water being present within the structure. However, during the baseline monitoring period no wet-weather events were able to be captured prior to commencement of construction. A dry-weather baseline monitoring event was undertaken on 10 March 2021.

This report presents the findings from the sixth and seventh surface water monitoring events, which were undertaken by Cardno on 12 and 26 November 2021. These events undertaken were wet mid-construction events.

1.2 Purpose and Objective

The purpose of the surface water monitoring works is to monitor and record surface water quality within the unnamed channel in accordance with the monitoring program as outlined in the Site's SWMP. The objective of the works is to evaluate whether construction activities are impacting water quality downstream of the project footprint in the unnamed channel.

1.3 Scope of Works

Cardno undertook the following tasks during the surface water monitoring events:

- Inspected and sampled two (2) nominated surface water sampling locations (WP1 Upstream and WP2 Downstream) on 12 and 26 November 2021 as part of mid-construction monitoring event.
- > Recorded field parameters and noted observations of the water bodies during sampling.
- Collected two (2) primary surface water samples, one (1) intra-lab duplicate sample and one (1) inter-lab duplicate sample per sampling event for submission to a National Association of Testing Authorities, Australia (NATA) certified laboratory for analytical testing of primary and additional quality assurance/quality control (QA/QC) samples. Samples were submitted for analysis of:
 - Oil & Grease;
 - Total Suspended Solids (TSS);
 - Nutrients (Total Phosphorous, Total Nitrogen);

- Turbidity; and
- Chlorophyll-a.
- > Reviewed the analytical and field data and prepared this report.

Details of the monitoring program are shown below.

Table 1-1 Wiley Park Water Quality Monitoring Program

	Wiley Park Water Quality Monitoring Program	
Waterway	Sydney Water Cooks River Channel (first-order stream)	
Indicative	WP1 – Upstream	
monitoring points	WP2 – Downstream	
Interaction with Project works	Channel within proximity to Wiley Park service building site	
Pre-construction works	Monthly for parameters detailed in Table 11 (including at least one dry-weather round of sampling).	
	One wet-weather event, if possible, for the parameters detailed in Table 11, subject to event occurrence, safe conditions for monitoring and access being available to conduct monitoring.	
	Note: A wet-weather event is when the receiving area has received greater than 20 mm of rain in 24 hours. The sampling is undertaken immediately during construction hours and if it is safe to do so.	
During	Quarterly for parameters detailed in Table 11 (including during dry weather).	
construction of the Wiley Park	Four wet-weather events per year for the parameters in Table 11, subject to event occurrence, safe conditions for monitoring and access being available to conduct monitoring.	
services building	Note: A wet-weather event is when the receiving area has received greater than 20 mm of rain in 24 hours. The sampling was undertaken immediately during construction hours and if it is safe to do so.	

2 Guidelines and Legislation

There are a range of Guidelines and Legislation and Conditions of Approval (CoA) that are applicable to the surface water monitoring program which are summarised below.

The CoA applicable to this job include:

> The Sydney Metro City and Southwest - Sydenham to Bankstown Upgrade Conditions of Approval SSI-8256, determined 12 December 2018;

The State and Federal legislation and policy and guidelines that apply to the program include:

- > Environmental Planning and Assessment Act 1979 (EP&A Act);
- > Contaminated Land Management Act 1997;
- > Protection of the Environment Operations Act 1997 (POEO Act); and
- > Water Management Act 2000 Water Management (General) Regulation 2018;

Additional guidelines and standards to the management of soil and water include:

- > Landcom (2004). Managing Urban Stormwater: Soils and Construction. (Volume 1 of the 'Blue Book');
- > DECC (2008). Managing Urban Stormwater: Soils and Construction. Volume 2D: Main Road Construction. (Volume 2D of the 'Blue Book');
- > ANZECC (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (collectively known as the 'ANZECC Guidelines');
- > ANZECC (2018). Australian and New Zealand Guidelines for Water Quality Monitoring and Reporting (collectively known as the 'ANZECC Guidelines'); and

> ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (known as 'ANZG Guidelines').

3 Monitoring Locations

Details of the sampling locations are provided in **Table 3-1**. The locations are provided in **Appendix A**. Representative photographs are presented in **Appendix B**.

3.1 Monitoring Locations

Table 3-1 Surface Water Monitoring Location Details

Sample Location	Latitude	Longitude	Description
WP1 (upstream)	-33.924014	151.065315	Immediately south of the Boulevarde and east of 118 the Boulevarde.
WP2 (downstream)	-33.923339	151.064970	Immediately north of the Urunga Parade and west of 4 Urunga Parade.

4 Quality Management

The Data Quality Objective (DQO) process is used to establish a systematic planning approach to setting the type, quantity and quality of data required for making decisions based on the environmental condition of the project area. The DQO process involves the seven steps detailed in **Table 4-1**.

Table 4-1 Data Quality Objectives

Table 4-1 Data Quality Objective	-		
DQO	Description		
Step 1 State the Problem	Construction work may adversely impact the local surface water quality within the unnamed channel near the site.		
Step 2 Identify the Decisions	Are there any impacts to surface water quality from construction activities at the site?		
Step 3	The primary inputs to the decisions described above are:		
Identify Inputs to the Decision	 Assessment of surface water quality of the unnamed channel within proximity to Wiley Park service building site per the requirements outlined in the site's SWMP, with samples collected from two locations (upstream and downstream of the site); 		
	 Laboratory analysis of surface water samples for relevant parameters; 		
	 Assessment of the suitability of the analytical data obtained, against the Data Quality Indicators (DQIs); 		
	 Assessment of the analytical results against applicable guideline criteria; and 		
	 Aesthetic observations of surface water bodies, including odours, sheen and condition, if encountered. 		
Step 4 Define the Study Boundaries	The lateral extent of the study area is the channel near the Wiley Park service building site.		
,	The temporal boundaries of the study comprise the duration of the monitoring program, including pre-construction monitoring, construction phase, and post-construction monitoring as required.		
Step 5	The decision rules for the water quality monitoring sampling events included:		
Develop a Decision Rule	• Were primary and QA/QC samples analysed using methods endorsed by relevant regulatory guidelines at laboratories NATA-accredited for the requested analyses?		

DQO Description

- Did the field and laboratory QA/QC results indicate that the data set was reliable and representative of the water quality with Relative Percentage Difference (RPD) values of 30% or less?
- Were the laboratory limits of reporting (LORs) below the applicable guideline criteria for the analysed parameters?
- Were guideline criteria sourced from endorsed guidelines?
- Were surface water aesthetic characteristics evaluated including odours and sheen?
- Were the monitoring results obtained from the downstream sample collected during construction phase greater than the upstream sample collected during the same monitoring event? If so, then the adverse impact to the quality of water in the unnamed channel is considered to have potentially occurred.

Step 6 Specify Limits on Decision

In accordance with the relevant guidelines as endorsed under the *Contaminated Land Management Act 1997*.

Specific limits for this project are in accordance with the appropriate guidance made or endorsed by state and national regulations, appropriate indicators of data quality, and standard procedures for field sampling and handling.

This step also examines the certainty of conclusive statements based on the available new Site data collected. This should include the following points to quantify tolerable limits:

 A decision can be made based on a certainty assumption of 95% confidence in any given data set (excluding asbestos). A limit on the decision error will be 5% that a conclusive statement may be a false positive or false negative.

A decision error in the context of the decision rule presented above would lead to either underestimation or overestimation of the risk level associated with a particular sampling area. Decision errors may include:

- Sampling errors may occur when the sampling program does not adequately detect the variability of a contaminant from point to point across the Site. To address this, minimum numbers of samples are proposed to be collected from each media. As such, there may be limitations in the data if aspects of the sampling plan cannot be implemented. Some examples of this scenario include but not limited to:
 - Proposed samples are not collected due to lack of water flow or access being restricted to a given location.
- Limitations in ability to acquire useful and representative information from the data collected. The data are proposed to be collected from multiple locations and sample media.
- Measurement errors can occur during sample collection, handling, preparation, analysis and data reduction. To address this the following measures are proposed:
 - Field staff to follow a standard procedure when undertaking samples, including decontamination of tools, removal of adhered soil to avoid false positives in results, collection of representative samples and use of appropriate sample containers and preservation methods.
 - Laboratories to follow a standard procedure when preparing samples for analysis and undertaking analysis.
 - Laboratories to report QA/QC data for comparison with the DQIs established for the project

Step 7 Optimise the Design for Obtaining Data

To achieve the DQOs and DQIs, the following sampling procedures were implemented to optimise the design for obtaining data:

- Surface water samples was collected from two (2) sampling locations, as available due to access and water level;
- Surface water parameters were selected based on project monitoring requirements provided to Cardno;
- Samples were collected by suitably qualified and experienced environmental scientists;

DQO	Description
•	Samples were collected and preserved in accordance with relevant standards/guidelines; and
•	Field and laboratory QA/QC procedures were adopted and reviewed to indicate the reliability of the results obtained.

4.1 Data Quality Indicators

The following DQIs have been adopted for the project. The DQIs outlined in **Table 4-2** assist with decisions regarding the usefulness of the data obtained, including the quality of the laboratory data.

Table 4-2 Summary of Data Quality Indicators

Table 4-2 Summary of Data Quality Indicators					
Data Quality Indicator	Frequency	Data Acceptance Criteria			
Completeness					
Field documentation correct	All samples	The work was documented in accordance with Cardno SOPs			
Suitably qualified and experience sampler	All samples	Person deemed competent by Cardno collecting and logging samples			
Appropriate lab methods and limits of reporting (LORs)	All samples	Samples were analysed using methods endorsed by relevant regulatory guidelines at laboratories NATA-accredited for the requested analyses.			
Chain of custodies (COCs) completed appropriately	All samples	The work was documented in accordance with Cardno SOPs			
Sample holding times complied with	All samples	The samples were extracted and analysed within holding times specified by the project NATA-accredited laboratory			
Proposed/critical locations sampled	-	Proposed/critical locations sampled			
Comparability					
Consistent standard operating procedures for collection of each sample. Samples should be collected, preserved and handled in a consistent manner	All samples	All works undertaken in accordance with Cardno SOPs			
Experienced sampler	All samples	Person deemed competent by Cardno collecting all logging samples			
Climatic conditions (temp, rain etc) recorded and influence on samples quantified (if required)	All samples	Climatic conditions documented in field sheets			
Consistent analytical methods, laboratories and units	All samples	Sample analysis to be in accordance with NATA-approved methods			
Representativeness					
Sampling appropriate for media and analytes (appropriate collection, handling and storage)	All samples	Sample analysis to be in accordance with NATA-approved methods			
Samples homogenous	All samples	All works undertaken in accordance with Cardno SOPs			
Detection of laboratory artefacts, e.g. contamination blanks	-	Laboratory artefacts assessed and impact on results determined			
Samples extracted and analysed within holding times	All samples	The samples were extracted and analysed within holding times specified by the laboratory			
Precision					
Blind duplicates (intra-laboratory duplicates)	1 per 20 samples	less than or equal to 30% RPD No Limit RPD Result less than 10 × LOR			
Split duplicates (inter-laboratory duplicates)	1 per 20 samples	less than or equal to 30% RPD No Limit RPD Result less than 10 × LOR			

Data Quality Indicator	Frequency	Data Acceptance Criteria
Laboratory duplicates	1 per 20 samples	Results greater than 10 x LOR: less than or equal to 30% RPD
		Results less than 10 x LOR: No limit on RPD
Accuracy (Bias)		
Surrogate spikes	All organic samples	50-150%
Matrix spikes	1 per 20 samples	70-130%
Laboratory control samples	1 per 20 samples	70-130%
Method blanks	1 per 20 samples	<lor< td=""></lor<>

The DQOs and DQIs for the project were met during the monitoring events. Discussion of the QA/QC assessment is provided in $\bf Appendix~\bf E$.

5 Field Investigation

The scope and method of the surface water monitoring is summarised in **Table 5-1**.

Table 5-1 Investigation Activity Summary

Activity	Details
Dates of Fieldworks	12 and 26 November 2021
Surface Water Sampling	Cardno inspected two surface water monitoring locations (WP1 – Upstream and WP2 – Downstream) on both surface water monitoring event undertaken on 12 and 26 November 2021. Primary samples were collected from the two locations during both sampling events. Cardno undertook the sampling as per the following procedures:
	<u>Surface Water Body Inspection</u> - The general site condition was observed prior to commencement of field works for signs of any site activities that may have altered the surface water contamination status or require modifications to the field or laboratory works program.
	Each surface water location was inspected for indicators of contamination and the presence as well as the flow of surface water. This information is recorded on the field sheets presented in Appendix C .
	<u>Surface water flow sampling</u> - Field parameters and visual/olfactory observations were recorded prior to sampling at each location. Physico-chemical parameters including pH, electrical conductivity (EC), dissolved oxygen (DO), reduction-oxidation potential (redox), and temperature were measured using a calibrated water quality meter. Surface water samples were collected either directly into the sampling bottle or directly from the telescopic scoop. Once field parameters were recorded, the surface water samples were transferred to appropriately preserved sample containers provided by the laboratories. Field observations, and parameters are presented in Appendix C .
	Surface water samples were placed into an Esky containing ice and maintained at or below 4°C whilst onsite and in transit to the NATA-accredited laboratories for the targeted analyses.
Surface Water Analysis	Surface water samples from the monitoring event were submitted under standard chain-of-custody (CoC) procedures to NATA-accredited Eurofins Environment Testing Australia analysis of the parameters as follows:
	- Oil & Grease;
	- TSS;
	 Nutrients (Total Phosphorous, Total Nitrogen);
	- Turbidity; and
	- Chlorophyll-a.
	Tabulated laboratory results are presented in Appendix D . The Data QA/QC program and data quality review including calibration certificates is presented in Appendix E .
	Copies of the original laboratory reports, NATA-stamped laboratory certificates, and CoC documentation are included in Appendix F .
Decontamination	In the event of reusable sampling or monitoring equipment (telescopic scoop, water quality meter) was used decontamination was undertaken. Decontaminated between locations using a standard bucket wash. Equipment was washed in phosphate-free detergent (Liquinox) and rinsed in laboratory-supplied rinsate water.

6 Surface Water Assessment Criteria

The assessment criteria for surface water analytical and field data were adopted from Table 11 of the site's SWMP. The criteria for selected parameters are provided in **Table 6-1** below.

Table 6-1 Water Quality Monitoring Parameters and Adopted Criteria at Wiley Park

Parameter	ANZECC Criteria – Freshwater ¹	Proposed Triger Values	Proposed Actions
Temperature (°C)	>80% ile; <20% ile		
DO (%Sat)	Lower limit – 85% Upper limit – 110%	Downstream results are	Environment Manager (or delegate) to re-test to confirm results and undertake an inspection of the adjacent works and propose actions where required.
Turbidity (NTU)	6-50 NTU	greater than upstream results in rainfall events up	
Oil and grease	-	to and including the significant event threshold	
рН	Lower limit – 6.5 Upper limit – 8.5	of greater than 20 mm in 24 hours.	
Salinity (as EC)	125 – 2,200 μS/cm	Downstream results are greater than upstream	
TSS	-	results during dry-weather	
Total Phosphorus as P	25 μg/L	— sampling.	
Total Nitrogen as N	350 μg/L		
Chlorophyll-a	3 μg/L		

Note to Table

ANZECC guideline criteria are included for reference. It is noted that for dry weather events baseline testing comparison will indicate whether this existing water quality within the channel meet ANZECC guidelines, prior to construction of the services building. For wet-weather events where no baseline data is available a direct comparison to upstream and downstream results is undertaken. Sydney Metro's Principal Contractor will comply with Section 120 of the Protection of the Environment Operations Act 1997.

7 Summary of Results

7.1 Summary of Field Observations

The two (2) surface water sampling locations (WP1 – Upstream and WP2 – Downstream) were able to be accessed during both sampling events conducted on 12 and 26 November 2021. Photos of each sampling location are included in **Appendix B**. The following observations were made:

7.1.1 Mid-Construction Wet-weather Event – 12 November 2021

- > The sampling event was considered as a mid-construction wet-weather event based on the rainfall data recorded by two nearby weather stations:
 - Canterbury Racecourse AWS station (ID: 066194): approximately 4.6 km from the site with the rainfall data recorded 19.8 mm (i.e. marginally below the 20 mm threshold) over the last 24 hours prior to the field sampling.
 - Marrickville Golf Club station (ID: 066036): approximately 6.4 km from the site with the rainfall data recorded 22.0 mm (i.e. above the 20 mm threshold) over the last 24 hours prior to the field sampling.
- > Observation of water body:
 - WP 1 (upstream of work area) contained low to medium flowing clear water with low turbidity. The estimated depth of the water body was 0.15 m;
 - WP 2 (downstream of work area) contained low to medium flowing clear water with low turbidity. The estimated depth of the water body was 0.20 m;
- > Additional observation:
 - WP1 (upstream of work area):
 - One additional discharge point (WP1-DP1) was observed immediately downstream / north of WP1, however, minor flow contribution was observed at the time of sampling. Refer to **Appendix A** for approximate location of WP1-DP1. Refer to **Appendix B** for a detailed photo.
 - WP2 (downstream of work area):
 - During the sampling event, the two discharge points (WP2-DP1 and WP2-DP2) within the rail corridor immediately upstream / south from WP2 were observed. Minor flow contribution from the discharge point WP2-DP1 was observed at the time of sampling. Also, minor flow contribution from the discharge point WP2-DP2 was observed at the time of sampling which was greater than the flow from WP2-DP1. Refer to Appendix A for approximate location of WP2-DP1 and WP2-DP2. Refer to Appendix B for detailed photos.

7.1.2 Mid-Construction Wet-weather event – 26 November 2021

- > The sampling event was considered as a mid-construction wet-weather event based on the rainfall data recorded by two nearby weather stations:
 - Canterbury Racecourse AWS station (ID: 066194): approximately 4.6 km from the site with the rainfall data recorded 43.8 mm (i.e. above the 20 mm threshold) over the last 24 hours prior to the field sampling.
 - Marrickville Golf Club station (ID: 066036): approximately 6.4 km from the site with the rainfall data recorded 46.0 mm (i.e. above the 20 mm threshold) over the last 24 hours prior to the field sampling.
- > Observation of water body:
 - WP 1 (upstream of work area) contained low flowing clear water with low turbidity. The estimated depth
 of the water body was 0.15 m;
 - WP 2 (downstream of work area) contained medium flowing clear water with low turbidity. The estimated depth of the water body was 0.20 m;
- > Additional observation:
 - WP1 (upstream of work area):

- One additional discharge point (WP1-DP1) was observed immediately downstream / north of WP1 and flow contribution was observed at the time of sampling. Refer to Appendix A for approximate location of WP1-DP1. Refer to Appendix B for a detailed photo.
- WP2 (downstream of work area):
 - During the sampling event, the two discharge points (WP2-DP1 and WP2-DP2) within the rail corridor immediately upstream / south from WP2 were observed. Flow contribution from the discharge point WP2-DP1 and WP2-DP2 were observed at the time of sampling. Refer to Appendix A for approximate location of WP2-DP1 and WP2-DP2. Refer to Appendix B for detailed photos.

7.2 Field Parameters

The parameters from each location sampled are presented in **Table 7-1**.

Table 7-1 Field physico-chemical Parameters and Field Observations on 12 and 26 November 2021.

Location ID	WP1 (upstream)	WP2 (downstream)	WP1 (upstream)	WP2 (downstream)
Time of Sampling 12 November 2021		26 November 2021		
Water depth (m)	0.15	0.2	0.15	0.2
Estimated Flow Rate	Low to medium	Low to medium	Low	Medium
Temperature (°C)	19.4	19.5	19.6	19.7
рН	8.10	8.42	6.07	7.34
EC (µS/cm)	514.0	509.2	389.2	484.0
DO (mg/L)	6.42	5.63	9.05	9.31
DO (%)	68	63	98.7	101.9
Redox Potential (mV)	70.8	80.4	183.7	196.3
Condition	Clear	Clear	Clear	Clear
	Low Turbidity	Low turbidity	Low Turbidity	Low turbidity

7.3 Surface Water Analytical Results

Surface Water Analytical results are presented in **Appendix D**. Copies of the original laboratory reports, NATA-stamped laboratory certificates, and Chain of Custody documentation are included in **Appendix F**.

7.3.1 Mid-Construction Wet-weather event – 12 November 2021

The results of the monitoring event indicate that:

- > Laboratory analytical results:
 - Concentrations of Chlorophyll-a were reported below the laboratory detection limit and adopted assessment criteria at all sample locations;
 - Concentrations of Oil and Grease were reported below laboratory detection limit at all sample locations;
 - Concentrations of inorganics were reported above the adopted assessment criteria with the total nitrogen concentration within both the WP1 and WP2 samples, and the total phosphorous concentration for WP1 but total phosphorous concentration WP2 (0.020) was below adopted assessment criteria (0.025);
 - TSS concentrations were detected within both WP1 and WP2, with concentrations of 8.4 mg/L at WP1 and 7.6 mg/L at WP2; and
 - Turbidity ranged from 21 NTU at WP1 to 19 NTU at WP2.

7.3.2 Mid-Construction Wet-weather event – 26 November 2021

The results of the monitoring event indicate that:

- > Laboratory analytical results:
 - Concentrations of Chlorophyll-a were reported below the laboratory detection limit and/or adopted assessment criteria at all sample locations;
 - Concentrations of Oil and Grease were reported below laboratory detection limit at all sample locations;
 - Concentrations of inorganics were reported above the adopted assessment criteria with the total nitrogen concentration within both the WP1 and WP2 samples, and the total phosphorous concentration within both the WP1 and WP2;
 - TSS concentrations were detected within both WP1 and WP2, with concentrations of 16 mg/L at WP1 and 7.8 mg/L at WP2; and
 - Turbidity ranged from 25 NTU at WP1 to 17 NTU at WP2.

7.3.3 Baseline Results Comparison

One sampling event during the pre-construction period (baseline event) was undertaken on 10 March 2021 which was during dry condition. It should be noted that wet-weather and storm-event pre-construction monitoring was not able to be conducted because of the lack of rainfall. The monitoring results of baseline event (10 March 2021) has not been used for comparison with the monitoring results under this report because the conditions encountered were different (i.e. non-trigger for wet-weather event criteria i.e. >20 mm on 10 March 2021). However, two previous mid-construction wet weather sampling events on 20 March and 5 May 2021 were used to compare and check if there is any potential adverse impact to the water quality caused by the construction activities.

The parameters from each location sampled are presented in **Table 7-2**. Overall, conditions are similar between upstream and downstream samples on 12 and 26 November 2021 and previous wet events.

Table 7-2 Comparison of current wet condition sampling events to previous wet condition sampling events.

Time of sampling		20 Mar	20 March 2021 5 May 2021		2021	12 November 2021		26 November 2021	
Location ID	Assessment Criteria	WP1	WP2	WP1	WP2	WP1	WP2	WP1	WP2
Temperature (°C)	N/A²	20.2	20	18.6	18.2	19.4	19.5	19.6	19.7
рН	6.5 - 8.5	8.10	7.58	7.80	7.73	8.10	8.42	6.07	7.34
EC (μS/cm)	125 – 2,200	246.2	133.4	2,500	92.9	514	509	389	484
DO (mg/L)	N/A ²	4.79	3.92	6.35	5.95	6.42	5.63	9.05	9.31
DO (%)	85% - 110%	52.9	43.2	65.3	62.8	68	63	99	102
SHE¹ Redox Potential (mV)	N/A ²	122.3	135.9	164.6	109.2	70.8	80.4	184	196
Chlorophyll a (µg/L)	3	<5	<5	<5	<5	<2	<2	<2	2.7
Oil and Grease (mg/L)	Comparison	<10	<10	<10	<10	<10	<10	<10	<10
Kjeldahl Nitrogen Total (mg/L)	N/A ²	0.6	0.8	NT ³	NT³	NT ³	NT ³	NT ³	NT ³
Nitrate & Nitrite (as N) (mg/L)	N/A ²	1.7	1.5	NT ³	NT ³	NT ³	NT ³	NT ³	NT ³
Nitrogen (Total) (mg/L)	0.35	2.3	2.3	5.0	1.0	2.7	2.8	1.6	2.4
Phosphate total (as P) (mg/L)	0.025	<0.5	<0.5	0.21	0.15	0.15	0.02	0.13	0.18
TSS (mg/L)	N/A ²	9.2	35	4.0	47	8.4	7.6	16	7.8
Turbidity (NTU)	<6-50	9.3	13	4.3	21	21	19	25	17

Note to Table

- 1 SHE Standard Hydrogen Electrode
- 2 Not Applicable
- 3 NT Not Tested

7.4 Results Discussion

7.4.1 Comparison to ANZG 2018 / ANZECC 2000 Criteria

Results for the mid-construction event sampled on 12 November 2021 generally showed monitored parameters were within the adopted threshold criteria, with the exception of saturation of DO, total nitrogen, and total phosphorous.

Results for the mid-construction event sampled on 26 November 2021 generally showed monitored parameters were within the adopted threshold criteria, with the exception of pH (only at upstream WP1), total nitrogen, and total phosphorous.

7.4.2 Comparison of Upstream and Downstream Results

Results for upstream and downstream sampling on 12 November 2021 were comparable, with the exception of:

- > DO saturation measured at both WP1 and WP2 were outside the adopted criterion range. The downstream WP2 location had slightly lower DO (63%) compared to the upstream WP2 location (68%). Overall, this is not considered to be a significant issue, based on:
 - Similar results obtained from both previous mid-construction wet-weather sampling events on 20 March 2021 and 5 May 2021.
 - The DO saturation measurements undertaken during the pre-construction dry-baseline event on 10 March 2021 returned 63.0% for WP1 and 45.9% for WP2 indicating these mid-construction wet-weather results are closer to the adopted thresholds than the baseline event.
- > Phosphorous result was above the adopted threshold at upstream WP1 sample (0.15 mg/L). However, the concentration was lower at the downstream WP2 sample (0.02 mg/L) and below the adopted threshold.

Results for upstream and downstream sampling on 26 November 2021 were comparable, with the exception of:

- > pH was outside the adopted criterion range at upstream WP1 sample (6.07), however, within the adopted criterion range at downstream WP2 sample (7.34).
- > Concentrations of total phosphorous and total nitrogen were outside the adopted criterion range at upstream and downstream sampling locations and the downstream showed to have slightly higher concentrations compared to the upstream sample. However, the concentrations were generally consistent with the previous two mid-construction wet-weather events.

Refer to **Appendix D** for details. It should be noted that wet-weather and storm-event pre-construction monitoring was not able to be conducted because of the lack of rainfall.

8 Conclusion

Cardno was engaged to undertake surface water monitoring of the unnamed channel west of Wiley Park Station in accordance with the SWMP for the project. The objective of the works was to evaluate whether construction activities are impacting water quality downstream of the project footprint in the unnamed channel that receives in part stormwater from the construction area.

This report presents monitoring data from mid-construction wet-weather event on 12 and 26 November 2021. Samples were collected from two locations per event. Sampling point WP1 is located upstream from the work site while sampling point WP2 is located downstream of the work site. During this monitoring event, sampling results showed monitored parameters were generally within the adopted ANZG 2018 / ANZECC 2000 screening criteria with the exception of DO, total nitrogen, and total phosphorous on 12 November 2021 and pH (only at upstream WP1), total nitrogen, and total phosphorous on 26 November 2021.

The comparison of the wet-weather mid-construction events on 12 and 26 November 2021 with two previous wet-weather sampling events on 20 March 2021 and 5 May 2021 showed no significant difference.

Based on comparison to the criteria, comparison with two previous mid-construction wet-weather events, and comparison of the upstream and downstream results, the results reported for the 12 and 26 November 2021 sampling events are not considered to reflect an adverse impact to water quality due to construction activities.

9 References

- Southwest Metro Hurlstone Park, Belmore and Wiley Park Station Upgrades Soil and Water Management Plan, dated 16th February 2021;
- > The Sydney Metro City and Southwest Sydenham to Bankstown Upgrade Conditions of Approval SSI-8256, determined 12 December 2018;
- > Environmental Planning and Assessment Act 1979 (EP&A Act);
- > Contaminated Land Management Act 1997;
- > Protection of the Environment Operations Act 1997 (POEO Act);
- > Water Management Act 2000 Water Management (General) Regulation 2018;
- > Landcom (2004). Managing Urban Stormwater: Soils and Construction. (Volume 1 of the 'Blue Book');
- > DECC (2008). Managing Urban Stormwater: Soils and Construction. Volume 2D: Main Road Construction. (Volume 2D of the 'Blue Book');
- > ANZECC (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (collectively known as the 'ANZECC Guidelines');
- > ANZECC (2000). Australian and New Zealand Guidelines for Water Quality Monitoring and Reporting (collectively known as the 'ANZECC Guidelines');
- > ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (known as 'ANZG Guidelines').

10 Limitations

This assessment has been undertaken in general accordance with the current industry standards for a surface water monitoring report for the purpose and objectives and scope identified in this report. The agreed scope of this assessment has been limited for the current purposes of the Client. The assessment may not identify contamination occurring in all areas of the site or occurring after sampling was conducted. Subsurface conditions may vary considerably away from the sample locations where information has been obtained. This Document has been provided by Cardno subject to the following limitations:

- > This Document has been prepared for the particular purpose outlined in Cardno's proposal and Section 1 of this report and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.
- > The scope and the period of Cardno's services are as described in Cardno's proposal and are subject to restrictions and limitations. Cardno did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Cardno in regards to it.
- > Conditions may exist which were undetectable given the limited nature of the enquiry Cardno was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been considered in the Document. Accordingly, additional studies and actions may be required.
- > In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Cardno's opinions are based upon information that existed at the time of the production of the Document. It is understood that the services provided allowed Cardno to form no more than an opinion of the actual conditions of the site at the time this Document was prepared and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.
- > Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.
- > Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Cardno for incomplete or inaccurate data supplied by others.
- > Cardno may have retained sub consultants affiliated with Cardno to provide services for the benefit of Cardno. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Cardno's affiliated companies, and their employees, officers and directors.

This assessment report is not any of the following:

- > A Site Audit Report or Site Audit Statement (SAR/SAS) as defined under the Contaminated Land Management Act, 1997 or an assessment sufficient for an Environmental Auditor to be able to conclude a SAR/SAS.
- > A geotechnical report and the bore logs/test pit logs may not be sufficient for geotechnical advice.
- > An assessment of surface water contaminants potentially arising from other sites or sources nearby.
- > A total assessment of the site to determine suitability of the entire parcel of land at the site for one or more beneficial uses of land.

A

FIGURES

В

PHOTOGRAPHS

Photograph 1. Upstream sampling location WP1. Date: 12 November 2021.

Photograph 2. Discharge point (WP1-DP1) and observed to have contribution to the flow at the time of sampling. Date: 12 November 2021.

Photograph 3. Downstream sampling location WP2. Date: 12 November 2021.

Photograph 4. Discharge points (WP2-DP1 and WP2-DP2) and observed to have contribution to the flow at the time of sampling. Date: 12 November 2021.

Photograph 5. Upstream sampling location WP1. Date: 26 November 2021.

Photograph 6. Downstream sampling location WP2. Date: 26 November 2021.

C

FIELD RECORDS

Surface Water Sampling Field Record

ite / Project: Wiley		Job No. NE 30161			
lient:					
erson Sampling: J N	Initials: J N				
		Site Details			
ampling Equipment – Directly in	Date: 12/11/21				
bservations on Site: Last Rain	Event / Recent Sto	orms / Releases / (Other:		
Sample Details, Ob		Coordinates &		emical Measur	ements
mple ID	WP	WP2	once stable)		
Start Time:	12:20	12:50			
Easting					
Northing	4.0				
Sample Depth (m) 0.0	0.16	0.0 - 0.13			
Water Body Depth (m)	0.15	0.15.0.2			
Location — Onsite/Offsite //Inlet/Outlet/ Middle	upstrea m	Downstream			
Flow Rate None/ Low / Med / High	LOW/Med	5.63,			
DO (mg/L) / */	6.42/69	3% 54 / 6	3/.		
EC (μS/Cm)	514.0	509.2			
рН	8.1	8.42			
Eh (mV)	70.8	90.4			
Temp (°C)	19.4	19.5			
Water Colour	(lew	(lear			
Turbidity Low / Med / High	Low	Low			
Observations / Notes	CAPT flow contribute to Primarystream	n			
		ontainer & Pres	ervation Data		
Number of sample containers:	18 12	34			
Container Volume					
Container Type	5	5			
Preservation	JCE -	->			
Sample Number (for Lab ID):	WPI	WP2			
QC Dup Sample No.:		QA 100			

Page 1 of 1 Printed: 29/09/2021

Revision: 1
Approved: 25/02/2014

**WP2-DP1

**MP2-DP1

**MP2-DP1

**MP2-DP1

**MP2-DP1

**MP2-DP1

**MP2-DP1

**MP2-DP1

Instrument

YSI Quatro Pro Plus

Serial No.

20M101178

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments
Battery	Charge Condition	√	Comments
	Fuses	1	
	Capacity	1	
Switch/keypad	Operation	✓	
Display	Intensity	1	
	Operation (segments)	1	
Grill Filter	Condition	1	
	Seal	✓	
PCB	Condition	1	
Connectors	Condition	V	
Sensor	1. pH	✓	
	2. mV	1	
	3. EC	1	
	4. D.O	✓	
	5. Temp	1	
Alarms	Beeper		
	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
1. pH 10.00		pH 10.00		364961	pH 9.78
2. pH 7.00		pH 7.00		368081	pH 7.01
3. pH 4.00		pH 4.00		367234	pH 4.07
4. mV		231.8mV		365451/370891	231.9mV
5. EC		2.76mS		377099	2.74mS
6. D.O		0.00ppm		371864	0.03ppm
7. Temp		20.7°C	6	MultiTherm	19.4°C

Calibrated b	y:
--------------	----

Sarah Lian

Calibration date:

12/11/2021

Next calibration due:

12/12/2021

Surface Water Sampling Field Record

Site / Project: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Park Si	er teres	Water - Wet	Sampling P	oint:
Client: Donner				Job No. 1	E30161
Person Sampling:				Initials:	
		Site Det	ails		
Sampling Equipment – Directly in	nto bottle / Water Sco	op Van Dorn	Sampler / Other:	Date: 2/2.1	1.202
Observations on Site: Last Rain	Event / Recent St	orms Releas	es / Other :		
Sample Details, Ob	servations, GPS	Coordinate	es & Field Physioche neters once stable)	emical Measure	ments
Sample ID	1/21	o, record paran	WP2/QALON	RA290	
Start Time:	1415		1450		
Easting					
Northing	/		/		
Sample Depth (m)	0.0-0.15		0-0-0.2		
Water Body Depth (m)	0-15	-4	0.2		
Location — Onsite/Offsite /Inlet/Outlet/ Middle	upstream		downstream		
Flow Rate None/ Low / Med / High	low		meetinn		
DO (mg/L) / //	9.05 will 198.7	%	93/mg/4/10/9	<i>)</i>	
EC (μS/Cm) (5PC)	3892		484		
рН	607		734		
Eh (mV)	183-7		1963		
Temp (°C)	19.6		12-7		
Water Colour	Clear		clear		
Turbidity Low / Med / High	low/25.	55NTU	low/23-67 H	TU	
Observations / Notes	L) WPI-DPI flowing.		105 (315 mg/2 WPZ-DP17 - WPZ-DP21) flowing	
	Sample Co	ntainer & P	reservation Data		
Number of sample containers:	5		5+4+4		
Container Volume					
Container Type					
Preservation					
Sample Number (for Lab ID):					
QC Dup Sample No.:					

Printed: 29/09/2021

Calibration & Service Report Water Quality Meter

Active Environmental Solutions Hire Company:

Address: Unit 16, 191 Parramatta Road

AUBURN NSW 2144

Phone: 02 9716 5966 | **Fax**: 02 9716 5988 hire@aesoultions.com.au

Manufacturer:

Instrument/Model:

Client Company:

Client Name:

ProDSS Handheld

Water Quality Meter

Cable Length:

Serial #: 18H111016 1 M

Client Email: Client Phone:

Item	Test	Pass	Comr	ments					
Battery	Charged	✓							
	Battery Saver			Automatically turns off after 15 minutes if not used					
Connections	✓	Good	Good, clean						
Cable	Condition	✓	Clean	, no tears					
Display	Operation	✓							
Firmware	Version	✓	1.1.8						
Keypad	Operational	✓							
Display	Screen	✓							
Unit	Condition, seals and O-rings	✓							
Monitor housing	Condition	✓							
pH									
Condition		✓	Good	, clean					
pH millivolts for pH7 calibra	tion range 0 mV ± 50 mV	✓							
pH 4 mV range + 165 to + 1	80 from 7 buffer mV value	✓							
pH slope		✓							
Response time < 90 second	S	✓							
Calibrated and conforms to	manufacturer's specification.	s 🗸							
ORP									
Condition	✓	Good, clean							
Response time < 90 second	✓								
within ± 80mv of reference	✓								
Calibrated and conforms to manufacturer's specifications			Varia	nce range ± 20mV					
Conductivity									
Condition		✓	Good	, clean					
Calibrated and conforms to	manufacturer's specification	s 🗸	°C						
Turbidity									
Calibrated and conforms to	manufacturer's specification.	s 🗸							
Condition		✓							
Dissolved Oxygen									
Condition		✓	Good	, clean					
Calibrated and conforms to	manufacturer's specification	s 🗸							
Parameter	Standards	Reference		Calibration Point	Before	After	Units		
Temperature	Center 370 Thermometer	Room Tem	ıp.	22.5	N/A	22.5	°C		
рН	pH 4.00	363894		4.01	4.13	4.01	рН		
рН	pH 10.00	349846		10.00	10.7	10.00	рН		
рН	pH 7.00	363895		7.00	7.20	7.00	рН		
Conductivity	2760 μs/cm at 25°C	362912		2760	2774	2760	μs/cm		
ORP (Ref. check only)	Zobell A & B	358011 & 36		234.4	230.2	234.4	mV		
Zero Dissolved Oxygen	NaSO3 in distilled water	372164; V07		0.0	-0.2	0.0	%		
100% Dissolved Oxygen	100% Air Saturation	Fresh Air		99.4	100.6	99.4	%		
Zero Turbidity	0 FNU	W-54320-V07		0.00	-0.02	0.00	FNU		
Turbidity	124.00 FNU	20H202901	164	124.00	124.33	124.00	FNU		

Calibrated By: Milenko Sisic

Calibration Date: 26/11/2021 Calibration Due: 26/05/2022

Alemir International Pty Ltd t/a Active Environmental Solutions

Head Office - Melbourne 2 Merchant Avenue Thomastown VIC 3074 Australia T: +61 3 9464 2300

NSW Office - Auburn Unit 16, 191 Parramatta Road Auburn NSW 2144 Australia T: +61 2 9716 5966

WA Office - Malaga Unit 6, 41 Holder Way Malaga WA 6090 Australia T: +61 8 9249 5663 QLD Office - Banyo Unit 17, 23 Ashtan Place Banyo QLD 4014 Australia T: +61 7 3267 1433

ABN 14 080 228 708

LABORATORY SUMMARY TABLE

	-			TPH	Inorganics					Physio-Chemical				
C Cardno			Chlorophyll a	Oil and Grease	Kjeldahl Nitrogen Total	Nitrate & Nitrite (as N)	Nitrogen (Total as N)	Phosphorus (Total as P)	TSS	Turbidity	Нd	Temprature	Electrical Conductivity	Dissolved Oxygen
			mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	NTU	Units	°C	uS/cm	%Sat
	EQL		0.002	10	0.1	0.01	0.2	0.01	1	1	0.01	0.1	0.1	0.1
	ANZECC Criteria - F		0.003	-	-	-	0.35	0.025	-	<6-50	6.5-8.5	-	125-2200	85% - 110%
	12 November													
Lab Report Number	Field ID	Date												
841106	WP1	12/11/2021	<0.002	<10	NT	NT	2.70	0.15	8.4	21	8.10	19.4	514	68
841106	WP2	12/11/2021	<0.002	<10	NT	NT	2.80	0.02	7.6	19	8.42	19.5	509	63
841106	QA100	12/11/2021	NT	<10	NT	NT	2.80	0.04	11	18	-	-	-	-
ES2141599	QA200	12/11/2021	NT	<5	0.9	1.69	2.60	0.16	7	17.8	-	-	-	-
Statistics														
	Maximum Conce	ntration	<0.002	<10	0.9	1.7	2.80	0.16	11.0	21.0	8.42	-	514.0	68
	26 Novemver	2021												
Lab Report Number	Field ID	Date												
845645	WP1	26/11/2021	<0.002	<10	NT	NT	1.6	0.13	16	25	6.07	19.6	389	98.7
845645	WP2	26/11/2021	0.0027	<10	NT	NT	2.4	0.18	7.8	17	7.34	19.7	484	101.9
845645	QA100	26/11/2021	NT	<10	NT	NT	2.4	0.17	12	21	-	-	-	-
ES2143963	QA200	26/11/2021	NT	<5	0.9	1.85	2.8	0.19	19	22.7	-	-	-	-
Statistics														

^{*} A Non Detect Multiplier of 0.5 has been applied.

QUALITY ASSURANCE/QUALITY CONTROL

Quality Assurance/Quality Control (QA/QC) procedures were implemented to ensure the precision accuracy, representativeness, completeness and comparability of all data gathered. The QA/QC procedures included:

- > Equipment calibration to ensure field measurements obtained are accurate
- > Equipment decontamination to prevent cross contamination
- > Use of appropriate measures (i.e. gloves) to prevent cross contamination
- > Appropriate sample identification
- > Correct sample preservation
- > Sample transport with Chain of Custody (CoC) documentation
- > Laboratory analysis in accordance with NATA accredited methods.

Table E1 details the QA/QC procedures and sample collection details undertaken through the surface water elements of the investigation. Copies of all the CoCs, along with the Sample Receipt Notifications (SRNs), Interpretive QA/QC Reports are provided in **Appendix F**.

Table E1 Field QA/QC Method Validation

Requirement	Yes / No	Comments
Equipment Yes decontamination		In the event of involving reusable equipment. Decontamination of sampling equipment (water quality meter, telescopic water scoop etc.) was undertaken by washing with phosphate free detergent (Liquinox) followed by a rinse with potable water.
Sample collection Yes		Samples were collected using disposable nitrile gloves via telescopic water scoop. A clean pair of gloves was used for each new sample being collected to limit the possibility of cross-contamination.
QA/QC sample collection	Yes	One (1) surface water duplicate and one (1) surface water triplicate sample were collected for intra and inter-lab QA/QC purposes to monitor the quality of the field practices for sample collection. Cardno based the investigation around a rate of one duplicate and triplicate sample per sampling event, as the requirement for duplicate and triplicate sample collection.
Sample identification	Yes	All samples were marked with a unique identifier including project number, sample location, and date.
Sample preservation	Yes	Samples were placed in a chilled ice box with ice for storage and transport to the laboratory.
CoC documentation	Yes	A CoC form was completed by Cardno detailing sample identification, collection date, sampler and laboratory analysis required. The CoC form was signed off and returned to Cardno by the laboratory staff upon receipt of all the samples. CoC forms and Sample Receipt Notification (SRN) are provided in Appendix F . The SRN indicates that the samples were received at the laboratory intact and chilled and within the required holding times.
NATA accredited methods	Yes	The NATA accredited Eurofins mgt and ALS Analysed the samples in accordance with NATA accredited methods. Analytical methods used are indicated in the stamped laboratory results provided in Appendix F .
Laboratory Internal QC	No	All Data Quality Objectives were met by the laboratories.

Table E2 Field QA/QC Collection Summary

Environmental Media	Date	Primary	Duplicate	Triplicate
Surface Water	12/11/2021	WP2	QA100	QA200
Surface Water	26/11/2021	WP2	QA100	QA200

Relative Percentage Difference Determination

Laboratory results for duplicate and triplicate samples are assessed using a determination of the Relative Percentage Difference (RPD). Where a primary sample and a duplicate sample are compared, the RPD provides an indication of the reproducibility of the results, which incorporates the sampling method. Where a primary sample and a split sample are compared, the RPD provides an indication of the accuracy of the primary laboratory results as compared to the secondary laboratory result.

The calculation used to determine the RPD is:

$$RPD = \frac{(Co - Cs)}{\left(\frac{Co + Cs}{2}\right)} x100$$

Where:

Co = Concentration of the original sample

Cs = Concentration of the duplicate sample

In calculating the RPD values the following protocols were adopted:

- > Where both concentrations are above laboratory reporting limits the RPD formula is used;
- > Where both concentrations are below the laboratory reporting limits, no RPD is calculated; and
- > Where one or both sample concentrations are reported to be less than ten times (<10x) the laboratory reporting limit, the RPD is calculated but is not assessed against the adopted criterion.

In accordance with the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended 2013, Cardno adopts an RPD acceptance criterion up to 30% of the mean concentration of the analyte. It should be noted that variations might be higher for organic analysis, due to the volatile nature of the components, and for low concentrations of analytes.

The adopted criterion will not apply to RPDs where one of both concentrations are less than 10 times the reporting limit, as this criterion would otherwise overestimate the significance of minor variations in concentrations at or near the laboratory reporting limit. Large RPDs returned for low concentrations of analytes near the reporting limit is not as indicative of a significant difference in the results as a small RPD is for larger concentrations.

This approach is employed by NATA accredited laboratories when assessing internal duplicate sample RPDs. This approach acknowledges that concentrations at or around the reporting limit are too low for an accurate evaluation of the significance of the RPD.

This approach has been adopted when assessing the relevance (compliance) of RPDs during this investigation. RPDs will be calculated for sample sets where one or both concentrations are less than 10 times the reporting limit for discussion purposes, but will not be assessed as a pass or fail in relation to the criterion.

The RPD results for duplicate samples are presented in this appendix. Although two (2) RPD values were reported to be above the accepted 30% RPD criteria. The breaches in RPDs are not considered to alter the overall outcome of the assessment. It can be concluded that the analytical data can be relied upon for the purposes of this factual report.

Laboratory QC and QCI Report Summary

The laboratories selected for undertaking the analysis (Eurofins mgt and ALS) are NATA accredited for the analysis required and undertook certain QA/QC requirements to demonstrate the suitability of the data that is obtained. The laboratory is required to undertake and report internal laboratory QC procedures for all chemical analysis undertaken. The QC testing is required to include:

> Laboratory duplicate sample analysis at the rate of one duplicate analysis per ten samples

- > Method blank at the rate of one method blank analysis per 20 samples
- > Laboratory control sample at the rate of one laboratory control sample analysis per 20 samples
- > Spike recovery analysis at the rate of one spike recovery analysis per 20 samples.

Compliance with the laboratory QA/QC requirements and non-conformance details are discussed in the internal Laboratory QA/QC reports included with the certificates of analysis in **Appendix F**. Laboratory QA/QC requirements were within acceptance limits.

Cardno concludes that the data reported by the NATA accredited Eurofins mgt and ALS as presented in this report is suitable for interpretative purposes and to make conclusions/recommendations regarding water quality.

CDO	Cardno					Inorganics						
	ardno		Chlorophyll a	Oil and Grease	Kjeldahl Nitrogen Total	Nitrate & Nitrite (as	Nitrogen (Total as N)	Phosphorus (Total as	155	Turbidity		
	EQL		mg/L 0.002	mg/L 10	mg/L 0.1	mg/L 0.01	mg/L 0.2	mg/L 0.01	mg/L	NTU 1		
	12 November 2021		0.002	10	0.1	0.01	0.2	0.01	+			
Lab Report Number	Field ID	Date										
841106	WP2	12/11/2021	<0.002	<10	NT	NT	2.80	0.02	7.6	19		
841106	QA100	12/11/2021	NT	<10	NT	NT	2.80	0.04	11	18		
	Statistics											
	RDP (%)		NT	NT	NT	NT	0	67	37	5		
			•									
841106	WP2	12/11/2021	< 0.002	<10	NT	NT	2.80	0.02	7.6	19		
ES2141599	QA200	12/11/2021	NT	<5	0.9	1.69	2.60	0.16	7	17.8		
	Statistics											
	RDP (%)				NT	NT	7	156	8	7		

	26 Novemver 2021											
Lab Report Number	Field ID	Date										
845645	WP2	26/11/2021	<0.002	<10	NT	NT	2.4	0.18	7.8	17		
845645	QA100	26/11/2021	NT	<10	NT	NT	2.4	0.17	12	21		
	Statistics											
	RDP (%)		NT	NT	NT	NT	0	6	42	21		
845645	WP2	26/11/2021	0.0027	<10	NT	NT	2.4	0.18	7.8	17		
		06/44/0004		_	0.0	4.05	2.0	0.40	40			
ES2143963	QA200	26/11/2021	NT	<5	0.9	1.85	2.8	0.19	19	22.7		
ES2143963	QA200 Statistics	26/11/2021	NT	<5	0.9	1.85	2.8	0.19	19	22.7		

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: (1 - 10 x EQL); 30 (10 - 30 x EQL); 30 (> 30 x EQL))

^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

APPENDIX

F

LABORATORY REPORTS

CHAIN OF CUSTODY AND ANALYSIS REQUEST

Page 1 of 1

Contact Person:	Ben Withnall	110000			E 11.7	Project Na	ame:		Downer S	ydney Metro	Stations - V	Wiley Park	DIE!	4 11		10/10		
elephone Number:	0436 687 417				Maria	Project No	ımber:		NE30161	ACCION.			-	1	And the			
Uternative Contact:	Chong Zheng			19 m		PO No.:			1241	La Tarion	-255	THE REAL PROPERTY.		THE PLANE			THE LAND	
elephone Number:	0451 780 991					Project Sp	ecific Quo	te No. :	340		Char	19	0408CDNN	_1	2 15%		E. Linius	
iampler:	JN		Salling March			Turnarour	nd Require	nents:		1.11			Standard TA	Т		THE ATTENDED		
:mail Address (results a	nd invoice):		o.com.au; chong.zeng@ o.com.au; joshua.nito@		W. Tarrier	Lab:			Eurofins	Unit F3, B	uilding F, 16	Mars Rd, I	Lane Cove	West NSW2	2066			
ddress: Level 9 - The F	orum, 203 Pacific Highway, St L	eonards, New South	Wales 2065 Australia			Attn:		HE W	Sample R	eceipt				West	10,-1			
		Sample information		N. Service		1000			1 - A - A		Analysis F	Required	TO RES	Mark	FAIR S		16821	Comments
Cardno Sample ID	Laboratory Sample ID	No. Containers	Preservation	Date sampled	Matrix	Chlorophyll-a	TSS	Turbidity	Oil and Grease	Total Phosphorus	Total Nitrogen							
WP1	STERRING TO STATE OF THE STATE	5	ICE	Barrier a	Water	1	1	1	1	1	1	20 210	100	1900	J. Co.	100	Will a	
WP2		5	ICE	12/11/2021	Water	1	1	1	1	1	1		The sale	San Park				
QA100		4	ICE	12/11/2021	Water	000	1	1	1	1	1	(C)	6167	200	No. of the			
QA200		4	ICE		Water	a sing of	1	1	1	1	1	1-98		Section 1	13.39	ME !		Please send to ALS
						1		111	1000					1				
			N COLLEGE			1200	0	100					MATERIA.	5.00		The same		
	The second second second							The latest	100									
The second second						ALC: N		200	- Charles				7		The same			
						Maria de la constante de la co					0.73			D F - 1		No.		
NAME OF THE OWNER, OWNE	DET WELL IN											PLANT.	8 19		200	Part Control	0.00	
	DECEMBER OF THE REAL PROPERTY.	The second	3110-15-1			1000	100		THE REAL PROPERTY.	100	10.192	1915.9		CH.19	0.0			
		E STEOMAN	The Marine Section		E Marile		100		THE REAL PROPERTY.		da	WAR.		Mark To	1200		Dear.	新疆市场最近的基本。 第1
Name of the last		STATE OF THE			101013	1		Marie I			Maria T		15.43				815.0	
		2. 社员国	The second second	37013-3	CTIME VE		100000	1870	1000		TO ST	E PA	198	MI E	ALT Y			
					TO A TO		1200		THE REAL PROPERTY.									
		TO POTAT				No.	A STATE OF		6 10 10	100		March 1			2 11 7			
					Paralle Mark	ENGLY.	A STATE OF THE PARTY OF THE PAR					1					Total Control	The second secon
		Control of the second			2 m 1 m 2 m	and the same			10.050			-	- 1	No. of the last				
			The state of the s		10000			10000	THE PERSON NAMED IN				51.00	140				The Allegan St.
telinquished by:	Joshua Nito	Received by:			Relinquished by					Received						Relinquis		
name / company)	Cardno ACT/NSW Pty Ltd	(name / company)			(name / compan	у			The state of	(name / c	ompany)			Line and		(name / c		
CHIEF TO THE PERSON NAMED IN COLUMN	12/11/2021 2:40pm JN	Date & Time: Signature:			Date & Time: Signature:	- 788				Date & Ti						Date & Ti	GV 11111	
		THE RESERVE AND A PERSON NAMED IN	A STATE OF THE STA		The second second		71177-517		7/2		Line I		THE LIE	. 579515	186	Lab use:	THE TOTAL OF	STATE OF THE STATE
eceived by:		Relinquished by:			Received by:					Relinquis						1 14 10 10 10 10		
name / company)	The state of the s	(name / company)	The state of the same		(name / compan	у	Total Control	V3 18	100	(name / c		7						Cool or Ambient (circle one)
ate & Time:	FOR THE PARTY OF T	Date & Time:			Date & Time:	100000	A Park	Description of	Date & Time:			Temperature Received at: (if applicable)						
lanature:		Signature:	1 0	1	Signature:			TARRES.	143 (1-)	Signature):					Transpor	ted by: Har	and delivered / courier

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000
Lane Cove We NATA # 1261 Site # 1254

Unit F3 Building F NATA # 1261 Site # 18217

Brisbane NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 www.eurofins.com.au

ABN: 91 05 0159 898

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 EnviroSales@eurofins.com

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Cardno (NSW/ACT) Pty Ltd

Contact name:

Ben Withnall

Project name:

DOWNER SYDNEY METRO STATIONS - WILEY PARK

Project ID: Turnaround time: NE30161 5 Day

Date/Time received

Nov 12, 2021 2:20 PM

Eurofins reference 841106

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

QA200 to be packed for ALS. Amber will be subcontracted for Chlorophyll testing.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Ursula Long on phone: or by email: UrsulaLong@eurofins.com

Results will be delivered electronically via email to Ben Withnall - ben.withnall@cardno.com.au.

Note: A copy of these results will also be delivered to the general Cardno (NSW/ACT) Pty Ltd email address.

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

NZBN: 9429046024954 35 O'Rorke Road

Nov 19, 2021

Ben Withnall

Nov 12, 2021 2:20 PM

Auckland

IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Cardno (NSW/ACT) Pty Ltd

Level 9, 203 Pacific Highway

St Leonards

NSW 2065

DOWNER SYDNEY METRO STATIONS - WILEY PARK

Project Name: Project ID:

Company Name:

Address:

NE30161

Order No.: Report #:

841106

Phone: 0294967700 02 9499 3902 Fax:

Eurofins Anal	vtical Services	Manager :	Ursula Long
Lui Oillia Allai	yticai oci vice.	s manager .	Orsula Long

5 Day

	Sample Detail						Chlorophyll A	Oil & Grease (HEM)	Phosphate total (as P)	Total Nitrogen (as N)	Total Suspended Solids Dried at 103-105°C	Turbidity
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х		Х		Х		
Sydr	ney Laboratory	- NATA # 1261	Site # 18217						Х		Х	Х
		y - NATA # 1261										
May	ield Laboratory	/ - NATA # 1261	Site # 25079									
Perti	n Laboratory - N	NATA # 2377 Sit	e # 2370									
Exte	rnal Laboratory	<u> </u>					Х					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	WP1	Nov 12, 2021		Water	S21-No34284		Х	Х	Х	Х	Х	Х
2	WP2	Nov 12, 2021		Water	S21-No34285	Х		Х	Х	Х	Х	Х
3	QA100	Nov 12, 2021		Water	S21-No34286			Х	Х	Х	Х	Х
Test	st Counts					1	1	3	3	3	3	3

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

NZBN: 9429046024954 35 O'Rorke Road

Nov 19, 2021

Ben Withnall

Nov 12, 2021 2:20 PM

Auckland

IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Cardno (NSW/ACT) Pty Ltd

Level 9, 203 Pacific Highway

St Leonards

NSW 2065

DOWNER SYDNEY METRO STATIONS - WILEY PARK

Project Name: Project ID:

Company Name:

Address:

NE30161

Order No.: Report #:

841106

Phone: 0294967700 02 9499 3902 Fax:

Eurofins Anal	vtical Services	Manager :	Ursula Long
Lui Oillia Allai	yticai oci vice.	s manager .	Orsula Long

5 Day

	Sample Detail						Chlorophyll A	Oil & Grease (HEM)	Phosphate total (as P)	Total Nitrogen (as N)	Total Suspended Solids Dried at 103-105°C	Turbidity
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х		Х		Х		
Sydr	ney Laboratory	- NATA # 1261	Site # 18217						Х		Х	Х
		y - NATA # 1261										
May	ield Laboratory	/ - NATA # 1261	Site # 25079									
Perti	n Laboratory - N	NATA # 2377 Sit	e # 2370									
Exte	rnal Laboratory	<u> </u>					Х					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	WP1	Nov 12, 2021		Water	S21-No34284		Х	Х	Х	Х	Х	Х
2	WP2	Nov 12, 2021		Water	S21-No34285	Х		Х	Х	Х	Х	Х
3	QA100	Nov 12, 2021		Water	S21-No34286			Х	Х	Х	Х	Х
Test	st Counts					1	1	3	3	3	3	3

Environment Testing

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway St Leonards NSW 2065

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Ben Withnall

Report 841106-W-V2

Project name DOWNER SYDNEY METRO STATIONS - WILEY PARK

Project ID NE30161
Received Date Nov 12, 2021

Client Sample ID Sample Matrix Eurofins Sample No.			WP1 Water S21-No34284	WP2 Water S21-No34285	QA100 Water S21-No34286
Date Sampled			Nov 12, 2021	Nov 12, 2021	Nov 12, 2021
Test/Reference	LOR	Unit			
Chlorophyll a	2	ug/L	< 2	< 2	-
Oil & Grease (HEM)	10	mg/L	< 10	< 10	< 10
Phosphate total (as P)	0.01	mg/L	0.15	0.02	0.04
Total Nitrogen (as N)	0.2	mg/L	2.7	2.8	2.8
Total Suspended Solids Dried at 103–105°C	5	mg/L	8.4	7.6	11
Turbidity	1	NTU	21	19	18

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chlorophyll a	Melbourne	Nov 26, 2021	28 Days
- Method: LTM-INO-4340 Chlorophyll a in Waters			
Oil & Grease (HEM)	Melbourne	Nov 17, 2021	28 Days
- Method: LTM-INO-4180 Oil and Grease (APHA 5520B)			
Phosphate total (as P)	Sydney	Nov 16, 2021	28 Days
- Method: E052 Total Phosphate (as P)			
Total Nitrogen (as N)	Melbourne	Nov 17, 2021	7 Days
- Method: LTM-INO-4040 Phosphate and Nitrogen in waters			
Total Suspended Solids Dried at 103–105°C	Sydney	Nov 16, 2021	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Turbidity	Sydney	Nov 16, 2021	2 Days

⁻ Method: LTM-INO-4140 Turbidity by Nephelometric Method

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

Fax:

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Nov 19, 2021

Ben Withnall

NZBN: 9429046024954

Nov 12, 2021 2:20 PM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway

St Leonards

NSW 2065

DOWNER SYDNEY METRO STATIONS - WILEY PARK

Project Name: Project ID:

NE30161

Order No.: Report #:

841106

Phone: 0294967700 02 9499 3902

Eurofins Analy	ytical Services M	lanager : Ursula Long

5 Day

		Sa	mple Detail			Chlorophyll a	Chlorophyll A	Oil & Grease (HEM)	Phosphate total (as P)	Total Nitrogen (as N)	Total Suspended Solids Dried at 103–105°C	Turbidity
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х		Х		Х		
Sydr	ney Laboratory	- NATA # 1261 \$	Site # 18217						Х		Х	Х
Bris	bane Laborator	y - NATA # 1261	Site # 20794	1								
May	field Laboratory	- NATA # 1261	Site # 25079									
Pertl	h Laboratory - N	NATA # 2377 Sit	e # 2370									
Exte	rnal Laboratory						Х					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	WP1	Nov 12, 2021		Water	S21-No34284		Х	Х	Х	Х	Х	Х
2	WP2	Nov 12, 2021		Water	S21-No34285	Х		Х	Х	Х	Х	Х
3	QA100 Nov 12, 2021 Water S21-No3428							Х	Х	Х	Х	Х
Test	Counts					1	1	3	3	3	3	3

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre μ g/L: micrograms per litre

ppm: parts per million **ppb**: parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.4

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data

Environment Testing

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Oil & Grease (HEM)			mg/L	< 10			10	Pass	
Phosphate total (as P)			mg/L	< 0.01			0.01	Pass	
Total Nitrogen (as N)			mg/L	< 0.2			0.2	Pass	
Total Suspended Solids Dried at 10	3–105°C		mg/L	< 5			5	Pass	
Turbidity			NTU	< 1			1	Pass	
LCS - % Recovery									
Oil & Grease (HEM)			%	99			70-130	Pass	
Phosphate total (as P)			%	82			70-130	Pass	
Total Nitrogen (as N)			%	118			70-130	Pass	
Total Suspended Solids Dried at 10	3–105°C		%	101			70-130	Pass	
Turbidity			%	94			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Total Nitrogen (as N)	B21-No32406	NCP	%	103			70-130	Pass	
Total Suspended Solids Dried at 103–105°C	S21-No37201	NCP	%	106			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Chlorophyll a	S21-No34284	CP	ug/L	< 2	< 5	<1	30%	Pass	
Total Nitrogen (as N)	L21-No27938	NCP	mg/L	3.6	3.5	2.0	30%	Pass	
Total Suspended Solids Dried at 103–105°C	S21-No34284	СР	mg/L	8.4	8.8	5.0	30%	Pass	
Turbidity	S21-No34338	NCP	NTU	17	19	6.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			_
Phosphate total (as P)	S21-No34286	СР	mg/L	0.04	0.05	16	30%	Pass	_

Comments

This report has been revised (V2) to amend Chlorophyll LOR.

Sample Integrity

······································	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

Ursula Long Analytical Services Manager
Charl Du Preez Senior Analyst-Inorganic (NSW)
Scott Beddoes Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

5	Cardno' Shaping the Future
---	----------------------------

ontact Person:

elephone Number:

ternative Contact:

Hephone Number:

Cardno Sample ID

WP1

WP2

QA100

QA200

Ben Withnall

0436 687 417

Chong Zheng

0451 780 991

idress: Level 9 - The Forum, 203 Pacific Highway, St Leonards, New South Wales 2065 Australia

Laboratory Sample ID No. Containers

Sample information

5

5

4

4

JN

 \mathcal{C}

mail Address (results and invoice):

CHAIN OF CUSTODY AND ANALYSIS REQUEST

NE30161

Sample Receipt

and Grease

71

1

Turbidity

1

1

otal Phosphorus

-1

1

1

1

Project Name:

PO No.:

Lab:

Attn:

Chlorophyll-a

14.

SS

1

1

1

1

Matrix

Water

Water

Water

Water

ben.withnall@cardno.com.au; chong.zeng@cardno.com.gu;

Preservation

ICE

ICE

ICE

ICE

Date

sampled

12/11/2021

ContamNSW@cardno.com.au; joshua.nito@cardno.com.au

Project Number:

Project Specific Quote No. :

Turnaround Requirements:

Downer Sydney Metro Stations - Wiley Park

190408CDNN 1

Standard TAT

Eurofins | Unit F3, Building F, 16 Mars Rd, Lane Cove West NSW2066

Analysis Required

Nitrogen

otal

1

11.

1

1

	Page	1	of	1	
	1				
	1				
		Co	mments		
Spi					
V					
					
		Diagon	send to AL		
		Figase	SCHO TO AL	.5	
	Enviro	nmenta	al Divisi	or	
\$	Sydne	/ Order F	oforon oo		
	ËŜ	3214	leference	9	
	elephone	+ 61-2-878	94 8555		
	l				
by:	1				
ny)					
		<u> </u>			
ived: (Cool or Am	bi ent (cl rck	one)	· · · · · · · · · · · · · · · · · · ·	

															elephone · + 61-2-8784	1 e556	
											d				j <u></u>		_
nquished by:		Received by:		Relinquished by:			Received I	-	FAT:	H			Relinquish (name / co				
ne / company)		(name / company) Date & Time:	 	Date & Time:	<u> </u>		Date & Tin			0			Date & Tin				_
ature:		Signature:	 	Signature:			Signature:		131	4/21	102		Signature:	;	<u> </u>		_
elved by:		Relinquished by:	 	Received by:			 Relinquish	ed by:					Lab use:				
ne / company)		(name / company)	 	(name / company		 	 (name / co	mpany)					Samples R	Received: Co	ool or Ambient (circle	one)	
& Time:		Date & Time:		Date & Time:		 	 Date & Tin	ne:					Temperatu	ure Receive	d at: (if applic	able)	
nature:		Signature:		Signature:			Signature:						Transporte	ed by: Hane	d delivered / courier		_
TANDA TO Y	-	<u> </u>		. , , ,	-	 						e l 🗪			(V V).)	a as	

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2141599

Client : CARDNO (NSW/ACT) PTY LTD Laboratory : Environmental Division Sydney

Contact : Chong Zeng Contact : Shane Ellis

Address : Level 9 The Forum 203 Pacific Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

St Leonards NSW 2065

Highway

 Telephone
 : --- Telephone
 : +61 2 8784 8555

 Facsimile
 : --- Facsimile
 : +61-2-8784 8500

Project : NE30161 DOWNER SYDNEY METRO Page : 1 of 3

STATIONS - WILEY PARK

Order number : ---- Quote number : EP2020CARNSWACT0002

(EN/024/20)

C-O-C number ; ---- QC Level ; NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler : JOSHUA NITO

Dates

Date Samples Received : 17-Nov-2021 12:20 Issue Date : 17-Nov-2021 Client Requested Due : 24-Nov-2021 Scheduled Reporting Date : 24-Nov-2021

Date

Delivery Details

Mode of Delivery : Carrier Security Seal : Intact.

No. of coolers/boxes : 1 Temperature : 6.6' C - Ice present

Receipt Detail : No. of samples received / analysed : 1 / 1

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 17-Nov-2021 Issue Date

Page

2 of 3 ES2141599 Amendment 0 Work Order

Client : CARDNO (NSW/ACT) PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. otal Nitrogen and Total Phosphorus If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date uspended Solids - Standard is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component Oil & Grease (O&G) /ATER - EA025H 'ATER - EA045 Matrix: WATER Sample ID Laboratory sample Sampling date / ID time ES2141599-001 12-Nov-2021 00:00 QA200

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: WATER

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Method		Due for	Due for	Samples Re	eceived	Instructions R	Received
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation
EA045: Turbidity							
QA200	Clear Plastic Bottle - Natural		14-Nov-2021	17-Nov-2021	×		

Issue Date : 17-Nov-2021

Page : 3 of 3
Work Order : ES2141599 Amendment 0
Client : CARDNO (NSW/ACT) PTY LTD

Requested Deliverables

BE			

BEN WITHNALL		
- *AU Certificate of Analysis - NATA (COA)	Email	ben.withnall@cardno.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	ben.withnall@cardno.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	ben.withnall@cardno.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ben.withnall@cardno.com.au
- A4 - AU Tax Invoice (INV)	Email	ben.withnall@cardno.com.au
- Chain of Custody (CoC) (COC)	Email	ben.withnall@cardno.com.au
- EDI Format - ENMRG (ENMRG)	Email	ben.withnall@cardno.com.au
- EDI Format - ESDAT (ESDAT)	Email	ben.withnall@cardno.com.au

,		<u> </u>
Chong Zeng		
- *AU Certificate of Analysis - NATA (COA)	Email	chong.zeng@cardno.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	chong.zeng@cardno.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	chong.zeng@cardno.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	chong.zeng@cardno.com.au
- A4 - AU Tax Invoice (INV)	Email	chong.zeng@cardno.com.au
- Chain of Custody (CoC) (COC)	Email	chong.zeng@cardno.com.au
- EDI Format - ENMRG (ENMRG)	Email	chong.zeng@cardno.com.au
- EDI Format - ESDAT (ESDAT)	Email	chong.zeng@cardno.com.au

ContamNSW

- *AU Certificate of Analysis - NATA (COA)	Email	contamnsw@cardno.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	contamnsw@cardno.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	contamnsw@cardno.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	contamnsw@cardno.com.au
- A4 - AU Tax Invoice (INV)	Email	contamnsw@cardno.com.au
- Chain of Custody (CoC) (COC)	Email	contamnsw@cardno.com.au
- EDI Format - ENMRG (ENMRG)	Email	contamnsw@cardno.com.au
- EDI Format - ESDAT (ESDAT)	Email	contamnsw@cardno.com.au

INVOICES

- A4 - AU Tax Invoice (INV) Email apinvoices@cardno.com.au

CERTIFICATE OF ANALYSIS

Work Order : ES2141599 Page : 1 of 2

Client : CARDNO (NSW/ACT) PTY LTD Laboratory : Environmental Division Sydney

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Contact : Chong Zeng Contact : Shane Ellis

Address Level 9 The Forum 203 Pacific Highway Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

St Leonards NSW 2065

Telephone

Telephone

: +61 2 8784 8555 **Date Samples Received** : 17-Nov-2021 12:20

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK Order number

C-O-C number

Date Analysis Commenced : 19-Nov-2021

Sampler : JOSHUA NITO Issue Date · 24-Nov-2021 11:04

Site

Quote number : EN/024/20

No. of samples received : 1

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Page : 2 of 2 Work Order : ES2141599

Client : CARDNO (NSW/ACT) PTY LTD

Project NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER			Sample ID	QA200	 	
(Matrix: WATER)						
		Sampli	ng date / time	12-Nov-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2141599-001	 	
				Result	 	
EA025: Total Suspended Solids dried	at 104 ± 2°C					
Suspended Solids (SS)		5	mg/L	7	 	
EA045: Turbidity						
Turbidity		0.1	NTU	17.8	 	
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	1.69	 	
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser					
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.9	 	
EK062G: Total Nitrogen as N (TKN + N	IOx) by Discrete An	alyser				
^ Total Nitrogen as N		0.1	mg/L	2.6	 	
EK067G: Total Phosphorus as P by Di	iscrete Analyser					
Total Phosphorus as P		0.01	mg/L	0.16	 	
EP020: Oil and Grease (O&G)						
Oil & Grease		5	mg/L	<5	 	

QUALITY CONTROL REPORT

Work Order : **ES2141599** Page : 1 of 3

Client : CARDNO (NSW/ACT) PTY LTD Laboratory : Environmental Division Sydney

Contact : Chong Zeng Contact : Shane Ellis

Address : Level 9 The Forum 203 Pacific Highway Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

St Leonards NSW 2065

Telephone : ---- Telephone : +61 2 8784 8555

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK Date Samples Received : 17-Nov-2021

Order number : --- Date Analysis Commenced : 19-Nov-2021
C-O-C number : --- Issue Date : 24-Nov-2021

Sampler : JOSHUA NITO

Site · ----

Quote number : EN/024/20

No. of samples received : 1

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW

Page : 2 of 3 Work Order : ES2141599

Client : CARDNO (NSW/ACT) PTY LTD

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory D	Ouplicate (DUP) Report			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EA025: Total Suspen	ided Solids dried at 104 ± 2°	C (QC Lot: 4026628)								
ES2141508-009	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	<5	<5	0.0	No Limit	
ES2141599-001	QA200	EA025H: Suspended Solids (SS)		5	mg/L	7	7	0.0	No Limit	
EA045: Turbidity (QC Lot: 4026706)										
ES2141223-007	Anonymous	EA045: Turbidity		0.1	NTU	15.5	15.9	2.5	0% - 20%	
ES2141840-001	Anonymous	EA045: Turbidity		0.1	NTU	1.3	1.3	0.0	0% - 50%	
EK059G: Nitrite plus	Nitrate as N (NOx) by Disc	rete Analyser (QC Lot: 4027116)								
ES2140218-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.05	0.05	0.0	No Limit	
ES2141552-018	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	2.86	2.83	1.1	0% - 20%	
EK061G: Total Kjelda	ahl Nitrogen By Discrete Ana	alyser (QC Lot: 4027113)								
ES2140218-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	94.7	95.9	1.3	0% - 20%	
ES2141552-017	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	4.0	4.0	0.0	No Limit	
EK067G: Total Phosp	ohorus as P by Discrete Ana	lyser (QC Lot: 4027112)								
ES2140218-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	14.4	14.4	0.1	0% - 20%	
ES2141552-017	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	4.74	4.79	1.2	0% - 20%	

Page : 3 of 3 Work Order : ES2141599

Client : CARDNO (NSW/ACT) PTY LTD

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA025: Total Suspended Solids dried at 104 ± 2°C (QCLot: 4026628)								
EA025H: Suspended Solids (SS)	5	mg/L	<5	150 mg/L	101	83.0	129	
			<5	1000 mg/L	100	82.0	110	
			<5	463 mg/L	102	83.0	118	
EA045: Turbidity (QCLot: 4026706)								
EA045: Turbidity	0.1	NTU	<0.1	40 NTU	97.0	91.0	105	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 4	027116)							
EK059G: Nitrite + Nitrate as N	0.01	mg/L	<0.01	0.5 mg/L	101	91.0	113	
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 4027113)								
EK061G: Total Kjeldahl Nitrogen as N	0.1	mg/L	<0.1	10 mg/L	91.9	69.0	101	
			<0.1	1 mg/L	98.4	70.0	118	
			<0.1	5 mg/L	103	70.0	130	
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 4027112)								
EK067G: Total Phosphorus as P	0.01	mg/L	<0.01	4.42 mg/L	96.9	71.0	101	
			<0.01	0.442 mg/L	102	72.0	108	
			<0.01	1 mg/L	108	70.0	130	
EP020: Oil and Grease (O&G) (QCLot: 4029921)								
EP020: Oil & Grease	5	mg/L	<5	5000 mg/L	110	81.0	121	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER			Matrix Spike (MS) Report							
				Spike	SpikeRecovery(%)	Acceptable I	_imits (%)			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 4027116)										
ES2140218-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	84.8	70.0	130			
EK061G: Total Kje	dahl Nitrogen By Discrete Analyser (QCLot: 4027113)									
ES2140218-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		100 mg/L	106	70.0	130			
EK067G: Total Pho	EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 4027112)									
ES2140218-002	Anonymous	EK067G: Total Phosphorus as P		20 mg/L	112	70.0	130			

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2141599** Page : 1 of 4

Client : CARDNO (NSW/ACT) PTY LTD Laboratory : Environmental Division Sydney

Contact : Chong Zeng Telephone : +61 2 8784 8555

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK Date Samples Received : 17-Nov-2021

Site : ---- Issue Date : 24-Nov-2021

Sampler : JOSHUA NITO No. of samples received : 1

Order number : --- No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4 Work Order : ES2141599

Client : CARDNO (NSW/ACT) PTY LTD

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

Outliers: Analysis Holding Time Compliance

Matrix: WATER

Method	Ex	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days		
			overdue			overdue		
EA045: Turbidity								
Clear Plastic Bottle - Natural								
QA200				20-Nov-2021	14-Nov-2021	6		

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: **x** = Holding time breach : ✓ = Within holding time

Matrix: WATER				Evaluation	i. 🗸 – Holding time	breach; ∨ = withi	n nolaling time
Method	Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA025: Total Suspended Solids dried at 104 ± 2°C							
Clear Plastic Bottle - Natural (EA025H) QA200	12-Nov-2021				19-Nov-2021	19-Nov-2021	✓
EA045: Turbidity							
Clear Plastic Bottle - Natural (EA045) QA200	12-Nov-2021				20-Nov-2021	14-Nov-2021	×
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) QA200	12-Nov-2021				22-Nov-2021	10-Dec-2021	√
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G) QA200	12-Nov-2021	22-Nov-2021	10-Dec-2021	✓	22-Nov-2021	10-Dec-2021	1
EK067G: Total Phosphorus as P by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK067G) QA200	12-Nov-2021	22-Nov-2021	10-Dec-2021	✓	22-Nov-2021	10-Dec-2021	✓
EP020: Oil and Grease (O&G)							
Amber Glass Bottle - Sulfuric Acid (EP020) QA200	12-Nov-2021				23-Nov-2021	10-Dec-2021	√

Page : 3 of 4
Work Order : ES2141599

Client : CARDNO (NSW/ACT) PTY LTD

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: * = Quality Control frequency not within specification: \$\sqrt{} = \text{Quality Control frequency within specification}\$

Matrix: WATER		Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.						
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification	
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Suspended Solids (High Level)	EA025H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Turbidity	EA045	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)								
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Oil and Grease	EP020	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Suspended Solids (High Level)	EA025H	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard	
Turbidity	EA045	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)								
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Oil and Grease	EP020	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Suspended Solids (High Level)	EA025H	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Turbidity	EA045	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Matrix Spikes (MS)								
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	

Page : 4 of 4 Work Order : ES2141599

Client : CARDNO (NSW/ACT) PTY LTD

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Turbidity	EA045	WATER	In house: Referenced to APHA 2130 B. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)
Oil and Grease	EP020	WATER	In house: Referenced to APHA 5520 B. Oil & grease is a gravimetric procedure to determine the amount of oil & grease residue in an aqueous sample. The sample is serially extracted three times n-hexane. The resultant extracts are combined, dehydrated and concentrated prior to gravimetric determination. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)

CHAIN OF CUSTODY AND ANALYSIS REQUEST

Contact Person:	Ben Withnall					Project N	ame:		Downer:	Sydney Mei	ro Stations	- Wiley Park	· · · · · · · · · · · · · · · · · · ·		
elephone Number:	0436 687 417					Project N	umber:								
Iternative Contact:	Chong Zheng					PO No.:									
elephone Number:	0451 780 991			-		Project S	pecific Qua	ote No. :	190408CDNN_1						
ampler:	cz					Turnarou	nd Require	ments:				Standard TAT			
mail Address (results a		ContamNSW@cardn				Lab:			Eurofins	16 Mars Rd, Lane Cove West NSW2066					
ddress: Level 9 - The	Forum, 203 Pacific Highway, St		n Wales 2065 Australi	a		Attn:			Sample i	Receipt					
		Sample information			T						Analysis	s Required	Comments		
Cardno Sample ID	Laboratory Sample ID	No. Containers	Preservation	Date sampled	Matrix	Chlorophyll-a	SS	Turbidity	Oil and Grease	otal Phosphorus	otal Nitrogen				
WP1		5	ICE	 	Water	1 7	1	1	1 9	1	<u>F</u>				
WP2		5	ICE	1	Water	1	1	1	1	1	+ ;	 			
QA100		4	ICE	26/11/2021	Water	l	1	1	1	+	1	 	 		
QA200		4	ICE	1	Water	†	1	1	1	1	1		Please send to ALS		
				<u> </u>					 -	 	<u> </u>	 	Flease selid to ALS		
										 	† —	 			
												Environmental Division Sydney Work Order Reference ES2143963			
	i	Received by:			Relinquished by:					Received	by:	Relinquished by:	m·H		
ne / company)		(name / company)			(name / company					(name / co		(name / company)			
•		Date & Time:			Date & Time:					Date & Tin			28,11,21		
	,	Signature:			Signature:					Signature:		1715 157 Signature:			
ceived by:		Relinquished by:			Received by:					Relinquish	ed by:	Lab use:	#845645		
me / company)		(name / company)			(name / company					(name / co	mpany)	Samples Received: Cool o	All faces and		
e & Time:		Date & Time:			Date & Time:					Date & Tim	 le;	Temperature Received at:	(if applicable)		
nature:		Signature:			Signature:					Signature:		Transported by: Hand dell			

SAMPLE RECEIPT NOTIFICATION (SRN)

: ES2143963 Work Order

: CARDNO (NSW/ACT) PTY LTD Client Laboratory : Environmental Division Sydney

Contact : MR BEN WITHNALL Contact : Shane Ellis

Address : Level 9 The Forum 203 Pacific Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

St Leonards NSW 2065

Highway

E-mail F-mail : Shane.Ellis@ALSGlobal.com : ben.withnall@cardno.com.au

Telephone : +61 2 9495 8188 Telephone : +61 2 8784 8555 Facsimile Facsimile : +61-2-8784 8500

Project : NE30161 DOWNER SYDNEY METRO Page 1 of 3 STATIONS - WILEY PARK

Order number Quote number : EP2020CARNSWACT0002

(FN/024/20)

C-O-C number QC Level : NEPM 2013 B3 & ALS QC Standard

Site Sampler

Dates

Date Samples Received · 02-Dec-2021 14:15 Issue Date · 03-Dec-2021 : 09-Dec-2021 Scheduled Reporting Date Client Requested Due

Date

09-Dec-2021

Delivery Details

Mode of Delivery Security Seal : Not Available : Carrier

No. of coolers/boxes : 1 : 10.2 - Ice Bricks present Temperature

Receipt Detail No. of samples received / analysed : 1/1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date · 03-Dec-2021

Page

2 of 3 ES2143963 Amendment 0 Work Order

Client : CARDNO (NSW/ACT) PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. otal Nitrogen and Total Phosphorus If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date uspended Solids - Standard is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component Oil & Grease (O&G) 'ATER - EA045 Matrix: WATER Sample ID Laboratory sample Sampling date / ID time ES2143963-001 26-Nov-2021 00:00 QA200

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: WATER

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Method		Due for	Due for	Samples Re	eceived	Instructions Received	
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation
EA045: Turbidity							
QA200	Clear Plastic Bottle - Natural		28-Nov-2021	02-Dec-2021	×		

: 03-Dec-2021 Issue Date

Page

3 of 3 ES2143963 Amendment 0 Work Order

Client : CARDNO (NSW/ACT) PTY LTD

Requested Deliverables

BE			

- *AU Certificate of Analysis - NATA (COA)	Email	ben.withnall@cardno.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	ben.withnall@cardno.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	ben.withnall@cardno.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ben.withnall@cardno.com.au
- Chain of Custody (CoC) (COC)	Email	ben.withnall@cardno.com.au
- EDI Format - ENMRG (ENMRG)	Email	ben.withnall@cardno.com.au
,		•
- EDI Format - ESDAT (ESDAT)	Email	ben.withnall@cardno.com.au
Chong Zeng		
 *AU Certificate of Analysis - NATA (COA) 	Email	chong.zeng@cardno.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	chong.zeng@cardno.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	chong.zeng@cardno.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	chong.zeng@cardno.com.au
- Chain of Custody (CoC) (COC)	Email	chong.zeng@cardno.com.au
- EDI Format - ENMRG (ENMRG)	Email	chong.zeng@cardno.com.au
- EDI Format - ESDAT (ESDAT)	Email	chong.zeng@cardno.com.au
ContamNSW		

C

contamnSw		
- *AU Certificate of Analysis - NATA (COA)	Email	contamnsw@cardno.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	contamnsw@cardno.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	contamnsw@cardno.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	contamnsw@cardno.com.au
- Chain of Custody (CoC) (COC)	Email	contamnsw@cardno.com.au
- EDI Format - ENMRG (ENMRG)	Email	contamnsw@cardno.com.au
- EDI Format - ESDAT (ESDAT)	Email	contamnsw@cardno.com.au
NVOICES		

INVOICES

- A4 - AU Tax Invoice (INV) Email apinvoices@cardno.com.au

CERTIFICATE OF ANALYSIS

Work Order : ES2143963 Page

Client : CARDNO (NSW/ACT) PTY LTD Laboratory : Environmental Division Sydney

Contact : MR BEN WITHNALL : Shane Ellis

Address : Level 9 The Forum 203 Pacific Highway Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

St Leonards NSW 2065

Telephone : +61 2 9495 8188 Telephone : +61 2 8784 8555

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK Date Samples Received : 02-Dec-2021 14:15

Order number

C-O-C number : ---Sampler : ---Site : ----

Quote number : EN/024/20

No. of samples received : 1
No. of samples analysed : 1

Date Samples Received : 02-Dec-2021 14:15

Date Analysis Commenced : 03-Dec-2021

Issue Date : 09-Dec-2021 15:01

: 1 of 2

Accreditation No. 825
Accredited for compliance with

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW

Page : 2 of 2 Work Order : ES2143963

Client : CARDNO (NSW/ACT) PTY LTD

Project · NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)	WATER)			QA200						
		Sampli	ng date / time	26-Nov-2021 00:00						
Compound	CAS Number	LOR	Unit	ES2143963-001						
				Result						
EA025: Total Suspended Solids dried	at 104 ± 2°C									
Suspended Solids (SS)		5	mg/L	19						
EA045: Turbidity										
Turbidity		0.1	NTU	22.7						
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Ana	lyser								
Nitrite + Nitrate as N		0.01	mg/L	1.85						
EK061G: Total Kjeldahl Nitrogen By Di	iscrete Analyser									
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.9						
EK062G: Total Nitrogen as N (TKN + N	Ox) by Discrete An	alyser								
^ Total Nitrogen as N		0.1	mg/L	2.8						
EK067G: Total Phosphorus as P by Di	screte Analyser									
Total Phosphorus as P		0.01	mg/L	0.19						
EP020: Oil and Grease (O&G)										
Oil & Grease		5	mg/L	<5						

QUALITY CONTROL REPORT

Work Order : **ES2143963** Page : 1 of 3

Client : CARDNO (NSW/ACT) PTY LTD Laboratory : Environmental Division Sydney

Contact : MR BEN WITHNALL : Shane Ellis

Address : Level 9 The Forum 203 Pacific Highway Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

St Leonards NSW 2065

Telephone : +61 2 9495 8188 Telephone : +61 2 8784 8555

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK Date Samples Received : 02-Dec-2021
Order number : ---- Date Analysis Commenced : 03-Dec-2021

C-O-C number ---- Issue Date · 09-Dec-2021

Sampler : ---Site : ----

Quote number : EN/024/20

No. of samples received : 1
No. of samples analysed : 1

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW

Page : 2 of 3 Work Order : ES2143963

Client : CARDNO (NSW/ACT) PTY LTD

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EA025: Total Suspen	ded Solids dried at 104 ± 2°	C (QC Lot: 4054958)									
ES2143629-002	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	11	12	0.0	No Limit		
ES2143672-004	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	45	50	9.5	No Limit		
EA045: Turbidity (QC	C Lot: 4061250)										
ES2143321-006	Anonymous	EA045: Turbidity		0.1	NTU	367	366	0.3	0% - 20%		
ES2143918-006	Anonymous	EA045: Turbidity		0.1	NTU	104	104	0.0	0% - 20%		
EK059G: Nitrite plus	Nitrate as N (NOx) by Disci	rete Analyser (QC Lot: 4055680)									
ES2143931-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit		
ES2143939-009	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.01	0.01	0.0	No Limit		
EK061G: Total Kjelda	hl Nitrogen By Discrete Ana	alyser (QC Lot: 4055678)									
ES2143929-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	3.8	4.4	13.9	No Limit		
ES2143939-007	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.7	0.6	17.4	No Limit		
EK067G: Total Phosp	horus as P by Discrete Ana	lyser (QC Lot: 4055679)									
ES2143929-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.02	0.03	0.0	No Limit		
ES2143939-007	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.05	0.03	57.8	No Limit		

Page : 3 of 3 Work Order : ES2143963

Client : CARDNO (NSW/ACT) PTY LTD

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
		Report	Spike	Spike Recovery (%)	Acceptable Limits (%)			
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA025: Total Suspended Solids dried at 104 ± 2°C (QCLot: 4054958)								
EA025H: Suspended Solids (SS)	5	mg/L	<5	150 mg/L	106	83.0	129	
			<5	1000 mg/L	103	82.0	110	
			<5	463 mg/L	99.4	83.0	118	
EA045: Turbidity (QCLot: 4061250)								
EA045: Turbidity	0.1	NTU	<0.1	40 NTU	96.2	91.0	105	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 4	055680)							
EK059G: Nitrite + Nitrate as N	0.01	mg/L	<0.01	0.5 mg/L	102	91.0	113	
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 4055678)								
EK061G: Total Kjeldahl Nitrogen as N	0.1	mg/L	<0.1	10 mg/L	86.0	69.0	101	
			<0.1	1 mg/L	90.7	70.0	118	
			<0.1	5 mg/L	94.6	70.0	130	
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 4055679)								
EK067G: Total Phosphorus as P	0.01	mg/L	<0.01	4.42 mg/L	94.8	71.0	101	
			<0.01	0.442 mg/L	105	72.0	108	
			<0.01	1 mg/L	113	70.0	130	
EP020: Oil and Grease (O&G) (QCLot: 4061857)								
EP020: Oil & Grease	5	mg/L	<5	5000 mg/L	110	81.0	121	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER			Matrix Spike (MS) Report								
				Spike	SpikeRecovery(%)	Acceptable Limits (%)					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High				
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 4055680)											
ES2143931-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	93.2	70.0	130				
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 4055678)											
ES2143929-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		10 mg/L	82.6	70.0	130				
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 4055679)											
ES2143929-002	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	83.0	70.0	130				

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2143963** Page : 1 of 4

Client : CARDNO (NSW/ACT) PTY LTD Laboratory : Environmental Division Sydney

Contact : MR BEN WITHNALL Telephone : +61 2 8784 8555

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK Date Samples Received : 02-Dec-2021

Site :---- Issue Date : 09-Dec-2021

Sampler : --- No. of samples received : 1
Order number : --- No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4 Work Order : ES2143963

Client : CARDNO (NSW/ACT) PTY LTD

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

Outliers: Analysis Holding Time Compliance

Matrix: WATER

Matrix, WATER							
Method	Ex	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days	
			overdue			overdue	
EA045: Turbidity							
Clear Plastic Bottle - Natural							
QA200				07-Dec-2021	28-Nov-2021	9	

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: × = Holding time breach : ✓ = Within holding time

Matrix: WATER				Evaluation	: × = Holding time	breach; ✓ = Withi	n holding time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA025: Total Suspended Solids dried at 104 ± 2°C							
Clear Plastic Bottle - Natural (EA025H) QA200	26-Nov-2021				03-Dec-2021	03-Dec-2021	✓
EA045: Turbidity							
Clear Plastic Bottle - Natural (EA045) QA200	26-Nov-2021				07-Dec-2021	28-Nov-2021	×
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) QA200	26-Nov-2021				06-Dec-2021	24-Dec-2021	✓
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G) QA200	26-Nov-2021	06-Dec-2021	24-Dec-2021	✓	06-Dec-2021	24-Dec-2021	✓
EK067G: Total Phosphorus as P by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK067G) QA200	26-Nov-2021	06-Dec-2021	24-Dec-2021	✓	06-Dec-2021	24-Dec-2021	✓
EP020: Oil and Grease (O&G)							
Amber Jar - Sulfuric Acid or Sodium Bisulfate (EP020) QA200	26-Nov-2021				08-Dec-2021	24-Dec-2021	✓

Page : 3 of 4
Work Order : ES2143963

Client : CARDNO (NSW/ACT) PTY LTD

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

ne expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER		Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency							
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification		
Analytical Methods	Method	ОC	Regular	Actual	Expected	Evaluation			
Laboratory Duplicates (DUP)									
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Suspended Solids (High Level)	EA025H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Turbidity	EA045	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Laboratory Control Samples (LCS)									
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Oil and Grease	EP020	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Suspended Solids (High Level)	EA025H	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	18	16.67	15.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Phosphorus as P By Discrete Analyser	EK067G	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard		
Turbidity	EA045	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Method Blanks (MB)									
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Oil and Grease	EP020	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Suspended Solids (High Level)	EA025H	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Turbidity	EA045	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Matrix Spikes (MS)									
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard		
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard		

Page : 4 of 4 Work Order : ES2143963

Client : CARDNO (NSW/ACT) PTY LTD

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Turbidity	EA045	WATER	In house: Referenced to APHA 2130 B. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)
Oil and Grease	EP020	WATER	In house: Referenced to APHA 5520 B. Oil & grease is a gravimetric procedure to determine the amount of oil & grease residue in an aqueous sample. The sample is serially extracted three times n-hexane. The resultant extracts are combined, dehydrated and concentrated prior to gravimetric determination. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)

CHAIN OF CUSTODY AND ANALYSIS REQUEST

ontact Person:	Ben Withnall					Project N	lame:		Понилог	Sydney Met	n Ctotions	Miles D.					
lephone Number:	0436 687 417					Project N			NE3016		o Stations -	- Wiley Pari	(
ternative Contact:	Chong Zheng					PO No.:			145016								
elephone Number:	0451 780 991					-	specific Qua	to No. :	-				1001000000				
ampler:	CZ					-	and Require						190408CDNN				
mail Address (results a	and involce):	ben.withnali@cardno	o.com.au; chong.zeng@	@cardno.com.qu			and itsquire	ments,					Standard TA				
		ContamNSW@cardne	o.com.au			Lab:			Eurofins	Unit F3, E	Building F, 1	16 Mars Rd	, Lane Cove V	West NSW20	66		1
idress: Level 9 - Ine F	Forum, 203 Pacific Highway, St		h Wales 2065 Austral	la		Attn:			Sample	Receipt							1
		Sample information									Analysis	Required					Comments
Cardno Sample ID	Laboratory Sample ID	No. Containers	Preservation	Date sampled	Matrix	Chlorophyll-a	75.5	Turbidity	Oil and Grease	Total Phosphorus	Total Nitrogen						
WP1		5	ICE		Water	1	1	1	1	1	1	_	-				
WP2		5	ICE	20/44/2004	Water	1	1	1	1	1	1						
QA100		4	ICE	26/11/2021	Water		1	1	1	1	1						
QA200		4	ICE		Water		1	1	1	1	1					+	Please send to ALS
																	T TOURS SOITE TO THE
																707	
																- J J	
												1					
										1							
							-										
										-							
										-							
				7						-		-					
														-		-	
														-			
														-	-		
linquished by:	Chong Zeng	Received by:			Relinquished by:												
me / company)		(name / company)								Received					Relinq	ulshed by:	m.H
					(name / company					(name / co					(name	/ company)	
		Date & Time:			Date & Time:					Date & Tin	10:				Date 8	Time:	28,11,21
		Signature:			Signature:	Signature: Signature:			ure:								
celved by:		Relinquished by:			Received by:			Relinquished by: Lab use:			e:	#845645					
me / company)		(name / company)			(name / company					(name / co	mpany)						ool or Ambient (circle one)
e & Time:		Date & Time:			Date & Time:												
nature:		Signature:			Signature;								d at: (if applicable) d delivered / courier				

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000
Lane Cove We NATA # 1261 Site # 1254

Unit F3 Building F NATA # 1261 Site # 18217

Brisbane NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 www.eurofins.com.au

ABN: 91 05 0159 898

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 EnviroSales@eurofins.com

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Cardno (NSW/ACT) Pty Ltd

Contact name:

Ben Withnall

Project name:

DOWNER SYDNEY METRO STATIONS-WILEY PARK

Project ID: Turnaround time: NE30161 5 Day

Date/Time received

Nov 28, 2021 7:16 PM

Eurofins reference 845645

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

#Water sample received as (QA200)(1*plastic bottle, 1*Nutrient bottle and 2*Oil & Grease is forwarded to ALS. Samples received by the laboratory after 5.30pm are deemed to have been received the following working day.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Ursula Long on phone: or by email: UrsulaLong@eurofins.com

Results will be delivered electronically via email to Ben Withnall - ben.withnall@cardno.com.au.

Note: A copy of these results will also be delivered to the general Cardno (NSW/ACT) Pty Ltd email address.

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
16 Mars Road
Phone: +61 3 8564 5000
NATA # 1261 Site # 1254
Phone: +61 2

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Limited
ABN: 91 05 0159 898 NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Dec 6, 2021

Ben Withnall

5 Day

Nov 28, 2021 7:16 PM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway

St Leonards

NSW 2065

Project Name:

DOWNER SYDNEY METRO STATIONS-WILEY PARK

Project ID:

NE30161

Order No.: Report #:

845645

Phone: 0294967700 **Fax:** 02 9499 3902

Eurofins Analytical Services Manager : Ursula Long

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

		Sai	mple Detail			Chlorophyll a	Oil & Grease (HEM)	Phosphate total (as P)	Total Nitrogen (as N)	Total Suspended Solids Dried at 103–105°C	Turbidity
Melb	ourne Laborato	ory - NATA # 120	61 Site # 125	4		Х	Х	Х	Х	Х	Х
Sydr	ney Laboratory	- NATA # 1261 S	Site # 18217								
Brisk	oane Laborator	y - NATA # 1261	Site # 20794	l .							
Mayf	ield Laboratory	- NATA # 1261	Site # 25079								
Perth	n Laboratory - N	NATA # 2377 Sit	e # 2370								
Exte	External Laboratory										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	WP1	Nov 26, 2021		Water	S21-De00153	Х	Х	Х	Х	Х	Х
2	WP2	Nov 26, 2021		Water	S21-De00154	Х	Х	Х	Х	Х	Х
3	QA100	Nov 26, 2021		Water	S21-De00155		Х	Х	Х	Х	Х
Test	Counts	2	3	3	3	3	3				

Environment Testing

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway St Leonards NSW 2065

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Ben Withnall

Report 845645-W-V2

Project name DOWNER SYDNEY METRO STATIONS-WILEY PARK

Project ID NE30161
Received Date Nov 28, 2021

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			WP1 Water S21-De00153 Nov 26, 2021	WP2 Water S21-De00154 Nov 26, 2021	QA100 Water S21-De00155 Nov 26, 2021
Test/Reference	LOR	Unit			
Chlorophyll a	2	ug/L	< 2	2.7	-
Oil & Grease (HEM)	10	mg/L	< 10	< 10	< 10
Phosphate total (as P)	0.01	mg/L	0.13	0.18	0.17
Total Nitrogen (as N)	0.2	mg/L	1.6	2.4	2.4
Total Suspended Solids Dried at 103–105°C	5	mg/L	16	7.8	12
Turbidity	1	NTU	25	17	21

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chlorophyll a	Melbourne	Nov 29, 2021	28 Days
- Method: LTM-INO-4340 Chlorophyll a in Waters			
Oil & Grease (HEM)	Melbourne	Dec 03, 2021	28 Days
- Method: LTM-INO-4180 Oil and Grease (APHA 5520B)			
Phosphate total (as P)	Melbourne	Dec 03, 2021	28 Days
- Method: LTM-INO-4040 Phosphate by CFA			
Total Nitrogen (as N)	Melbourne	Dec 03, 2021	7 Days
- Method: LTM-INO-4040 Phosphate and Nitrogen in waters			
Total Suspended Solids Dried at 103–105°C	Melbourne	Dec 03, 2021	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Turbidity	Melbourne	Dec 06, 2021	28 Days

⁻ Method: Turbidity by classical using APHA 2130B (LTM-INO-4140)

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Priority:

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway

St Leonards

NSW 2065

Project Name:

DOWNER SYDNEY METRO STATIONS-WILEY PARK

Project ID:

NE30161

Order No.: Report #:

845645 0294967700

Phone: Fax: 02 9499 3902

Received: Nov 28, 2021 7:16 PM Due:

Dec 6, 2021 5 Day

Contact Name: Ben Withnall

Eurofins Analytical Services Manager: Ursula Long

	Sample Detail								Total Nitrogen (as N)	Total Suspended Solids Dried at 103-105°C	Turbidity
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х	Х	Х
Sydr	ey Laboratory	- NATA # 1261 S	Site # 18217								
Brist	oane Laboratory	y - NATA # 1261	Site # 20794	ı							
Mayf	ield Laboratory	- NATA # 1261	Site # 25079								
Pertl	n Laboratory - N	IATA # 2377 Sit	e # 2370								
Exte	rnal Laboratory										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	WP1	Nov 26, 2021		Water	S21-De00153	Х	Х	Х	Х	Х	Х
2	WP2 Nov 26, 2021 Water S21-De00154						Х	Х	Х	Х	Х
3	QA100	Nov 26, 2021		Water	S21-De00155		Х	Х	Х	Х	Х
Test	est Counts								3	3	3

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre μ g/L: micrograms per litre

ppm: parts per million **ppb**: parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.4

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data

Report Number: 845645-W-V2

Environment Testing

Quality Control Results

Те	st		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Total Nitrogen (as N)			mg/L	< 0.2			0.2	Pass	
Turbidity			NTU	< 1			1	Pass	
LCS - % Recovery									
Phosphate total (as P)			%	112			70-130	Pass	
Total Nitrogen (as N)			%	110			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Phosphate total (as P)	S21-No70290	NCP	%	66			70-130	Fail	Q08
Total Nitrogen (as N)	S21-No70290	NCP	%	65			70-130	Fail	Q08
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Phosphate total (as P)	S21-De03982	NCP	mg/L	0.04	0.03	15	30%	Pass	
Total Nitrogen (as N)	S21-De03982	NCP	mg/L	< 0.2	< 0.2	<1	30%	Pass	
Turbidity	S21-De00153	CP	NTU	25	19	27	30%	Pass	

Comments

This report has been revised (V2) to amend Chlorophyll LOR.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.

Q08

Authorised by:

Ursula Long Analytical Services Manager Scott Beddoes Senior Analyst-Inorganic (VIC)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Construction Monitoring Report November 2021 to April 2022

Sydney Metro City & Southwest - Package 5 & 6

Appendix 2 – Surface Water Monitoring Report -NE30161_R006_SWM_WileyPark_Rev0

Page 38 Internal Use Only Version: Rev A © Downer 2020. All Rights Reserved

Surface Water Monitoring Report - Wiley Park Station

Wiley Park Station

NE30161

Prepared for Downer EDI Works Pty Ltd

4 March 2022

now

Contact Information

Document Information

Cardno (NSW/ACT) Pty Ltd Prepared for Downer EDI Works Pty Ltd

ABN 95 001 145 035 **Project Name** Wiley Park Station

Level 9 - The Forum File Reference NE30161_R006_SWM_Wile

203 Pacific Highway yPark_RevA.docx Suburb State 2065

PO Box 19 Job Reference NE30161

Date 4 March 2022

www.cardno.com

Phone +61 2 9496 7700 Version Number RevA Fax +61 2 9439 5170

Author(s):

Jiagi Zhon

Jiaqi Zhou Effective Date 4/03/2022

Environmental Engineer

Approved By:

Mike Jorgensen **Date Approved** 4/03/2022

Principal Hydrogeologist

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
RevA	04/03/2022	Draft for Client Review	JZ / CZ	MJ

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

[©] Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Table of Contents

1	Introd	luction	4
	1.1	Background	4
	1.2	Purpose and Objective	5
	1.3	Scope of Works	5
2	Guide	elines and Legislation	6
3	Monito	oring Locations	6
	3.1	Monitoring Locations	6
4	Qualit	ty Management	7
	4.1	Data Quality Indicators	8
5	Field Investigation		10
6	Surface Water Assessment Criteria		11
7	7 Summary of Results		12
	7.1	Summary of Field Observations	12
	7.2	Field Parameters	12
	7.3	Surface Water Analytical Results	13
	7.4	Results Discussion	15
8	Conclusion		16
9	References		17
10	Limita	ations	18

Appendices

Appendix A Figures

Appendix B Photographs

Appendix C Filed Records

Appendix D Laboratory Summary Tables

Appendix E Quality Assurance/Quality Contral

Appendix F Laboratory Reports

Tables

Table 1-1	Summary of Surface Water Monitoring Event Undertaken to Date	2
Table 1-2	Wiley Park Water Quality Monitoring Program	5
Table 3-1	Surface Water Monitoring Location Details	6
Table 4-1	Data Quality Objectives	7
Table 4-2	Summary of Data Quality Indicators	8
Table 5-1	Investigation Activity Summary	10
Table 6-1	Water Quality Monitoring Parameters and Adopted Criteria at Wiley Park	11
Table 7-1	Laboratory Physico-chemical Parameters and Field Observations - 9 and 10 February 2022	12
Table 7-2	Comparison of current sampling results to baseline results.	14

1 Introduction

1.1 Background

Cardno (NSW/ACT) Pty Ltd ("Cardno") was commissioned by Downer EDI Works Pty Ltd ("Downer") to undertake monitoring and reporting of surface water quality of the unnamed channel within proximity to Wiley Park Station Upgrade Site. The proposed upgrade includes the upgrade of the main station and installation of the Metro Services Building (MSB).

Surface water quality of the channel within proximity to Wiley Park Upgrade Site is to be monitored as per the requirements summarised in the **Table 1-2**, which is excerpted from the Southwest Metro – Hurlstone Park, Belmore and Wiley Park Station Upgrades Soil and Water Management Plan (SWMP). The monitoring program are prepared to meet the requirements outlined in *The Sydney Metro City and Southwest – Sydenham to Bankstown Upgrade Conditions of Approval SSi-8256*, specifically Condition 8 to Condition 10. The sampling locations (WP1 – Upstream and WP2 – Downstream) of the water quality monitoring are shown on **Figure 1** in **Appendix** Error! Reference source not found..

The closest Project worksite to an existing watercourse is Wiley Park Station services building, which is located approximately 100 m from an unnamed concrete-lined channel, which forms the upper reaches of Coxs Creek and is identified as a first-order stream.

For the purpose of establishing baseline water quality data within the first-order stream at Wiley Park, water quality monitoring was intended to be undertaken for a period prior to construction of the Wiley Park services building as outlined in the Table 13 of the SWMP. At a minimum, one dry-weather sample and one wet weather sample (weather permitting) were intended to be collected during the pre-construction period. The frequency of pre-construction water quality monitoring within this channel was subject to water being present within the structure. However, during the baseline monitoring period no wet-weather events were able to be captured prior to commencement of construction. A dry-weather baseline monitoring event was undertaken on 10 March 2021.

This report presents the findings from the eighth surface water monitoring event, which was undertaken by Cardno on 9 and 10 February 2022. The event undertaken was a mid-construction dry-weather event. **Table 1-1** below summarised the surface water monitoring events undertaken to date by Cardno.

Table 1-1 Summary of Surface Water Monitoring Event Undertaken to Date

Date of Monitoring	Type of Event	Report Reference
10 March 2021	Pre-construction Dry Baseline	4NE30187_R001_SWM_WileyPark_RevA
20 March 2021	Mid Construction Wet Weather	4NE30187_R001_SWM_WileyPark_RevA
5 May 2021	Mid Construction Wet Weather	4NE30187_R002_SWM_WileyPark_RevA
1 July 2021	Mid Construction Dry Weather	NE30161_R003_SWM_WileyPark_Rev0
30 September 2021	Mid Construction Dry Weather	NE30161_R004_SWM_WileyPark_RevA
12 November 2021	Mid Construction Wet Weather	NE30161_R005_SWM_WileyPark_Rev0
26 November 2021	Mid Construction Wet Weather	NE30161_R005_SWM_WileyPark_Rev0
9 and 10 Februrary 2022	Mid Construction Dry Weather	NE30161_R006_SWM_WileyPark_RevA

1.2 Purpose and Objective

The purpose of the surface water monitoring works is to monitor and record surface water quality within the unnamed channel in accordance with the monitoring program as outlined in the Site's SWMP. The objective of the works is to evaluate whether construction activities are impacting water quality downstream of the project footprint in the unnamed channel.

1.3 Scope of Works

Cardno undertook the following tasks during the surface water monitoring event:

- > Inspected and sampled the two (2) nominated surface water sampling locations (WP1 Upstream and WP2 Downstream) on 9 and 10 February 2022 as a mid-construction monitoring dry-weather event.
- > Recorded field parameters and noted observations of the water bodies during sampling.
- Collected two (2) primary surface water samples, one (1) intra-lab duplicate sample and one (1) inter-lab duplicate sample per sampling event for submission to a laboratory accredited by the National Association of Testing Authorities, Australia (NATA) for analytical testing of primary and additional quality assurance/quality control (QA/QC) samples. Samples were submitted for analysis of:
 - Oil & Grease;
 - Total Suspended Solids (TSS);
 - Nutrients (Total Phosphorous, Total Nitrogen);
 - Turbidity; and
 - Chlorophyll-a.
- > Reviewed the analytical and field data and prepared this report.

Details of the monitoring program are shown below.

Table 1-2 Wiley Park Water Quality Monitoring Program

Table 1-2 Wiley Fair Water Quality Monitoring Flogram					
	Wiley Park Water Quality Monitoring Program				
Waterway	Sydney Water Cooks River Channel (first-order stream)				
Indicative	WP1 – Upstream				
monitoring points	WP2 – Downstream				
Interaction with project works	Channel within proximity to Wiley Park service building site				
Pre-construction works	Monthly for parameters detailed in Table 11 (including at least one dry-weather round of sampling). One wet-weather event, if possible, for the parameters detailed in Table 11, subject to event occurrence, safe conditions for monitoring and access being available to conduct monitoring. Note: A wet-weather event is when the receiving area has received greater than 20 mm of rain in 24 hours. The sampling was undertaken immediately during construction hours and if it is safe to do so.				
During construction of the Wiley Park services building	Quarterly for parameters detailed in Table 11 (including during dry weather). Four wet-weather events per year for the parameters in Table 11, subject to event occurrence, safe conditions for monitoring and access being available to conduct monitoring. Note: A wet-weather event is when the receiving area has received greater than 20mm of rain in 24 hours. The sampling was undertaken immediately during construction hours and if it is safe to do so.				

2 Guidelines and Legislation

There are a range of Guidelines and Legislation and Conditions of Approval (CoA) that are applicable to the surface water monitoring program which are summarised below.

The CoA applicable to this job include:

The Sydney Metro City and Southwest - Sydenham to Bankstown Upgrade Conditions of Approval SSI-8256, determined 12 December 2018;

The State and Federal legislation and policy and guidelines that apply to the program include:

- Environmental Planning and Assessment Act 1979 (EP&A Act);
- > Contaminated Land Management Act 1997;
- > Protection of the Environment Operations Act 1997 (POEO Act); and
- > Water Management Act 2000 Water Management (General) Regulation 2018;

Additional guidelines and standards to the management of soil and water include:

- > Landcom (2004). Managing Urban Stormwater: Soils and Construction. (Volume 1 of the 'Blue Book');
- > DECC (2008). Managing Urban Stormwater: Soils and Construction. Volume 2D: Main Road Construction. (Volume 2D of the 'Blue Book');
- > ANZECC (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (collectively known as the 'ANZECC Guidelines');
- ANZECC (2018). Australian and New Zealand Guidelines for Water Quality Monitoring and Reporting (collectively known as the 'ANZECC Guidelines'); and
- > ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (known as 'ANZG Guidelines').

3 Monitoring Locations

Details of the sampling locations are provided in **Table 3-1**. The locations are provided on **Figure 1** in **Appendix** Error! Reference source not found.. Representative photographs are presented in **Appendix** REF _Ref78534754 \r \h * MERGEFORMAT Error! Reference source not found..

3.1 Monitoring Locations

Table 3-1 Surface Water Monitoring Location Details

Sample Location	Latitude	Longitude	Description
WP1 (up-stream)	-33.924014	151.065315	Immediately south of the Boulevarde and east of 118 the Boulevarde.
WP2 (down-stream)	-33.923339	151.064970	Immediately north of the Urunga Parade and west of 4 Urunga Parade.

4 Quality Management

The Data Quality Objective (DQO) process is used to establish a systematic planning approach to setting the type, quantity and quality of data required for making decisions based on the environmental condition of the project area. The DQO process involves the seven steps detailed in **Table 4-1**.

Table 4-1 Data Quality Objectives

Table 4-1 Data Quality Objectives					
DQO	Description				
Step 1 State the Problem	Construction work may adversely impact the local surface water quality within the unnamed channel near the site.				
Step 2 Identify the Decisions	Are there any impacts to surface water quality from construction activities at the site?				
Step 3	The primary inputs to the decisions described above are:				
Identify Inputs to the Decision	> Assessment of surface water quality of the unnamed channel within proximity to Wiley Park service building site per the requirements outlined in the site's SWMP, with samples collected from two locations (upstream and downstream of the site);				
	> Laboratory analysis of surface water samples for relevant parameters;				
	Assessment of the suitability of the analytical data obtained, against the Data Quality Indicators (DQIs);				
	Assessment of the analytical results against applicable guideline criteria; and				
	> Aesthetic observations of surface water bodies, including odours, sheen and condition, if encountered.				
Step 4 Define the Study Boundaries	The lateral extent of the study area is the channel near the Wiley Park service building site.				
	The temporal boundaries of the study comprises the duration of the monitoring program, including pre-construction monitoring, construction phase, and post-construction monitoring as required.				
Step 5	The decision rules for the water quality monitoring sampling events included:				
Develop a Decision Rule	Were primary and QA/QC samples analysed using methods endorsed by relevant regulatory guidelines at laboratories NATA-accredited for the requested analyses?				
	Did the field and laboratory QA/QC results indicate that the data set was reliable and representative of the water quality with Relative Percentage Difference (RPD) values of 30% or less?				
	> Were the laboratory limits of reporting (LORs) below the applicable guideline criteria for the analysed parameters?				
	> Were guideline criteria sourced from endorsed guidelines?				
	> Were surface water aesthetic characteristics evaluated including odours and sheen?				
	Were the monitoring results obtained from the downstream sample collected during construction phase greater than the upstream sample collected during the same monitoring event? If so, then the adverse impact to the quality of water in the unnamed channel is considered to have potentially occurred.				
Step 6 Specify Limits on Decision	In accordance with the relevant guidelines as endorsed under the <i>Contaminated Land Management Act 1997</i> .				
Error	Specific limits for this project are in accordance with the appropriate guidance made or endorsed by state and national regulations, appropriate indicators of data quality, and standard procedures for field sampling and handling.				
	This step also examines the certainty of conclusive statements based on the available new Site data collected. This should include the following points to quantify tolerable limits:				

DQO	Description
	 A decision can be made based on a certainty assumption of 95% confidence in any given data set (excluding asbestos). A limit on the decision error will be 5% that a conclusive statement may be a false positive or false negative.
	A decision error in the context of the decision rule presented above would lead to either underestimation or overestimation of the risk level associated with a particular sampling area. Decision errors may include:
	Sampling errors may occur when the sampling program does not adequately detect the variability of a contaminant from point to point across the Site. To address this, minimum numbers of samples are proposed to be collected from each media. As such, there may be limitations in the data if aspects of the sampling plan cannot be implemented. Some examples of this scenario include but not limited to:
	 Proposed samples are not collected due to lack of water flow or access being restricted to a given location.
	 Limitations in ability to acquire useful and representative information from the data collected. The data are proposed to be collected from multiple locations and sample media.
	• Measurement errors can occur during sample collection, handling, preparation, analysis and data reduction. To address this the following measures are proposed:
	 Field staff to follow a standard procedure when undertaking samples, including decontamination of tools, removal of adhered soil to avoid false positives in results, collection of representative samples and use of appropriate sample containers and preservation methods.
	 Laboratories to follow a standard procedure when preparing samples for analysis and undertaking analysis.
	 Laboratories to report quality assurance/ quality control data for comparison with the DQIs established for the project
Step 7 Optimise the Design for	To achieve the DQOs and DQIs, the following sampling procedures were implemented to optimise the design for obtaining data:
Obtaining Data	Surface water samples was collected from two (2) sampling locations, as available due to access and water level;
	Surface water parameters were selected based on project monitoring requirements provided to Cardno;
	Samples were collected by suitably qualified and experienced environmental scientists;
	> Samples were collected and preserved in accordance with relevant standards/guidelines; and
	> Field and laboratory QA/QC procedures were adopted and reviewed to indicate the reliability of the results obtained.

4.1 Data Quality Indicators

The following DQIs have been adopted for the project. The DQIs outlined in **Table 4-2** assist with decisions regarding the usefulness of the data obtained, including the quality of the laboratory data.

Table 4-2 Summary of Data Quality Indicators

Table 42 Cummary of Bata Quarky maloacolo				
Data Quality Indicator	Frequency	Data Acceptance Criteria		
Completeness				
Field documentation correct	All samples	The work was documented in accordance with Cardno SOPs		
Suitably qualified and experience sampler	All samples	Person deemed competent by Cardno collecting and logging samples		

Data Quality Indicator	Frequency	Data Acceptance Criteria
Appropriate lab methods and limits of reporting (LORs)	All samples	Samples were analysed using methods endorsed by relevant regulatory guidelines at laboratories NATA-accredited for the requested analyses.
Chain of custodies (COCs) completed appropriately	All samples	The work was documented in accordance with Cardno SOPs
Sample holding times complied with	All samples	The samples were extracted and analysed within holding times specified by the project NATA-accredited laboratory
Proposed/critical locations sampled	-	Proposed/critical locations sampled
Comparability		
Consistent standard operating procedures for collection of each sample. Samples should be collected, preserved and handled in a consistent manner	All samples	All works undertaken in accordance with Cardno SOPs
Experienced sampler	All samples	Person deemed competent by Cardno collecting and logging samples
Climatic conditions (temp, rain etc) recorded and influence on samples quantified (if required)	All samples	Climatic conditions documented in field sheets
Consistent analytical methods, laboratories and units	All samples	Sample analysis to be in accordance with NATA-approved methods
Representativeness		
Sampling appropriate for media and analytes (appropriate collection, handling and storage)	All samples	Sample analysis to be in accordance with NATA-approved methods
Samples homogenous	All samples	All works undertaken in accordance with Cardno SOPs
Detection of laboratory artefacts, e.g. contamination blanks	-	Laboratory artefacts assessed and impact on results determined
Samples extracted and analysed within holding times	All samples	The samples were extracted and analysed within holding times specified by the laboratory
Precision		
Blind duplicates (intra-laboratory duplicates)	1 per 20 samples	Less than or equal to 30% RPD No Limit RPD result less than 10 × LOR
Split duplicates (inter-laboratory duplicates)	1 per 20 samples	Less than or equal to 30% RPD No Limit RPD result less than 10 × LOR
Laboratory duplicates	1 per 20 samples	Results greater than 10 x LOR:less than or equal to 30% RPD Results less than 10 x LOR: No limit on RPD
Accuracy (Bias)		
Surrogate spikes	All organic samples	50-150%
Matrix spikes	1 per 20 samples	70-130%
Laboratory control samples	1 per 20 samples	70-130%
Method blanks	1 per 20 samples	Less than LOR

The DQOs and DQIs for the project were met during the monitoring events. Discussion of the Quality Control / Quality Assurance assessment is provided in **Appendix E**

5 Field Investigation

The scope and method of the surface water monitoring is summarised in **Table 5-1**.

Table 5-1 Investigation Activity Summary

Activity	Details
Dates of Fieldwork	9 and 10 February 2022 (Chlorophyll-a was resampled at both WP1 and WP2 on 10 February 2022 due to damage of the sample containers during the transportation following the initial sampling work on 9 February).
Surface Water Sampling	Cardno inspected two surface water monitoring locations (WP1 – Upstream and WP2 - Downstream). Primary samples were collected from the two locations during the sampling event. Cardno undertook the sampling as per the following procedures:
	<u>Surface Water Body Inspection</u> - The general site condition was observed prior to commencement of field works for signs of any site activities that may have altered the surface water contamination status or require modifications to the field or laboratory works program.
	Each surface water location was inspected for indicators of contamination and the presence as well as the flow of surface water. This information is recorded on the field sheets presented in Appendix C .
	<u>Surface water sampling</u> - Field parameters and visual/olfactory observations were recorded prior to sampling at each location. Physico-chemical parameters including pH electrical conductivity (EC), dissolved oxygen (DO), reduction-oxidation potential (redox) and temperature were measured using a calibrated water quality meter. Surface wate samples were collected either directly into the sampling bottle or directly from the telescopic scoop. Once field parameters were recorded, the surface water samples were transferred to appropriately preserved sample containers provided by the laboratories Field observations, and parameters are presented in Appendix C .
	Surface water samples were placed into an Esky containing ice and maintained at o below 4°C whilst onsite and in transit to the NATA-accredited laboratories for the targeted analyses.
Surface Water Analysis	Surface water samples from the monitoring event were submitted under standard chain of-custody (CoC) procedures to NATA-accredited Eurofins Environment Testing Australia analysis of the parameters as follows:
	- Oil & Grease;
	 Total Suspended Solids (TSS);
	 Nutrients (Total Phosphorous, Total Nitrogen);
	 Turbidity; and
	- Chlorophyll-a.
	Tabulated laboratory results are presented in Appendix D . The Data QA /QC program and data quality review including calibration certificates is presented in Appendix E .
	Copies of the original laboratory reports, NATA-stamped laboratory certificates, and CoC documentation are included in Appendix F .
Decontamination	In the event of reusable sampling or monitoring equipment (telescopic scoop, water quality meter) was used decontamination was undertaken. Decontaminated between locations using a standard bucket wash. Equipment was washed in phosphate-free detergent (Liquinox) and rinsed in laboratory supplied rinsate water.

6 Surface Water Assessment Criteria

The assessment criteria for surface water analytical and field data were adopted from Table 11 of the site's SWMP. The criteria for selected parameters are provided in **Table 6-1** below. ANZECC guideline criteria are included in the table for reference.

Table 6-1 Water Quality Monitoring Parameters and Adopted Criteria at Wiley Park

Parameter	ANZECC Criteria – Freshwater ¹	Proposed Trigger Values	Proposed Actions
Temperature (°C)	>80% ile; <20% ile		
Dissolved Oxygen (DO)	Lower limit – 85% Upper limit -110%	Downstream results are	
Turbidity (NTU)	6-50 NTU	results in rainfall events up to and including the significant event threshold of greater than 20 mm in 24 hours. Downstream results are Environment Manager delegate) to re-test to confirm results and undertake an inspection the adjacent works and propose actions where	
Oil and grease	-		
рН	Lower limit – 6.5 Upper limit – 8.5		undertake an inspection of
Salinity (as EC)	125 – 2200 μS/cm		•
Total Suspended Solids (TSS)	-	greater than upstream results during dry-weather sampling.	required.
Total Phosphorus as P	25 μg/L		
Total Nitrogen as N	350 μg/L	-	
Chlorophyll-a	3 μg/L		

Note to Table

ANZECC guideline criteria are included for reference. It is noted that for dry weather events baseline testing comparison will indicate whether this existing water quality within the channel meet ANZECC guidelines, prior to construction of the services building. For wet weather events where no baseline data is available a direct comparison to upstream and downstream results is undertaken. Sydney Metro's Principal Contractor will comply with Section 120 of the Protection of the Environment Operations Act 1997.

7 Summary of Results

7.1 Summary of Field Observations

The two (2) surface water sampling locations (WP1 – Upstream and WP2 – Downstream) were able to be accessed during the sampling event conducted on 9 and 10 February 2022. Photos of each sampling location are included in **Appendix B**. The following observations were made:

7.1.1 Mid-Construction Dry-Weather Event – 9 and 10 February 2022

- > The sampling event was initially undertaken on 9 February 2022 during a dry-weather event with 0 mm precipitation over the last 24 hours prior to the field sampling (rainfall data was obtained from the closest Bureau of Meteorology weather station, i.e. Canterbury Racecourse AWS station ID: 066194). Refer to **Appendix C** for weather recordings;
- Observation of water body:
 - WP 1 (upstream of work area) contained low flowing clear water with low turbidity. The estimated depth of the water body was 0.05 m;
 - WP 2 (downstream of work area) contained low flowing clear water with low turbidity. The estimated depth of the water body was 0.1 m;
- > Additional observation:
 - WP1 (upstream of work area):
 - One additional discharge point (WP1-DP1) was observed immediately downstream / north of WP1, however, no flow contribution was observed at the time of sampling. Refer to Appendix A for approximate location of WP1-DP1. Refer to Appendix B for a detailed photo.
 - WP2 (downstream of work area):
 - During the sampling event, the two discharge points (WP2-DP1 and WP2-DP2) within the rail corridor immediately upstream / south from WP2 were observed. Minor flow contributions from both discharge points were observed at the time of sampling. Refer to **Appendix A** for approximate location of WP2-DP1 and WP2-DP2. Refer to **Appendix B** for detailed photos.
- It is noted that Chlorophyll-a was resampled at both WP1 and WP2 on 10 February 2022 due to the damage of the sample containers during the transportation following the initial sampling work on 9 February 2022. Weather conditions (i.e. 0 mm precipitation over the last 24 hours prior to the field sampling) and water body conditions (i.e. water body depth, flow contribution from the discharging points, etc.) during this additional sampling work were similar to the original monitoring event undertaken on 9 February 2022. Thus, Chlorophyll-a results are considered to be representative of the water body condition assessed during this monitoring event.

7.2 Field Parameters

The parameters from each location sampled are presented in **Table 7-1**.

Table 7-1 Laboratory Physico-chemical Parameters and Field Observations - 9 and 10 February 2022

Location ID	WP1 (upstream of work area)	WP2 (downstream of work area)
Water Depth (m)	0.05	0.1
Estimated Flow Rate	Low	Low
Temperature (°C)	27.7	25.9
рН	8.59	8.78
Electrical Conductivity (µS/cm)	680	650
Dissolved Oxygen (mg/L)	7.21	5.06

Location ID	WP1 (upstream of work area)	WP2 (downstream of work area)
Dissolved Oxygen (%)	92.0	62.2
Oxidation-Reduction Potential (mV)	37.7	-8.2
SHE¹ Redox Potential (mV)	240.3 ²	196.0 ²
Condition	Clear Low turbidity	Clear Low turbidity

Note to Table

7.3 Surface Water Analytical Results

Surface Water Analytical results are presented in **Appendix D**. Copies of the original laboratory reports, NATA-stamped laboratory certificates, and Chain of Custody documentation are included in **Appendix F**.

7.3.1 Mid-Construction Dry-Weather Event – 9 and 10 February 2022

The results of the monitoring event indicate that:

- > Laboratory analytical results:
 - Concentrations of Chlorophyll-a were reported below the laboratory detection limit and adopted assessment criteria at all sample locations;
 - Concentrations of Oil and Grease were reported below laboratory detection limit at all sample locations;
 - Concentrations of inorganics were reported above the adopted assessment criteria with the total nitrogen concentration and the total phosphorous concentration within both the WP1 and WP2 samples.
 - Total Suspended Solids (TSS) concentrations were reported below laboratory detection limit at all sample locations; and
 - Turbidity ranged from 2.9 NTU at WP1 to 1.2 NTU at WP2.

7.3.2 Baseline Results Comparison

One sampling event during the pre-construction period (baseline event) was undertaken on 10 March 2021. This event has been used for comparison of mid-construction monitoring events under similar conditions (i.e. not triggering the wet-weather event criteria). It should be noted that the baseline water quality monitoring represents a single sampling event, and may not be representative of the range of water quality within the channel prior to construction starting.

The parameters from each location sampled are presented in **Table 7-2** compared with the baseline preconstruction event undertaken on 10 March 2021. Overall, conditions are similar in the pre-construction results and the mid-construction sampling event on 9 and 10 February 2022. These baseline conditions have been taken into account in interpretation in **Section 7.4** below.

¹ SHE – Standard Hydrogen Electrode

Water quality meter utilised on the day of monitoring contains Ag/AgCl reference electrode with 3.5 M KCl filling solution. As such, SHE was calculated based on Table 1 of US EPA document: SESDPROC-113-R2, Field Measurement of Oxidation-Reduction Potential (ORP).

Table 7-2 Comparison of current sampling results to baseline results.

Location ID	Assessment Criteria	WP1 Baseline Results	WP2 Baseline Results	WP1 9 and 10 February Results	WP2 9 and 10 February Results
Temperature (°C)	N/A	21.3	21.1	27.7	25.9
рН	6.5 - 8.5	7.90	7.61	8.59	8.78
Electrical Conductivity (µS/cm)	125 – 2,200	543	363	680	650
Dissolved Oxygen (%)	85% - 110%	63	45.9	92.0	62.2
Oxidation-Reduction Potential (mV)	N/A	140.7	181.0	37.7	-8.2
SHE¹ Redox Potential (mV)	N/A	348.1 ⁴	388.44	240.3 ⁴	196.0 ⁴
Chlorophyll a (μg/L)	3	<5	<5	<2³	<2³
Oil and Grease (mg/L)	Comparison	<10	29	<10	<10
Kjeldahl Nitrogen Total (mg/L)	N/A	1.3	0.8	NT ²	NT ²
Nitrate & Nitrite (as N) (mg/L)	N/A	1.2	0.88	NT ²	NT ²
Nitrogen (Total) (mg/L)	0.35	2.5	1.68	1.7	1.6
Phosphorus (mg/L)	0.025	0.34	0.12	0.14	0.08
TSS (mg/L)	N/A	<1	<1	<5	<5
Turbidity (NTU)	6 - 50	2.9	<1	2.9	1.2

Note to Table

SHE – Standard Hydrogen Electrod NT- Not Tested

²

³ 4

Chlorophyll-a was resampled at both WP1 and WP2 on 10 February 2022 due to damage of the sample containers during the transportation of the initial sampling work on 9 February.

Water quality meter utilised on the day of monitoring contains Ag/AgCl reference electrode with 3.5 M KCl filling solution. As such, SHE was calculated based on Table 1 of US EPA document: SESDPROC-113-R2, Field Measurement of Oxidation-Reduction Potential (ORP).

7.4 Results Discussion

7.4.1 Comparison to ANZG 2018 / ANZECC 2000 Criteria

Results for the mid-construction dry-weather event sampled on 9 and 10 February 2022 generally showed monitored parameters were within the adopted threshold criteria, with the exception of dissolved oxygen, total nitrogen, total phosphorous, and pH:

- Dissolved oxygen saturation measured at WP1 (92.0%) was within the adopted criterion range whereas WP2 (62.2%) was below the adopted criterion range. This is not considered to be a significant issue, due to the pre-construction monitoring results showing saturations of 63% and 45.9% for WP1 and WP2 respectively, indicating this mid-construction results are close to the adopted thresholds than the pre-construction event.
- > Total nitrogen measured at both WP1 and WP2 were above the adopted criterion range with the analytical results of 1.7 mg/L and 1.6 mg/L for WP1 and WP2 respectively. Overall, this is not considered to be a significant issue, due to the pre-construction monitoring results showing the total nitrogen concentrations of 2.5 mg/L and 1.68 mg/L for WP1 and WP2 respectively, indicating mid-construction results are closer to the adopted thresholds than the pre-construction event.
- > Phosphorous measured at both WP1 and WP2 were above the adopted criterion range with the analytical results of 0.14 mg/L and 0.08 mg/L for WP1 and WP2 respectively. Overall, this is not considered to be a significant issue, due to the pre-construction monitoring results showing total phosphorus of 0.34 mg/L and 0.12 mg/L for WP1 and WP2 respectively, indicating mid-construction results are closer to the adopted thresholds than the pre-construction event.
- > pH results were above the adopted criterion range in both sampling locations with the analytical results of 8.59 and 8.78 for WP1 and WP2 respectively. Overall, this is not considered to be a significant issue since the exceedance is only slightly above the adopted criteria.

7.4.2 Comparison of Upstream and Downstream Results

Results between upstream and downstream samples collected during the mid-construction dry-weather event were comparable, with the exception of:

> pH results were slightly above the adopted threshold in both sampling locations, with similar results of 8.78 at the downstream sample and 8.59 at the upstream sample. Overall, this is not considered to be a significant issue since the difference of the upstream and downstream pH results is less than 2.5%.

Refer to **Appendix D** for details.

8 Conclusion

Cardno was engaged to undertake surface water monitoring of the unnamed channel west of Wiley Park Station in accordance with the SWMP for the project. The objective of the works was to evaluate whether construction activities are impacting water quality downstream of the project footprint in the unnamed channel that receives in part stormwater from the construction area.

This report presents monitoring data of a mid-construction dry-weather event on 9 and 10 February 2022. Samples were collected from two locations. Sampling point WP1 is located up-stream from the work site while sampling point WP2 is located down-stream of the work site.

During this monitoring event, sampling results showed monitored parameters were generally within the adopted ANZG 2018 / ANZECC 2000 screening criteria with the exception of dissolved oxygen, total nitrogen, total phosphorous and pH. The comparison of the mid-construction dry-weather event on 9 and 10 February 2022 with the pre-construction dry-weather event on 10 March 2021 showed no significant difference.

Results between upstream and downstream samples collected during the mid-construction dry-weather event were comparable with exception of a slight increase (less than 0.2 pH unit) in pH measured at the downstream sample compared to the upstream sample.

These minor exceedances are not considered to reflect an adverse impact to water quality due to construction activities.

9 References

- Southwest Metro Hurlstone Park, Belmore and Wiley Park Station Upgrades Soil and Water Management Plan, dated 16th February 2021;
- The Sydney Metro City and Southwest Sydenham to Bankstown Upgrade Conditions of Approval SSI-8256, determined 12 December 2018;
- > Environmental Planning and Assessment Act 1979 (EP&A Act);
- > Contaminated Land Management Act 1997;
- > Protection of the Environment Operations Act 1997 (POEO Act);
- > Water Management Act 2000 Water Management (General) Regulation 2018;
- > Landcom (2004). Managing Urban Stormwater: Soils and Construction. (Volume 1 of the 'Blue Book');
- > DECC (2008). Managing Urban Stormwater: Soils and Construction. Volume 2D: Main Road Construction. (Volume 2D of the 'Blue Book');
- > ANZECC (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (collectively known as the 'ANZECC Guidelines');
- > ANZECC (2000). Australian and New Zealand Guidelines for Water Quality Monitoring and Reporting (collectively known as the 'ANZECC Guidelines');
- > ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (known as 'ANZG Guidelines').

10 Limitations

This assessment has been undertaken in general accordance with the current industry standards for a surface water monitoring report for the purpose and objectives and scope identified in this report. The agreed scope of this assessment has been limited for the current purposes of the Client. The assessment may not identify contamination occurring in all areas of the site, or occurring after sampling was conducted. Subsurface conditions may vary considerably away from the sample locations where information has been obtained. This Document has been provided by Cardno subject to the following limitations:

- > This Document has been prepared for the particular purpose outlined in Cardno's proposal and Section 1 of this report and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.
- > The scope and the period of Cardno's services are as described in Cardno's proposal, and are subject to restrictions and limitations. Cardno did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Cardno in regards to it.
- Conditions may exist which were undetectable given the limited nature of the enquiry Cardno was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.
- In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Cardno's opinions are based upon information that existed at the time of the production of the Document. It is understood that the services provided allowed Cardno to form no more than an opinion of the actual conditions of the site at the time this Document was prepared and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.
- > Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.
- Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Cardno for incomplete or inaccurate data supplied by others.
- Cardno may have retained sub consultants affiliated with Cardno to provide services for the benefit of Cardno. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Cardno's affiliated companies, and their employees, officers and directors.

This assessment report is not any of the following:

- > A Site Audit Report or Site Audit Statement (SAR/SAS) as defined under the *Contaminated Land Management Act*, 1997 or an assessment sufficient for an Environmental Auditor to be able to conclude a SAR/SAS.
- > A geotechnical report and the bore logs/test pit logs may not be sufficient for geotechnical advice.
- > An assessment of surface water contaminants potentially arising from other sites or sources nearby.
- > A total assessment of the site to determine suitability of the entire parcel of land at the site for one or more beneficial uses of land

APPENDIX

FIGURES

now

APPENDIX

В

PHOTOGRAPHS

now

Photograph 1. Condition observed from sampling location of WP1 during the monitoring event – 09.02 2021.

Photograph 2. No stormwater in-flow observed from the discharge point WP1-DP1 which was located within the rail corridor and immediately downstream / north from WP1 during the monitoring event — 09.02.2022.

Photograph 3. Condition observed from sampling location of WP2 during the monitoring event – 09.02 2021.

Photograph 4. Minor stormwater in-flow observed from both discharge points WP2-DP1 and WP2-DP2 which were located within the rail corridor and immediately upstream / south from WP2 during the monitoring event – 09.02.2022

APPENDIX

C

FILED RECORDS

now

Surface Water Sampling Field Record

Site / Project: Wiley Po	unk Surface W	Voter Movit	oring	Sampling	Point:	
Client: Downe		Person		Job No. /\	1E30161	
	1 Chono			Initials:		
- Judy	101010	Site Details		THE STATE OF	19108	
Sampling Equipment - Directly in	nto bottle / Water Sco	THE PARK NAME OF THE PA	er / Other:	Date: 9/	2/2022.	
Observations on Site: Last Rain						
Sample Details, Ob	servations, GPS	Coordinates &	Field Physioche	emical Measur	ements	
Sample ID	WP-01	e, record parameters	once stable)	WP_02		
Start Time:		NV SUZ		13:53		
Easting	12:47			10-00		
Northing						
Sample Depth (m)	0-0.05m.			0 - 0 m		
Water Body Depth (m)	0.05m.		2	o. Tom		
Location - Onsite/Offsite /Inlet/Outlet/ Middle	upstream.			down stream		
Flow Rate None/Low / Med / High	10W 920			low.		
DO (mg/L) / %	7.21 /3%			5.06 / 622%		
EC (µS/Cm)-SPC	0.08	680		0.65	650	
pH	8.59			8.78		
Eh (mV) - DRP	37.7			-8.32		
Temp (°C)	27.7			25.9		
Water Colour	Clear			clear		
Turbidity Low / Med / High	Low			low		
Observations / Notes	Upstream discharching points is dry not contribution	to the sw- face water.			discharching They are out a contributed	
The second second		ntainer & Prese	rvation Data	surface water	r.	
Number of sample containers:	PS: Due	to the dan	nage of t	he amber	bonle CUP 0	7)
Container Volume	17		0)			"
Container Type	2 samples	for Chlorop	hyll-a analy	his here	re-collected	
Preservation	on 10/2/22	at around	12=30pm.	Both WP.	(Lupstream)	
Sample Number (for Lab ID):						
QC Dup Sample No.:	d WP-02(downstream).		0A100		
				QA 200	15.5	

SHE

Revision: 1 Approved: 25/02/2014 8 - SW Sampling Field Sheet.docx This document is current for 24 hours after print date Page 1 of 1 Printed: 8/02/2022

Multi Parameter Water Meter

Instrument

YSI Quatro Pro Plus

Serial No. 21B104021

Item	Test	Pass	Comments
Battery	Charge Condition	1 433	
	Fuses	1	
	Capacity	1	
0 11 1 11 1	0	1	
Switch/keypad	Operation		
Display	Intensity	1	
	Operation	1	
	(segments)		
Grill Filter	Condition	1	
	Seal	1	
PCB	Condition	1	
Connectors	Condition	1	
Sensor	1. pH	1	
	2. mV	1	
	3. EC	1	
	4. D.O	1	
	5. Temp	✓	
Alarms	Beeper		
	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
	pH10.00		370064	pH 9.99
	pH 7.00		368081	pH 7.04
	pH 4.00		380327	pH 3.89
	229.6mV		365451/370891	229.4mV
	2.76mS		377099	2.76mS
		F-700	371864	0.01ppm
	22.3°C		MultiTherm	22.1°C
	Serial no	pH10.00 pH 7.00 pH 4.00 229.6mV 2.76mS 0.00 ppm	pH10.00 pH 7.00 pH 4.00 229.6mV 2.76mS 0.00 ppm	Number pH10.00 370064 pH 7.00 368081 pH 4.00 380327 229.6mV 365451/370891 2.76mS 377099 0.00 ppm 371864

Calibrated by: Jacqualine Begman

Calibration date: 8/02/2022

Next calibration due: 10/08/2022

Latest Weather Observations for Canterbury

IDN60801

Issued at 8:32 am EDT Thursday 10 February 2022 (issued every 10 minutes, with the page automatically refreshed every 10 minutes)

Station Details ID: 066194 Name: CANTERBURY RACECOURSE AWS Lat: -33.91 Lon: 151.11 Height: 3.0 m

Data from the previous 72 hours. | See also: Recent months at Canterbury

Date/Time	Temp	App	Dew	Rel	Delta-T			Wind			Press	Press	Rain since
<u>EDT</u>	<u>°C</u>	<u>Temp</u> <u>°C</u>	Point °C	<u>Hum</u> <u>%</u>	<u>°C</u>	<u>Dir</u>	Spd km/h	Gust km/h	Spd kts	Gust kts	QNH hPa	MSL hPa	9am <u>mm</u>
10/08:30am	21.8	22.1	14.9	65	4.1	WNW	7	9	4	5	-	-	0.0
10/08:00am	20.5	21.1	15.3	72	3.1	NW	6	9	3	5	-	-	0.0
10/07:30am	19.0	19.7	15.7	81	2.0	WNW	6	7	3	4	-	-	0.0
10/07:00am	16.5	17.8	15.2	92	0.8	WNW	2	7	1	4	-	-	0.0
10/06:30am	16.1	17.6	14.6	91	0.9	CALM	0	0	0	0	-	-	0.0
10/06:00am	16.0	17.5	14.7	92	0.7	CALM	0	0	0	0	-	-	0.0
10/05:30am	16.1	17.5	14.5	90	0.9	CALM	0	0	0	0	-	-	0.0
10/05:00am	16.5	17.9	14.3	87	1.3	CALM	0	6	0	3	-	-	0.0
10/04:30am	16.4	17.8	14.4	88	1.1	CALM	0	0	0	0	-	-	0.0
10/04:00am	16.4	17.9	14.6	89	1.0	CALM	0	0	0	0	-	-	0.0
10/03:30am	16.4	17.6	13.7	84	1.5	CALM	0	0	0	0	-	-	0.0
10/03:00am	16.7	18.0	14.2	85	1.4	CALM	0	0	0	0	-	-	0.0
10/02:30am	17.2	18.6	14.5	84	1.6	CALM	0	0	0	0	-	-	0.0
10/02:00am	17.3	18.8	14.6	84	1.6	CALM	0	0	0	0	-	-	0.0
10/01:30am	17.7	19.3	15.0	84	1.6	CALM	0	0	0	0	-	-	0.0
10/01:00am	17.7	19.0	14.2	80	2.0	CALM	0	0	0	0	-	-	0.0
10/12:30am	17.9	19.4	14.6	81	1.9	CALM	0	0	0	0	-	-	0.0
10/12:00am	18.6	20.0	14.5	77	2.4	CALM	0	0	0	0	-	-	0.0
10/12.00am	10.0	20.0	14.5	11	2.4	CALIVI	U	U	U	U		<u>-</u>	0.0

Date/Time	Temp	App	Dew	Rel	Delta-T			Wind			Press	Press	Rain since
<u>EDT</u>	<u>°C</u>	<u>Temp</u> <u>°C</u>	Point °C	<u>Hum</u> <u>%</u>	<u>°C</u>	<u>Dir</u>	Spd km/h	Gust km/h	Spd kts	Gust kts	QNH hPa	MSL hPa	9am <u>mm</u>
09/11:30pm	18.8	20.3	14.7	77	2.4	CALM	0	7	0	4	-	-	0.0
09/11:00pm	19.3	21.1	15.4	78	2.3	CALM	0	0	0	0	-	-	0.0
09/10:30pm	19.9	21.4	14.7	72	3.0	CALM	0	0	0	0	-	-	0.0
09/10:00pm	21.4	22.7	14.1	63	4.2	CALM	0	0	0	0	-	-	0.0
09/09:30pm	23.7	24.1	13.6	53	5.9	NNE	4	9	2	5	-	-	0.0
09/09:00pm	24.1	24.2	14.5	55	5.7	N	7	11	4	6	-	-	0.0
09/08:30pm	24.6	24.2	14.1	52	6.2	NE	9	15	5	8	-	-	0.0

Date/Time	Temp	App	Dew	Rel	Delta-T			Wind			Press	Press	Rain since
EDT	<u>Temp</u> <u>°C</u>	Temp °C	Point °C	<u>Hum</u> <u>%</u>	°C	Dir	Spd km/h	Gust km/h	Spd kts	Gust kts	QNH hPa	MSL hPa	9am <u>mm</u>
09/08:00pm	25.3	24.4	12.5	45	7.4	NE	9	15	5	8	-	-	0.0
09/07:30pm	26.1	24.3	12.2	42	8.0	ENE	13	20	7	11	-	-	0.0
09/07:00pm	27.2	25.5	12.4	40	8.6	ENE	13	20	7	11	-	-	0.0
09/06:30pm	27.7	25.0	11.7	37	9.2	ENE	17	24	9	13	-	-	0.0
09/06:00pm	28.3	25.5	11.4	35	9.7	ENE	17	24	9	13	-	-	0.0
09/05:30pm	28.9	25.8	11.5	34	10.0	ENE	19	26	10	14	-	-	0.0
09/05:00pm	29.2	26.1	12.2	35	9.9	ENE	20	28	11	15	-	-	0.0
09/04:30pm	29.6	26.9	11.6	33	10.4	E	17	26	9	14	-	-	0.0
09/04:00pm	29.6	26.5	11.6	33	10.4	ESE	19	26	10	14	-	-	0.0
09/03:30pm	29.7	26.6	11.7	33	10.4	E	19	28	10	15	-	-	0.0
09/03:00pm	28.4	26.0	12.7	38	9.2	ESE	17	30	9	16	-	-	0.0
09/02:30pm	29.9	27.0	8.3	26	11.9	WSW	13	20	7	11	-	-	0.0
09/02:00pm	30.3	28.7	12.7	34	10.4	S	13	30	7	16	-	-	0.0
09/01:30pm	30.0	27.5	8.4	26	11.9	W	11	22	6	12	-	-	0.0
09/01:00pm	29.6	27.6	10.2	30	11.0	WSW	11	24	6	13	-	-	0.0
09/12:30pm	29.1	27.0	11.2	33	10.3	SW	13	22	7	12	-	-	0.0
09/12:00pm	28.1	26.9	14.0	42	8.4	W	13	20	7	11	-	-	0.0
09/11:30am	27.2	25.5	13.5	42	8.1	WNW	15	20	8	11	-	-	0.0
09/11:00am	26.1	25.2	14.9	50	6.7	WNW	13	20	7	11	-	-	0.0
09/10:30am	24.7	23.8	15.9	58	5.3	WNW	15	20	8	11	-	-	0.0
09/10:00am	23.1	22.5	15.7	63	4.5	NW	13	19	7	10	-	-	0.0
09/09:30am	21.6	20.9	15.4	68	3.7	NW	13	20	7	11	-	-	0.0
09/09:00am	20.7	20.6	16.1	75	2.8	WNW	11	17	6	9	-	-	1.8
09/08:30am 09/08:00am	19.5	19.9 18.7	16.2	81 90	1.0	NW W	9	17 15	5 5	9	-	-	1.8
09/07:30am	18.2 16.5	17.6	16.5 16.5	100	0.0	NE	6	11	3	8 6	-	-	1.8
09/07:00am	14.8	16.4	14.8	100	0.0	CALM	0	0	0	0	-	-	1.8
09/06:58am	14.7	16.2	14.7	100	0.0	CALM	0	0	0	0	-	-	1.8
09/06:30am	14.2	15.5	14.2	100	0.0	CALM	0	0	0	0	-	-	1.8
09/06:11am	14.3	15.7	14.3	100	0.0	CALM	0	0	0	0			1.8
09/06:10am	14.3	15.7	14.3	100	0.0	CALM	0	0	0	0			1.8
09/06:00am	14.3	15.7	14.3	100	0.0	CALM	0	0	0	0	_	_	1.8
09/05:30am	14.4	15.8	14.4	100	0.0	CALM	0	0	0	0	-	-	1.8
09/05:22am	14.6	16.1	14.6	100	0.0	CALM	0	0	0	0	-	-	1.8
09/05:19am	14.6	16.1	14.6	100	0.0	CALM	0	0	0	0	-	-	1.8
09/05:00am	14.6	16.1	14.6	100	0.0	CALM	0	0	0	0	-	-	1.8
09/04:59am	14.6	16.1	14.6	100	0.0	CALM	0	0	0	0	-	-	1.8
09/04:30am	15.1	16.8	15.1	100	0.0	CALM	0	0	0	0	1-	1-	1.8
09/04:00am	15.4	17.1	15.2	99	0.1	CALM	0	0	0	0	1-	1-	1.8
09/03:30am	15.2	16.7	14.7	97	0.3	CALM	0	0	0	0	1-	1-	1.8
09/03:00am	15.7	17.4	15.2	97	0.3	CALM	0	0	0	0	1-	1-	1.8
09/02:30am	15.7	17.4	15.1	96	0.3	CALM	0	0	0	0	1-	1-	1.8
09/02:00am	16.0	17.8	15.4	96	0.3	CALM	0	0	0	0	1-	1-	1.8
09/01:30am	16.1	17.8	15.1	94	0.6	CALM	0	0	0	0			1.8

Date/Time	Temp °C	App	Dew	Rel	Delta-T	00				Press	Press	Rain since	
<u>EDT</u>	<u>°C</u>	<u>Temp</u> <u>°C</u>	Point °C	<u>Hum</u> <u>%</u>	<u>°C</u>	<u>Dir</u>	Spd km/h	Gust km/h	Spd kts	Gust kts	QNH hPa	MSL hPa	9am <u>mm</u>
09/01:00am	16.8	18.8	16.0	95	0.5	CALM	0	0	0	0	-	-	1.8
09/12:30am	16.6	18.4	15.6	94	0.6	CALM	0	0	0	0]-	-	1.8
09/12:00am	17.1	19.0	15.8	92	0.8	CALM	0	0	0	0	-	-	1.8
	1	7	1								1	1	
Date/Time	Temp °C	App	Dew	Rel	Delta-T		Y	Wind		1	Press	Press	Rain since
<u>EDT</u>		<u>Temp</u> <u>°C</u>	Point °C	<u>Hum</u> .%	<u>°C</u>	<u>Dir</u>	Spd km/h	Gust km/h	Spd kts	Gust kts	QNH hPa	MSL hPa	9am <u>mm</u>
08/11:30pm	17.6	19.7	16.3	92	0.8	CALM	0	0	0	0	-	-	1.8
08/11:00pm	17.7	19.7	16.0	90	1.0	CALM	0	0	0	0	-	-	1.8
08/10:30pm	18.2	20.1	15.8	86	1.4	CALM	0	0	0	0	-	-	1.8
08/10:00pm	19.3	20.5	16.0	81	2.0	NE	4	7	2	4	-	-	1.8
08/09:30pm	19.4	21.5	16.2	82	1.9	CALM	0	0	0	0	-	-	1.8
08/09:00pm	19.7	20.5	15.8	78	2.3	NE	6	9	3	5	-	-	1.8
08/08:30pm	19.8	20.5	15.7	77	2.4	NE	6	7	3	4	-	-	1.8
08/08:00pm	20.7	21.4	15.7	73	3.0	NE	6	9	3	5	-	-	1.8
08/07:30pm	21.4	20.6	15.0	67	3.8	ENE	13	19	7	10	-	-	1.8
08/07:00pm	22.3	21.6	15.4	65	4.1	ENE	13	20	7	11	-	-	1.8
08/06:30pm	22.9	21.1	14.5	59	5.0	E	17	20	9	11	-	-	1.8
08/06:00pm	23.4	22.8	16.7	66	4.1	E	15	24	8	13	-	-	1.8
08/05:30pm	23.4	21.3	14.7	58	5.2	SE	19	28	10	15	-	-	1.8
08/05:00pm	23.6	22.2	15.6	61	4.8	ESE	17	24	9	13	-	-	1.8
08/04:30pm	23.3	22.2	16.4	65	4.2	ESE	17	28	9	15	-	-	1.8
08/04:00pm	24.3	22.7	16.0	60	5.0	SE	19	26	10	14	-	-	1.8
08/03:30pm	23.8	21.3	14.2	55	5.7	SSE	20	33	11	18	-	-	1.8
08/03:00pm	24.1	21.4	13.6	52	6.1	SE	20	28	11	15	-	-	1.8
08/02:30pm	24.5	22.6	15.1	55	5.6	SE	19	30	10	16	-	-	1.8
08/02:00pm	24.0	23.2	14.1	54	5.8	SE	11	26	6	14	-	-	1.8
08/01:30pm	23.3	24.9	15.9	63	4.5	E	2	7	1	4	-	-	1.8
08/01:00pm	22.9	23.6	16.0	65	4.2	ENE	7	13	4	7	-	-	1.8
08/12:30pm	21.6	21.2	16.3	72	3.2	NNE	13	20	7	11	-	-	1.8
08/12:00pm	21.2	21.3	15.5	70	3.4	NW	9	17	5	9	-	-	1.8
08/11:30am	21.3	21.6	17.9	81	2.1	N	13	20	7	11	-	-	1.6
08/11:00am	19.2	19.9	17.0	87	1.3	NNW	9	17	5	9	-	-	1.6
08/10:30am	17.2	16.8	16.2	94	0.6	NNE	13	19	7	10	-	-	1.6
08/10:18am	17.1	16.6	16.0	93	0.6	NNE	13	17	7	9	-	-	1.6
08/10:00am	17.1	17.3	15.8	92	0.8	N	9	15	5	8	-	-	1.6
08/09:30am	17.3	17.2	14.9	86	1.4	NE	9	13	5	7	-	-	0.0
08/09:13am	17.7	17.7	15.1	85	1.5	NNW	9	19	5	10	-	-	0.0
08/09:00am	17.9	18.0	15.5	86	1.4	NW	9	15	5	8	-	-	10.2
08/08:30am	17.5	18.1	15.7	89	1.1	NW	7	11	4	6	-	-	10.2
08/08:00am	16.8	17.9	15.7	93	0.6	NNW	4	9	2	5	-	-	10.2
08/07:30am	16.2	17.5	15.2	94	0.6	NW	2	7	1	4			10.2
08/07:15am	16.1	16.6	15.1	94	0.6	WNW	6	11	3	6	-	-	10.2
08/07:00am	16.1	16.6	15.1	94	0.6	WNW	6	11	3	6	-	-	10.0

Date/Time	Temp	App	Dew	Rel	Delta-T			Wind			Press	Press	Rain since
EDT	<u>°C</u>	<u>Temp</u> <u>°C</u>	Point °C	<u>Hum</u> <u>%</u>	<u>°C</u>	<u>Dir</u>	Spd km/h	Gust km/h	Spd kts	Gust kts	QNH hPa	MSL hPa	9am <u>mm</u>
08/06:59am	16.1	16.6	15.1	94	0.6	WNW	6	11	3	6	1-	-	10.0
08/06:52am	16.0	17.6	15.0	94	0.6	CALM	0	2	0	1	-	-	10.0
08/06:30am	16.1	17.7	14.8	92	0.7	CALM	0	0	0	0	-	-	9.8
08/06:24am	16.2	17.8	14.9	92	0.7	CALM	0	7	0	4	-	-	9.4
08/06:00am	16.1	16.3	14.6	91	0.9	W	7	13	4	7	Ĭ-	-	9.2
08/05:47am	16.1	16.2	14.5	90	0.9	W	7	13	4	7	-	-	9.2
08/05:30am	16.3	16.0	14.5	89	1.0	WSW	9	15	5	8	-	-	9.2
08/05:28am	16.3	16.0	14.5	89	1.0	WSW	9	13	5	7	-	-	9.2
08/05:00am	16.4	16.8	14.8	90	0.9	SW	6	13	3	7	-	-	9.0
08/04:30am	16.5	16.4	15.0	91	0.9	SSW	9	19	5	10	-	-	9.0
08/04:00am	16.4	16.6	14.8	90	0.9	SW	7	13	4	7	-	-	9.0
08/03:30am	16.4	16.9	15.1	92	0.8	SW	6	13	3	7	-	-	9.0
08/03:00am	16.2	16.6	15.4	95	0.5	WNW	7	11	4	6	-	-	9.0
08/02:30am	16.1	16.5	15.3	95	0.5	NNW	7	9	4	5	-	-	9.0
08/02:07am	16.1	16.1	15.3	95	0.5	NNW	9	13	5	7	-	-	9.0
08/02:00am	16.1	16.1	15.3	95	0.5	NNW	9	15	5	8	-	-	9.0
08/01:30am	16.4	17.7	15.1	92	0.8	SW	2	9	1	5	-	-	6.8
08/01:08am	17.0	18.7	15.3	90	1.0	CALM	0	0	0	0	-	-	4.8
08/01:04am	17.0	18.7	15.2	89	1.0	CALM	0	0	0	0	-	-	4.6
08/01:00am	17.0	18.7	15.2	89	1.0	CALM	0	0	0	0	-	-	4.6
08/12:38am	17.2	18.8	14.8	86	1.4	CALM	0	0	0	0	-	-	4.4
08/12:30am	17.3	18.9	14.9	86	1.4	CALM	0	0	0	0	-	-	4.2
08/12:00am	17.8	18.2	14.7	82	1.8	SSE	6	9	3	5	-	-	4.2

											1		
Date/Time	Temp	App	Dew	Rel	Delta-T			Wind			Press	Press	Rain since
<u>EDT</u>	<u>°C</u>	<u>Temp</u> <u>°C</u>	Point °C	<u>Hum</u> <u>%</u>	<u>°C</u>	<u>Dir</u>	Spd km/h	Gust km/h	Spd kts	Gust kts	QNH hPa	MSL hPa	9am <u>mm</u>
07/11:30pm	17.5	17.1	14.0	80	2.0	WSW	9	15	5	8	-	-	4.2
07/11:00pm	17.7	17.3	14.0	79	2.1	SW	9	13	5	7	-	-	4.2
07/10:30pm	18.0	16.9	14.3	79	2.1	SW	13	20	7	11	-	-	4.2
07/10:00pm	18.1	17.6	14.8	81	1.9	SW	11	19	6	10	-	-	4.2
07/09:30pm	18.7	18.9	14.6	77	2.4	SSW	7	15	4	8	-	-	4.2
07/09:00pm	17.8	18.1	14.5	81	1.9	SW	6	9	3	5	-	-	4.2
07/08:30pm	18.6	18.8	14.3	76	2.5	SSW	6	9	3	5	-	-	4.2
07/08:00pm	19.1	18.9	14.8	76	2.5	SSE	9	15	5	8	-	-	4.2
07/07:31pm	19.4	18.9	15.9	80	2.1	SSE	13	20	7	11	-	-	4.2
07/07:30pm	19.5	19.0	16.0	80	2.1	SSE	13	20	7	11	-	-	4.2
07/07:06pm	18.9	16.8	15.2	79	2.2	SE	20	32	11	17	-	-	3.2
07/07:00pm	19.3	16.5	15.4	78	2.3	SE	24	35	13	19	-	-	2.8
07/06:34pm	19.2	19.4	15.7	80	2.1	S	9	17	5	9	-	-	2.6
07/06:30pm	19.1	19.5	15.4	79	2.2	S	7	13	4	7	-	-	2.6
07/06:21pm	19.0	17.8	15.1	78	2.3	S	15	30	8	16	-	-	2.4
07/06:00pm	20.0	19.3	15.4	75	2.7	SSW	13	22	7	12	-	-	1.8
07/05:30pm	21.3	19.1	14.9	67	3.8	S	20	32	11	17	-	-	1.6

Date/Time	Temp °C	App	Dew	Rel	Delta-T	°C					Press	Press	Rain since
<u>EDT</u>	<u>°C</u>	<u>Temp</u> °C	Point °C	Hum %	<u>°C</u>	<u>Dir</u>	Spd km/h	Gust km/h	Spd kts	Gust kts	QNH hPa	MSL hPa	9am <u>mm</u>
07/05:00pm	20.4	18.6	15.4	73	3.0	SSE	19	32	10	17	-	-	1.6
07/04:30pm	19.9	18.7	16.2	79	2.2	SSW	17	28	9	15	-	-	1.6
07/04:00pm	19.4	18.1	15.9	80	2.1	S	17	30	9	16	-	-	1.2
07/03:30pm	21.2	19.4	15.5	70	3.4	SE	19	32	10	17	-	-	1.0
07/03:03pm	19.7	20.5	17.3	86	1.5	SW	9	13	5	7	-	-	1.0
07/03:00pm	19.3	19.9	16.7	85	1.6	SW	9	13	5	7	-	-	1.0
07/02:37pm	19.3	17.8	15.4	78	2.3	S	17	28	9	15	-	-	0.2
07/02:30pm	21.0	18.4	13.2	61	4.5	SSW	19	32	10	17	-	-	0.0
07/02:00pm	21.2	19.0	14.8	67	3.8	S	20	33	11	18	-	-	0.0
07/01:51pm	20.9	18.6	14.1	65	3.9	S	19	32	10	17	-	-	0.0
07/01:30pm	20.1	13.8	13.6	66	3.7	SE	39	57	21	31	-	-	0.0
07/01:00pm	23.1	18.5	13.6	55	5.5	SSE	30	48	16	26	-	-	0.0
07/12:37pm	23.0	18.9	13.8	56	5.4	SE	28	48	15	26	-	-	0.0
07/12:30pm	22.9	20.2	14.7	60	4.8	SE	22	41	12	22	-	-	0.0
07/12:00pm	23.2	20.2	14.7	58	5.0	ESE	24	33	13	18	-	-	0.0
07/11:30am	22.0	20.7	14.9	64	4.2	SE	15	33	8	18	-	-	0.0
07/11:00am	19.7	19.5	15.8	78	2.3	S	11	17	6	9	-	-	0.0
07/10:30am	20.6	17.2	14.7	69	3.5	ESE	26	35	14	19	-	-	0.0
07/10:00am	20.9	18.4	13.6	63	4.2	SSE	19	32	10	17	-	-	0.0
07/09:30am	19.1	19.6	16.5	85	1.6	SSW	9	17	5	9	-	-	0.0
07/09:00am	18.1	19.0	16.1	88	1.2	WNW	6	9	3	5	-	-	8.0

This page was created at **08:36 on Thursday 10 February 2022 (AEDT)**

[©] Copyright Commonwealth of Australia 2022, Bureau of Meteorology (ABN 92 637 533 532) | CRICOS Provider 02015K | Disclaimer | Privacy | Accessibility

APPENDIX

LABORATORY SUMMARY TABLES

now

-				TPH			Inorg	ganics				Physi	o-Chemical	
	Chlorophyll a	Oil and Grease	Kjeldahl Nitrogen Total	Nitrate & Nitrite (as N)	Nitrogen (Total as N)	Phosphorus (Total as P)	TSS	Turbidity	Hd	റ് Temprature	Electrical Conductivity	Dissolved Oxygen		
	EQL		mg/L 0.002	mg/L 10	mg/L 0.1	mg/L 0.01	mg/L 0.2	μg/L 0.01	mg/L	NTU 1	Units 0.01	0.1	uS/cm 0.1	%Sat 0.1
	0.002	-	-	-	0.2	25	-	<6-50	6.5-8.5	-	125-2200	85% - 110%		
	ANZECC Criteria - F													
Lab Report Number	Field ID	Date												
861805	WP1	9/02/2022	-	<10	-	-	1.7	140	<5	2.9	8.59	27.7	680	92
001003	VVPI	3/02/2022	<2		-	-	-	-	-	-	-	1	-	-
861805	WP2	9/02/2022	-	<10	-	-	1.6	80	<5	1.2	8.78	25.9	650	62.2
801803	VVFZ	3/02/2022	<2	-	-	-	-	-	-	-	-	-	-	-
861805	QA100	9/02/2022	-	<10	-	-	1.6	90	<5	1.9	-	-	-	-
ES2204592	QA200	9/02/2022	-	<5	0.6	0.85	1.4	90	<5	2.6	-	-	-	-
Statistics														
	Maximum Conce	entration	<2	<10	0.6	0.85	1.7	140	<5	2.9	8.78	27.7	680	92

Maximum Concentration	<2	<10	0.6	0.85	1.7	140	<5	2.9	8.78	27.7	680	92
* A Non Detect Multiplier of 0.5 has been applied.												1

APPENDIX

Е

QUALITY ASSURANCE/QUALITY CONTRAL

now

Quality Assurance/Quality Control (QA/QC) procedures were implemented to ensure the precision accuracy, representativeness, completeness and comparability of all data gathered. The QA/QC procedures included:

- > Equipment calibration to ensure field measurements obtained are accurate
- > Equipment decontamination to prevent cross contamination
- > Use of appropriate measures (i.e. gloves) to prevent cross contamination
- > Appropriate sample identification
- > Correct sample preservation
- > Sample transport with Chain of Custody (COC) documentation
- > Laboratory analysis in accordance with NATA accredited methods.

Table E1 details the QA/QC procedures and sample collection details undertaken through the surface water elements of the investigation. Copies of all the COCs, along with the Sample Receipt Notifications (SRNs), Interpretive QA/QC Reports are provided in **Appendix F**.

Table E1 Field QA / QC Method Validation

Requirement	Yes / No	Comments
Equipment decontamination	Yes	In the event of involving reusable equipment. Decontamination of sampling equipment (water quality meter, telescopic water scoop etc.) was undertaken by washing with phosphate free detergent (Liquinox) followed by a rinse with potable water.
Sample collection	Yes	Samples were collected using disposable nitrile gloves via telescopic water scoop. A clean pair of gloves was used for each new sample being collected to limit the possibility of cross-contamination.
QA/QC sample collection	Yes	One (1) surface water duplicate and one (1) surface water triplicate sample were collected for intra and inter-lab QA/QC purposes to monitor the quality of the field practices for sample collection. Cardno based the investigation around a rate of one duplicate and triplicate sample per sampling event, as the requirement for duplicate and triplicate sample collection.
Sample identification	Yes	All samples were marked with a unique identifier including project number, sample location, and date.
Sample preservation	Yes	Samples were placed in a chilled ice box with ice for storage and transport to the laboratory.
COC documentation	Yes	A COC form was completed by Cardno detailing sample identification, collection date, sampler and laboratory analysis required. The COC form was signed off and returned to Cardno by the laboratory staff upon receipt of all the samples. COC forms and Sample Receipt Notification (SRN) are provided in Appendix F . The SRN indicates that the samples were received at the laboratory intact and chilled and within the required holding times.
NATA accredited methods	Yes	The NATA accredited Eurofins mgt and ALS Analysed the samples in accordance with NATA accredited methods. Analytical methods used are indicated in the stamped laboratory results provided in Appendix F .
Laboratory Internal QC	Yes	All Data Quality Objectives were met by the laboratories.

Table E2 Field QA/QC Collection Summary

Environmental Media	Date	Primary	Duplicate	Triplicate		
Surface Water	09/02/2022	WP2	QA100	QA200		
Surface Water	10/02/2022	No QA/QC samples were taken for Chlorophyll a Analys				

Relative Percentage Difference Determination

Laboratory results for duplicate and triplicate samples are assessed using a determination of the Relative Percentage Difference (RPD). Where a primary sample and a duplicate sample are compared, the RPD provides an indication of the reproducibility of the results, which incorporates the sampling method. Where a primary sample and a split sample are compared, the RPD provides an indication of the accuracy of the primary laboratory results as compared to the secondary laboratory result.

The calculation used to determine the RPD is:

$$RPD = \frac{(Co - Cs)}{\left(\frac{Co + Cs}{2}\right)} x100$$

Where:

Co = Concentration of the original sample

Cs = Concentration of the duplicate sample

In calculating the RPD values the following protocols were adopted:

- > Where both concentrations are above laboratory reporting limits the RPD formula is used;
- > Where both concentrations are below the laboratory reporting limits, no RPD is calculated; and
- > Where one or both sample concentrations are reported to be less than ten times (<10x) the laboratory reporting limit, the RPD is calculated but is not assessed against the adopted criterion.

In accordance with the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended 2013, Cardno adopts an RPD acceptance criterion up to 30% of the mean concentration of the analyte. It should be noted that variations might be higher for organic analysis, due to the volatile nature of the components, and for low concentrations of analytes.

The adopted criterion will not apply to RPDs where one of both concentrations are less than 10 times the reporting limit, as this criterion would otherwise overestimate the significance of minor variations in concentrations at or near the laboratory reporting limit. Large RPDs returned for low concentrations of analytes near the reporting limit is not as indicative of a significant difference in the results as a small RPD is for larger concentrations.

This approach is employed by NATA-accredited laboratories when assessing internal duplicate sample RPDs. This approach acknowledges that concentrations at or around the reporting limit are too low for an accurate evaluation of the significance of the RPD.

This approach has been adopted when assessing the relevance (compliance) of RPDs during this investigation. RPDs will be calculated for sample sets where one or both concentrations are less than 10 times the reporting limit for discussion purposes, but will not be assessed as a pass or fail in relation to the criterion.

The RPD results for duplicate samples are presented in this appendix. No RPD values were reported to be above the accepted 30% RPD criteria. It can be concluded that the analytical data can be relied upon for the purposes of this factual report.

Laboratory QC and QCI Report Summary

The laboratories selected for undertaking the analysis (Eurofins mgt and ALS) are NATA-accredited for the analysis required, and undertook certain QA/QC requirements to demonstrate the suitability of the data that is obtained. The laboratory is required to undertake and report internal laboratory Quality Control (QC) procedures for all chemical analysis undertaken. The QC testing is required to include:

- > Laboratory duplicate sample analysis at the rate of one duplicate analysis per ten samples
- > Method blank at the rate of one method blank analysis per 20 samples
- > Laboratory control sample at the rate of one laboratory control sample analysis per 20 samples

> Spike recovery analysis at the rate of one spike recovery analysis per 20 samples.

Compliance with the laboratory QA/QC requirements and non-conformance details are discussed in the internal Laboratory QA/QC reports included with the certificates of analysis in **Appendix F**. Laboratory QA/QC requirements were within acceptance limits.

Cardno concludes that the data reported by the NATA-accredited Eurofins mgt and ALS as presented in this report is suitable for interpretative purposes and to make conclusions/recommendations regarding water quality.

Results Table 1

				TPH			Inorg	anics		
Cardno Cardno				Oil and Grease	Kjeldahl Nitrogen Total	Nitrate & Nitrite (as N)	Nitrogen (Total as N)	Phosphorus (Total as P)	TSS	Turbidity
				mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	NTU
	EQL			10	0.1	0.01	0.2	0.01	1	1
	ı	1								
861805	WP1	water		<10	-	-	1.7	0.14	<5	2.9
	QA100	water		<10	-	-	1.6	0.09	<5	1.9
RPD				0	-	-	6	43	0	42
861805	WP1	water		<10	-	-	1.7	0.14	<5	2.9
ES2204592	QA200	water		<5	0.6	0.85	1.4	0.09	<5	2.6
RPD				0	-	-	19	43	0	11

APPENDIX

F

LABORATORY REPORTS

now

CHAIN OF CUSTODY AND ANALYSIS REQUEST

Page

Contact Person: Jiagi Zhou **Project Name:** Downer Sydney Metro Stations - Wiley Park 0424 106 665 elephone Number: Project Number: NE30161 **Itemative Contact:** Chong Zheng PO No.: elephone Number: 0451 780 991 Project Specific Quote No. : 190408CDNN 1 iampler: CZ **Turnaround Requirements:** Standard TAT #861805 jiaqi.zhou@cardno.com.au; chong.zeng@cardno.com.qu; imail Address (results and invoice): Lab: Eurofins | Unit F3, Building F, 16 Mars Rd, Lane Cove West NSW2066 ContamNSW@cardno.com.au Address: Level 9 - The Forum, 203 Pacific Highway, St Leonards, New South Wales 2065 Australia Attn: Sample Receipt Sample information **Analysis Required** Comments Date otal Phosphorus Cardno Sample ID Laboratory Sample ID No. Containers Preservation Matrix sampled and Grease otal Nitrogen Chlorophyll-a **Furbidity** SS WP1 5 ICE Water 1 1 WP2 5 ICE Water 1 9/02/2022 QA100 4 ICE Water 1 1 1 1 QA200 4 ICE Water 1 1 1 1 Please send to ALS telinquished by: Jiaqi Zhou Relinquished by: Received by: Relinguished by: name / company) Cardno ACT/NSW Pty Ltd (name / company (name / company) (name / company) late & Time: 2/9/2022 Date & Time: Date & Time: Date & Time: Ignature: JZ Signature: Signature: Signature: teceived by: Relinquished by: Received by: Relinguished by: Lab use: name / company) (name / company) (name / company (name / company Samples Received: Cool or Ambient (circle one) late & Time: Date & Time: Date & Time: Date & Time: Temperature Received at: 264 (if applicable) ignature: Signature: Signature: Transported by: Hand delivered / courier

RE: Attention: Eurofins Sample Receipt Advice - Report 861805 : Site DOWNER SYDNEY METRO STATIONS - WILEY PARK (NE30161)

Chong Zeng <chong.zeng@cardno.com.au>

Thu 2/10/2022 11:57 AM

To: Ursula Long < UrsulaLong@eurofins.com>

Cc: #AU04_Enviro_Sample_NSW <EnviroSampleNSW@eurofins.com>; Jiaqi Zhou <jiaqi.zhou@cardno.com.au>

CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins.

Do not click on links or open attachments unless you recognise the sender and are certain that the content is safe.

Hi Ursula.

Due to the damage of the amber bottle (WP1), we are planning to go back to site recollect the sample for analysis of Chlorophyll-a now. Can we please request to cancel the analysis of Chlorophyll-a for WP2 and arrange an express courier to pick up the new samples – 2 amber bottles (WP1 and WP2) from 7 Thomas St, Hurstville NSW this afternoon around 2:30 pm? Contact will be myself: 0451780991.

Let me know if there is any issue.

Chong Zeng **ENVIRONMENTAL ENGINEER CARDNO**

Phone Direct +61294967761 Mobile 0451 780 991

Address Level 9, The Forum, 203 Pacific Highway, St Leonards, New South Wales 2065 Australia

Email chong.zeng@cardno.com.au Web www.cardno.com

CONNECT WITH CARDNO

Cardno acknowledges the Traditional Owners of the land upon which we live and work and pay our respects to their Elders past, present and

Cardno's management systems are certified to ISO9001 (quality) and AS/NZS4801/OHSAS18001 (occupational health and safety)

This email and its attachments may contain confidential and/or privileged information for the sole use of the intended recipient(s). All electronically supplied data must be checked against an applicable hardcopy version which shall be the only document which Cardno warrants accuracy. If you are not the intended recipient, any use, distribution or copying of the information contained in this email and its attachments is strictly prohibited. If you have received this email in error, please email the sender by replying to this message and immediately delete and destroy any copies of this email and any attachments. The views or opinions expressed are the author's own and may not reflect the views or opinions of Cardno.

From: EnviroSampleNSW@eurofins.com < EnviroSampleNSW@eurofins.com >

Sent: Wednesday, 9 February 2022 10:45 PM To: Jiaqi Zhou <jiaqi.zhou@cardno.com.au> Cc: Chong Zeng <chong.zeng@cardno.com.au>

Subject: A en on: Eurofins Sample Receipt Advice - Report 861805 : Site DOWNER SYDNEY METRO STATIONS

- WILEY PARK (NE30161)

Dear Valued Client,

Large 1L amber glass bottle received empty for sample WP1 (lid came off in the esky), Chlorophyll a analysis cancelled. Sample QA200 (1x unpreserved inorganics, 2x Oil and Grease and 1x preserved inorganics containers) forwarded to ALS for analysis.

Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chain-of-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins Analytical Services Manager as soon as possible to make certain that they get changed.

Kind regards, Mickael Ros **Sample Receipt**

Eurofins | Environmental Testing

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA

Phone: +61 02 9900 8421

Email: EnviroSampleNSW@eurofins.com Website: [http://]environment.eurofins.com.au

<u>View our latest EnviroNotes</u> <u>How did we do? Provide your feedback here</u>

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000
Lane Cove We NATA # 1261 Site # 1254

Unit F3 Building F NATA # 1261 Site # 18217

Brisbane NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 www.eurofins.com.au

ABN: 91 05 0159 898

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 EnviroSales@eurofins.com

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Cardno (NSW/ACT) Pty Ltd

Contact name:

Jiaqi Zhou

Project name:

DOWNER SYDNEY METRO STATIONS - WILEY PARK

Project ID: Turnaround time: NE30161 5 Day

Date/Time received

Feb 9, 2022 5:08 PM

Eurofins reference

861805

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Sample QA200 (1x unpreserved inorganics, 2x Oil and Grease and 1x preserved inorganics containers) forwarded to ALS for analysis.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Ursula Long on phone: or by email: UrsulaLong@eurofins.com

Results will be delivered electronically via email to Jiaqi Zhou - jiaqi.zhou@cardno.com.au.

Note: A copy of these results will also be delivered to the general Cardno (NSW/ACT) Pty Ltd email address.

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Project Name:

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Contact Name:

Priority:

Due:

ABN: 91 05 0159 898 NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Feb 9, 2022 5:08 PM

Feb 17, 2022

Jiaqi Zhou

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name: Cardno (NSW/ACT) Pty Ltd

Address: Level 9, 203 Pacific Highway

St Leonards NSW 2065

DOWNER SYDNEY METRO STATIONS - WILEY PARK

Project ID:

NE30161

Order No.: Report #:

Phone:

Fax:

861805 0294967700

02 9499 3902

Eurofins Analytical Services Manager: Ursula Long

5 Dav

		Sa	mple Detail			Chlorophyll a	Oil & Grease (HEM)	Phosphate total (as P)	Total Nitrogen (as N)	Total Suspended Solids Dried at 103°C-105°C	Turbidity
Melb	ourne Laborate	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х	Х	Х
Sydr	ney Laboratory	- NATA # 1261	Site # 18217								
Brisl	bane Laborator	y - NATA # 1261	Site # 20794	4							
May	field Laboratory	y - NATA # 1261	Site # 25079								
Perti	h Laboratory - I	NATA # 2377 Sit	e # 2370								
Exte	rnal Laboratory	/		,							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	WP1	Feb 09, 2022		Water	S22-Fe15861		Х	Х	Х	Х	Χ
2	WP2	Feb 09, 2022		Water	S22-Fe15862		Х	Х	Х	Х	Χ
3	QA100	Feb 09, 2022		Water	S22-Fe15863		Х	Х	Х	Х	Χ
4	4 WP1 Feb 10, 2022 Water S22-Fe18351										
5	WP2	Feb 10, 2022		Water	S22-Fe18352	Х					
Test	Counts					2	3	3	3	3	3

Environment Testing

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway St Leonards NSW 2065

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Jiaqi Zhou

Report 861805-W

Project name DOWNER SYDNEY METRO STATIONS - WILEY PARK

Project ID NE30161
Received Date Feb 09, 2022

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			WP1 Water S22-Fe15861 Feb 09, 2022	WP2 Water S22-Fe15862 Feb 09, 2022	QA100 Water S22-Fe15863 Feb 09, 2022	WP1 Water S22-Fe18351 Feb 10, 2022
Test/Reference	LOR	Unit				
Oil & Grease (HEM)	10	mg/L	< 10	< 10	< 10	=
Phosphate total (as P)	0.01	mg/L	0.14	0.08	0.09	=
Total Nitrogen (as N)	0.2	mg/L	1.7	1.6	1.6	=
Total Suspended Solids Dried at 103°C–105°C	5	mg/L	< 5	< 5	< 5	-
Turbidity	1	NTU	2.9	1.2	1.9	-
Chlorophyll a	2	ug/L	-	-	-	< 2

Client Sample ID			WP2
Sample Matrix			Water
Eurofins Sample No.			S22-Fe18352
Date Sampled			Feb 10, 2022
Test/Reference	LOR	Unit	
Chlorophyll a	2	ug/L	< 2

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Oil & Grease (HEM)	Melbourne	Feb 10, 2022	28 Days
- Method: LTM-INO-4180 Oil and Grease (APHA 5520B)			
Phosphate total (as P)	Melbourne	Feb 11, 2022	28 Days
- Method: LTM-INO-4040 Phosphate by CFA			
Total Nitrogen (as N)	Melbourne	Feb 11, 2022	7 Days
- Method: LTM-INO-4040 Phosphate and Nitrogen in waters			
Total Suspended Solids Dried at 103°C–105°C	Melbourne	Feb 10, 2022	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Turbidity	Melbourne	Feb 10, 2022	28 Days
- Method: Turbidity by classical using APHA 2130B (LTM-INO-4140)			
Chlorophyll a	Melbourne	Feb 14, 2022	28 Days

Report Number: 861805-W

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway

St Leonards

NSW 2065

Project Name:

Project ID: NE30161

DOWNER SYDNEY METRO STATIONS - WILEY PARK

Order No.: Report #:

861805 0294967700

Phone: Fax:

02 9499 3902

Received: Feb 9, 2022 5:08 PM

Due: Feb 17, 2022 **Priority:** 5 Dav

Contact Name: Jiaqi Zhou

Eurofins Analytical Services Manager: Ursula Long

Sample Detail							Oil & Grease (HEM)	Phosphate total (as P)	Total Nitrogen (as N)	Total Suspended Solids Dried at 103°C-105°C	Turbidity
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х	Х	Х
Sydr	ney Laboratory	- NATA # 1261 \$	Site # 18217								
Brisl	oane Laborator	y - NATA # 1261	Site # 20794	ļ.							
May	ield Laboratory	/ - NATA # 1261	Site # 25079								
Perti	n Laboratory - N	NATA # 2377 Sit	e # 2370								
Exte	rnal Laboratory	<u>'</u>									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	WP1	Feb 09, 2022		Water	S22-Fe15861		Х	Х	Х	Х	Χ
2	WP2	Feb 09, 2022		Water	S22-Fe15862		Х	Х	Х	Х	Х
3	QA100	Feb 09, 2022		Water	S22-Fe15863		Х	Х	Х	Х	Х
4 WP1 Feb 10, 2022 Water S22-Fe18351						Х					
5 WP2 Feb 10, 2022 Water S22-Fe18352											
Test	Counts					2	3	3	3	3	3

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: micrograms per litre µg/L: micrograms per litre

ppm: parts per million **ppb**: parts per billion
%: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report

CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting.

Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data

Environment Testing

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Oil & Grease (HEM)		mg/L	< 10			10	Pass		
Phosphate total (as P)			mg/L	< 0.01			0.01	Pass	
Total Nitrogen (as N)			mg/L	< 0.2			0.2	Pass	
Total Suspended Solids Dried at 10	3°C-105°C		mg/L	< 5			5	Pass	
Chlorophyll a			ug/L	< 2			2	Pass	
LCS - % Recovery									
Oil & Grease (HEM)			%	120			70-130	Pass	
Phosphate total (as P)			%	107			70-130	Pass	
Total Nitrogen (as N)			%	112			70-130	Pass	
Total Suspended Solids Dried at 10	3°C-105°C		%	92			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Phosphate total (as P)	S22-Fe13918	NCP	%	99			70-130	Pass	
Total Suspended Solids Dried at 103°C–105°C	M22-Fe12114	NCP	%	96			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Oil & Grease (HEM)	S22-Fe18138	NCP	mg/L	< 10	< 10	<1	30%	Pass	
Phosphate total (as P)	M22-Fe15219	NCP	mg/L	2.2	dil	n/a	30%	Pass	
Total Nitrogen (as N)	M22-Fe15219	NCP	mg/L	1.5	1.6	7.0	30%	Pass	
Total Suspended Solids Dried at 103°C–105°C	M22-Fe19665	NCP	mg/L	350	350	<1	30%	Pass	
Turbidity	M22-Fe18035	NCP	NTU	< 1	< 1	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Chlorophyll a	S22-Fe18351	CP	ug/L	< 2	< 2	<1	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Authorised by:

Ursula Long Analytical Services Manager
Scott Beddoes Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 861805-W

CHAIN OF CUSTODY AND ANALYSIS REQUEST

													•				1		
ontact Person:	Jiaqi Zhou					Project No	ame:		Downer S	ydney Metr	Stations -	Wiley Park				-			
lephone Number:	0424 106 665					Project No	umber;		NE30161										
ternative Contact:	Chong Zheng					PO No.:													
lephone Number:	0451 780 991					Project S	Project Specific Quote No.: 190408CDNN_1												
impler:	CZ					Turnarou	Turnaround Requirements: Standard TAT							10110ne					
nall Address (results		ContamNSW@cardn	om.au; chong.zeng@ca o.com.au			Lab;	Lab: Eurofins Unit F3, Building F, 16 Mars Rd, Lane Cove West NSW2066						#861805						
Idress: Level 9 - The	Forum, 203 Pacific Highway, St I	203 Pacific Highway, St Leonards, New South Wales 2065 Australia					Attn: Sample Receipt												
		Sample information		,			Analysis Required					Comments							
Cardno Sample ID	Laboratory Sample ID	No. Containers	Preservation	Date sampled	Matrix	Chlorophyll-a	<u> </u>	Turbidity	Oil and Grease	otal Phosphorus	otal Nitrogen								
WP1		5	ICE		Water	1	1	1	1	1	1	 			 	 -			
WP2		5	ICE	9/02/2022	Water	1	1	1	1	1	1	 	1			1			
QA100		4	ICE	9/02/2022	Water		1	1	1	1	1	†	- 				$\overline{}$		
QA200	<u> </u>	4	ICE		Water		1	1	1	1	1	1						Please send to ALS	
					<u> </u>														
													Environ Sydney Work C	menta Order R	i Il Divis eference	ion •			
													ES	220	459	92	\exists		
					 		 		+	+	 	Tel	∋phone:+6	1-2-8784	8555				
						1	t		 	<u> </u>		 -			-				
										1	-	 			1	Ι ι			
linquished by:	Jiaqi Zhou Cardno ACT/NSW Pty Ltd	Received by: M	Report		Relinquished by					Received	by:	508	2867	lles 4	13-9	Relinquishe	d by:		
te & Time:	2/9/2022		12/22		{name / compan	′				(name / c	ompany)	1/2	177	7		(name / com	pany)		
nature:	JZ		08 PM and		Date & Time: Signature:					Date & Ti	$\neg \tau$	2 2	JLL Ear	- [<i>Y</i>	<u>ص</u>	Date & Time Signature:	:		
ceived by:		Relinquished by:			Received by:					Relinquis			0,						
ime / company)		(name / company)			(name / company					ł						Lab use:			
te & Time:		Date & Time:			Date & Time:					(name / co						Samples Re	ceived Co	of or Ambient (circle one)	
ınature:		Signature;	/		Signature:					T							nples Received Cool or Amblent (circle one) nperature Received at: 26 L ₄ (If applicable)		
		<u> </u>	·		joguature.					Signature	:	-			•	Transported	by: Hand	delivered / courier	

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2204592

Client : CARDNO (NSW/ACT) PTY LTD Laboratory : Environmental Division Sydney

Contact : JIAQI ZHOU Contact : Shane Ellis

Address : Level 9 The Forum 203 Pacific Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

St Leonards NSW 2065

Highway

 Telephone
 : --- Telephone
 : +61 2 8784 8555

 Facsimile
 : --- Facsimile
 : +61-2-8784 8500

Project : NE30161 DOWNER SYDNEY METRO Page : 1 of 2

STATIONS - WILEY PARK

Order number : ---- Quote number : EB2017CARNSWACT0001 (EN/222 -

Secondary Work)

C-O-C number : ---- QC Level : NEPM 2013 B3 & ALS QC Standard

Site : ----Sampler : CZ

Dates

Date Samples Received : 10-Feb-2022 14:00 Issue Date : 10-Feb-2022 Client Requested Due : 16-Feb-2022 Scheduled Reporting Date : 16-Feb-2022

Date

Delivery Details

Mode of Delivery : Carrier Security Seal : Not Available

No. of coolers/boxes : 1 Temperature : 13.9 - Ice Bricks present

Receipt Detail : No. of samples received / analysed : 1 / 1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- 10/02/22: This is an updated SRN which indicates the addition of an extra report recipient.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 10-Feb-2022 Issue Date

Page

2 of 2 ES2204592 Amendment 0 Work Order

Client : CARDNO (NSW/ACT) PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessatasks. Packages as the determintasks, that are inclif no sampling default 00:00 on	my for the execution may contain ad ation of moisture uded in the package. time is provided, the date of sampling date with the date of the date of the date of the date with the date of the date with the date of the date with the date of the date	be part of a laboratory ion of client requested ditional analyses, such content and preparation the sampling time will g. If no sampling date II be assumed by the ckets without a time	R - EA025H nded Solids - Standard Level	R - EA045 ty	ER - EP020 Grease (O&G)	ER - NT-11 Nitrogen and Total Phosphorus
Laboratory sample ID	Sampling date / time	Sample ID	WATER - E Suspended	WATER . Turbidity	WATER Oil & Gre	WATER Total Nitr
ES2204592-001	09-Feb-2022 00:00	QA200	✓	✓	✓	1

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

Chong Zeng

- *AU Certificate of Analysis - NATA (COA)	Email	chong.zeng@cardno.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	chong.zeng@cardno.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	chong.zeng@cardno.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	chong.zeng@cardno.com.au
- A4 - AU Tax Invoice (INV)	Email	chong.zeng@cardno.com.au
- Chain of Custody (CoC) (COC)	Email	chong.zeng@cardno.com.au
- EDI Format - ENMRG (ENMRG)	Email	chong.zeng@cardno.com.au
- EDI Format - ESDAT (ESDAT)	Email	chong.zeng@cardno.com.au
ContamNSW		
- *AU Certificate of Analysis - NATA (COA)	Email	contamnsw@cardno.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	contamnsw@cardno.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	contamnsw@cardno.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	contamnsw@cardno.com.au
- A4 - AU Tax Invoice (INV)	Email	contamnsw@cardno.com.au
- Chain of Custody (CoC) (COC)	Email	contamnsw@cardno.com.au
- EDI Format - ENMRG (ENMRG)	Email	contamnsw@cardno.com.au
- EDI Format - ESDAT (ESDAT)	Email	contamnsw@cardno.com.au
INVOICES		
- A4 - AU Tax Invoice (INV)	Email	apinvoices@cardno.com.au
JIAQI ZHOU		
- *AU Certificate of Analysis - NATA (COA)	Email	jiaqi.zhou@cardno.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	jiaqi.zhou@cardno.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	jiaqi.zhou@cardno.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	jiaqi.zhou@cardno.com.au
- A4 - AU Tax Invoice (INV)	Email	jiaqi.zhou@cardno.com.au
- Chain of Custody (CoC) (COC)	Email	jiaqi.zhou@cardno.com.au
- EDI Format - ENMRG (ENMRG)	Email	jiaqi.zhou@cardno.com.au
- EDI Format - ESDAT (ESDAT)	Email	jiaqi.zhou@cardno.com.au

CERTIFICATE OF ANALYSIS

Work Order : ES2204592 Page : 1 of 2

Client : CARDNO (NSW/ACT) PTY LTD Laboratory : Environmental Division Sydney

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Contact : JIAQI ZHOU Contact : Shane Ellis

Address Level 9 The Forum 203 Pacific Highway Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

St Leonards NSW 2065

Telephone : +61 2 8784 8555

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

Date Samples Received : 10-Feb-2022 14:00

Order number

Date Analysis Commenced : 11-Feb-2022

C-O-C number Sampler : CZ

Telephone

Issue Date

Site

: 16-Feb-2022 15:29

Quote number : EN/222 - Secondary Work

No. of samples received

: 1 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Page : 2 of 2 Work Order : ES2204592

Client : CARDNO (NSW/ACT) PTY LTD

Project · NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)	Sample ID			QA200					
Sampling date / time				09-Feb-2022 00:00					
Compound	CAS Number	LOR	Unit	ES2204592-001					
				Result					
EA025: Total Suspended Solids dried	at 104 ± 2°C								
Suspended Solids (SS)		5	mg/L	<5					
EA045: Turbidity									
Turbidity		0.1	NTU	2.6					
EK059G: Nitrite plus Nitrate as N (NO)	c) by Discrete Anal	lyser							
Nitrite + Nitrate as N		0.01	mg/L	0.85					
EK061G: Total Kjeldahl Nitrogen By Di	screte Analyser								
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.6					
EK062G: Total Nitrogen as N (TKN + N	Ox) by Discrete An	alyser							
^ Total Nitrogen as N		0.1	mg/L	1.4					
EK067G: Total Phosphorus as P by Discrete Analyser									
Total Phosphorus as P		0.01	mg/L	0.09					
EP020: Oil and Grease (O&G)									
Oil & Grease		5	mg/L	<5					

QUALITY CONTROL REPORT

Work Order : **ES2204592** Page : 1 of 3

Client : CARDNO (NSW/ACT) PTY LTD Laboratory : Environmental Division Sydney

Contact : JIAQI ZHOU Contact : Shane Ellis

Address : Level 9 The Forum 203 Pacific Highway Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

St Leonards NSW 2065

Telephone : ---- Telephone : +61 2 8784 8555

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK Date Samples Received : 10-Feb-2022

Order number : ---- Date Analysis Commenced : 11-Feb-2022

Sampler : CZ Site : ----

Quote number : EN/222 - Secondary Work

No. of samples received : 1
No. of samples analysed : 1

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW

Page : 2 of 3
Work Order : ES2204592

Client : CARDNO (NSW/ACT) PTY LTD

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EA025: Total Suspended Solids dried at 104 ± 2°C (QC Lot: 4167780)											
ES2204588-006	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	18	17	5.7	No Limit		
EA045: Turbidity (QC Lot: 4168741)											
ES2204573-002	Anonymous	EA045: Turbidity		0.1	NTU	0.9	0.8	0.0	No Limit		
EW2200593-001	Anonymous	EA045: Turbidity		0.1	NTU	6.2	6.2	0.0	0% - 20%		
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QC Lot: 4169740)											
ES2204585-005	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.16	0.16	0.0	0% - 50%		
ES2204511-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.07	0.07	0.0	No Limit		
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QC Lot: 4169743)											
ES2204511-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	38.7	40.0	3.4	0% - 20%		
EK067G: Total Phosphorus as P by Discrete Analyser (QC Lot: 4169742)											
ES2204585-006	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.03	0.04	0.0	No Limit		
ES2204511-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	4.38	4.38	0.0	0% - 20%		

Page : 3 of 3 Work Order : ES2204592

Client : CARDNO (NSW/ACT) PTY LTD

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA025: Total Suspended Solids dried at 104 ± 2°C (QCLot: 4167780)								
EA025H: Suspended Solids (SS)	5	mg/L	<5	150 mg/L	102	83.0	129	
			<5	1000 mg/L	97.4	82.0	110	
			<5	463 mg/L	104	83.0	118	
EA045: Turbidity (QCLot: 4168741)								
EA045: Turbidity	0.1	NTU	<0.1	40 NTU	95.2	91.0	105	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 4	169740)							
EK059G: Nitrite + Nitrate as N	0.01	mg/L	<0.01	0.5 mg/L	97.6	91.0	113	
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 4169743)								
EK061G: Total Kjeldahl Nitrogen as N	0.1	mg/L	<0.1	10 mg/L	87.1	69.0	101	
			<0.1	1 mg/L	76.3	70.0	118	
			<0.1	5 mg/L	91.0	70.0	130	
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 4169742)								
EK067G: Total Phosphorus as P	0.01	mg/L	<0.01	4.42 mg/L	96.8	71.0	101	
			<0.01	0.442 mg/L	85.5	72.0	108	
			<0.01	1 mg/L	96.3	70.0	130	
EP020: Oil and Grease (O&G) (QCLot: 4173200)								
EP020: Oil & Grease	5	mg/L	<5	5000 mg/L	101	81.0	121	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER					Matrix Spike (MS) Report				
					SpikeRecovery(%)	Acceptable Limits (%)			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 4169740)									
ES2204511-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	85.8	70.0	130		
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 4169743)									
ES2204511-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		25 mg/L	84.4	70.0	130		
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 4169742)									
ES2204511-002	Anonymous	EK067G: Total Phosphorus as P		5 mg/L	94.1	70.0	130		

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2204592** Page : 1 of 4

Client : CARDNO (NSW/ACT) PTY LTD Laboratory : Environmental Division Sydney

Contact : JIAQI ZHOU Telephone : +61 2 8784 8555

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK Date Samples Received : 10-Feb-2022

Site :---- Issue Date : 16-Feb-2022

Sampler : CZ No. of samples received : 1
Order number : ---- No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4
Work Order : ES2204592

Client : CARDNO (NSW/ACT) PTY LTD

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **WATER**Evaluation: **×** = Holding time breach; ✓ = Within holding time

Matrix: WATER				Evaluation	i: 🗴 = Holding time	breach; ✓ = Withi	n holding tim
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA025: Total Suspended Solids dried at 104 ± 2°C							
Clear Plastic Bottle - Natural (EA025H) QA200	09-Feb-2022				11-Feb-2022	16-Feb-2022	✓
EA045: Turbidity							
Clear Plastic Bottle - Natural (EA045) QA200	09-Feb-2022				11-Feb-2022	11-Feb-2022	✓
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) QA200	09-Feb-2022				14-Feb-2022	09-Mar-2022	√
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G) QA200	09-Feb-2022	14-Feb-2022	09-Mar-2022	1	14-Feb-2022	09-Mar-2022	✓
EK067G: Total Phosphorus as P by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK067G) QA200	09-Feb-2022	14-Feb-2022	09-Mar-2022	1	14-Feb-2022	09-Mar-2022	✓
EP020: Oil and Grease (O&G)							
Amber Jar - Sulfuric Acid or Sodium Bisulfate (EP020) QA200	09-Feb-2022				15-Feb-2022	09-Mar-2022	✓

Page : 3 of 4
Work Order : ES2204592

Client : CARDNO (NSW/ACT) PTY LTD

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

e expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: 🗴 = Quality Co	ontrol frequency	not within specification ; ✓ = Quality Control frequency within specification
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Oil and Grease	EP020	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	3	5	60.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	10	30.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Oil and Grease	EP020	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard

Page : 4 of 4 Work Order : ES2204592

Client : CARDNO (NSW/ACT) PTY LTD

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Turbidity	EA045	WATER	In house: Referenced to APHA 2130 B. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)
Oil and Grease	EP020	WATER	In house: Referenced to APHA 5520 B. Oil & grease is a gravimetric procedure to determine the amount of oil & grease residue in an aqueous sample. The sample is serially extracted three times n-hexane. The resultant extracts are combined, dehydrated and concentrated prior to gravimetric determination. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)

Construction Monitoring Report November 2021 to April 2022

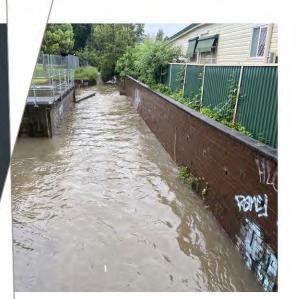
Sydney Metro City & Southwest - Package 5 & 6

Appendix 3 – Surface Water Monitoring Report – Wiley Park Station NE30161_R007_SWM_WileyPark_Rev0_R

Internal Use Only
© Downer 2020. All Rights Reserved

Page 39

Version: Rev A


Surface Water Monitoring Report - Wiley Park Station

Wiley Park Station

NE30161

Prepared for Downer EDI Works Pty Ltd

21 March 2022

Contact Information

Document Information

Cardno (NSW/ACT) Pty Ltd Prepared for Downer EDI Works Pty Ltd

ABN 95 001 145 035

Project Name Wiley Park Station

Level 9 - The Forum File Reference NE30161 R007 SWM Wile

203 Pacific Highway yPark_Rev0.docx Suburb State 2065

PO Box 19 Job Reference NE30161

www.cardno.com Date 21 March 2022

Phone +61 2 9496 7700

Version Number Rev0 Fax +61 2 9439 5170

Author(s):

Jiagi Zhou Effective Date 21/03/2022

Environmental Engineer

Approved By:

Jingi Zhon

Mike Jorgensen Date Approved 21/03/2022

Principal Hydrogeologist

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
RevA	21/03/2022	Draft for Client Review	J.Zhou / C.Zeng	M.Jorgensen
Rev0	21/03/2022	First Final	J.Zhou / C.Zeng	M.Jorgensen

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

[©] Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Table of Contents

1	Introd	uction	1
	1.1	Background	1
	1.1	Purpose and Objective	2
	1.2	Scope of Works	2
2	Guide	lines and Legislation	3
3	Monit	oring Locations	3
	3.1	Monitoring Locations	3
4	Qualit	y Management	4
	4.1	Data Quality Indicators	5
5	Field	Investigation	7
6	Surfa	ce Water Assessment Criteria	8
7	Sumn	nary of Results	9
	7.1	Summary of Field Observations	9
	7.2	Field Parameters	9
	7.3	Surface Water Analytical Results	10
	7.4	Results Discussion	12
8	Concl	usion	13
9	Refer	ences	14
10	Limita	tions	15
Append	dices		
Appendix	A Figure	98	
Appendix	B Photo	graphs	
Appendix	C Filed	Records	
Appendix	D Labor	atory Summary Tables	
Appendix	E Qualit	y Assurance/Quality Contral	
Appendix	F Labor	atory Reports	
Tables			
Table 1-1	Summary	/ of Surface Water Monitoring Event Undertaken to Date	1
Table 1-2	Wiley Pa	rk Water Quality Monitoring Program	2
Table 3-1	Surface \	Vater Monitoring Location Details	3
Table 4-1	Data Qua	ality Objectives	4
Table 4-2	Summary	y of Data Quality Indicators	5
Table 5-1	Investiga	tion Activity Summary	7
Table 6-1	Water Qu	uality Monitoring Parameters and Adopted Criteria at Wiley Park	8
Table 7-1	Field Phy	sico-chemical Parameters and Field Observations on 23 February 2022	9
Table 7-2	Comparis	son of current wet condition sampling event to previous wet condition samp	ling events 11

1 Introduction

1.1 Background

Cardno (NSW/ACT) Pty Ltd ("Cardno") was commissioned by Downer EDI Works Pty Ltd ("Downer") to undertake monitoring and reporting of surface water quality of the unnamed channel within proximity to Wiley Park Station Upgrade Site. The proposed works includes the upgrade of the main station and installation of the Metro Services Building (MSB).

Surface water quality of the channel within proximity to Wiley Park Upgrade Site is to be monitored as per the requirements summarised in the **Table 1-2**, which is excerpted from the Southwest Metro – Hurlstone Park, Belmore and Wiley Park Station Upgrades Soil and Water Management Plan (SWMP). The monitoring program are prepared to meet the requirements outlined in *The Sydney Metro City and Southwest – Sydenham to Bankstown Upgrade Conditions of Approval SSi-8256*, specifically Condition 8 to Condition 10. The sampling locations (WP1 – Upstream and WP2 – Downstream) of the water quality monitoring are shown on in **Appendix A.**

The closest Project worksite to an existing watercourse is Wiley Park Station services building, which is located approximately 100 m from an unnamed concrete-lined channel, which forms the upper reaches of Coxs Creek and is identified as a first-order stream.

For the purpose of establishing baseline water quality data within the first-order stream at Wiley Park, water quality monitoring was intended to be undertaken for a period prior to construction of the Wiley Park services building as outlined in the Table 13 of the SWMP. At a minimum, one dry-weather sample and one wet weather sample (weather permitting) were intended to be collected during the pre-construction period. The frequency of pre-construction water quality monitoring within this channel was subject to water being present within the structure. However, during the baseline monitoring period no wet-weather events were able to be captured prior to commencement of construction. A dry-weather baseline monitoring event was undertaken on 10 March 2021.

This report presents the findings from the ninth surface water monitoring event, which was undertaken by Cardno on 23 February 2022. The event undertaken was a mid-construction wet-weather event. **Table 1-1** below summarised the surface water monitoring events undertaken to date by Cardno.

Table 1-1 Summary of Surface Water Monitoring Event Undertaken to Date

Date of Monitoring	Type of Event	Report Reference
10 March 2021	Pre-construction Dry Baseline	4NE30187_R001_SWM_WileyPark_RevA
20 March 2021	Mid Construction Wet Weather	4NE30187_R001_SWM_WileyPark_RevA
5 May 2021	Mid Construction Wet Weather	4NE30187_R002_SWM_WileyPark_RevA
1 July 2021	Mid Construction Dry Weather	NE30161_R003_SWM_WileyPark_Rev0
30 September 2021	Mid Construction Dry Weather	NE30161_R004_SWM_WileyPark_RevA
12 November 2021	Mid Construction Wet Weather	NE30161_R005_SWM_WileyPark_Rev0
26 November 2021	Mid Construction Wet Weather	NE30161_R005_SWM_WileyPark_Rev0
9 and 10 February 2022	Mid Construction Dry Weather	NE30161_R006_SWM_WileyPark_Rev0
23 February 2022	Mid Construction Wet Weather	NE30161_R007_SWM_WileyPark_RevA

1.1 Purpose and Objective

The purpose of the surface water monitoring works is to monitor and record surface water quality within the unnamed channel in accordance with the monitoring program as outlined in the Site's SWMP. The objective of the works is to evaluate whether construction activities are impacting water quality downstream of the project footprint in the unnamed channel.

1.2 Scope of Works

Cardno undertook the following tasks during the surface water monitoring events:

- Inspected and sampled two (2) nominated surface water sampling locations (WP1 Upstream and WP2 Downstream) on 23 February 2022 as part of mid-construction wet-weather monitoring event.
- > Recorded field parameters and noted observations of the water bodies during sampling.
- Collected two (2) primary surface water samples, one (1) intra-lab duplicate sample and one (1) inter-lab duplicate sample per sampling event for submission to a National Association of Testing Authorities, Australia (NATA) certified laboratory for analytical testing of primary and additional quality assurance/quality control (QA/QC) samples. Samples were submitted for analysis of:
 - Oil & Grease;
 - Total Suspended Solids (TSS);
 - Nutrients (Total Phosphorous, Total Nitrogen);
 - Turbidity; and
 - Chlorophyll-a.
- > Reviewed the analytical and field data and prepared this report.

Details of the monitoring program are shown below.

Table 1-2 Wiley Park Water Quality Monitoring Program

	Wiley Park Water Quality Monitoring Program
Waterway	Sydney Water Cooks River Channel (first-order stream)
Indicative	WP1 – Upstream
monitoring points	WP2 – Downstream
Interaction with Project works	Channel within proximity to Wiley Park service building site
Pre-construction works	Monthly for parameters detailed in Table 11 (including at least one dry-weather round of sampling).
	One wet-weather event, if possible, for the parameters detailed in Table 11, subject to event occurrence, safe conditions for monitoring and access being available to conduct monitoring.
	Note: A wet-weather event is when the receiving area has received greater than 20 mm of rain in 24 hours. The sampling is undertaken immediately during construction hours and if it is safe to do so.
During	Quarterly for parameters detailed in Table 11 (including during dry weather).
construction of the Wiley Park	Four wet-weather events per year for the parameters in Table 11, subject to event occurrence, safe conditions for monitoring and access being available to conduct monitoring.
services building	Note: A wet-weather event is when the receiving area has received greater than 20 mm of rain in 24 hours. The sampling was undertaken immediately during construction hours and if it is safe to do so.

2 Guidelines and Legislation

There are a range of Guidelines and Legislation and Conditions of Approval (CoA) that are applicable to the surface water monitoring program which are summarised below.

The CoA applicable to this job include:

> The Sydney Metro City and Southwest - Sydenham to Bankstown Upgrade Conditions of Approval SSI-8256, determined 12 December 2018;

The State and Federal legislation and policy and guidelines that apply to the program include:

- Environmental Planning and Assessment Act 1979 (EP&A Act);
- > Contaminated Land Management Act 1997;
- > Protection of the Environment Operations Act 1997 (POEO Act); and
- > Water Management Act 2000 Water Management (General) Regulation 2018;

Additional guidelines and standards to the management of soil and water include:

- > Landcom (2004). Managing Urban Stormwater: Soils and Construction. (Volume 1 of the 'Blue Book');
- > DECC (2008). Managing Urban Stormwater: Soils and Construction. Volume 2D: Main Road Construction. (Volume 2D of the 'Blue Book');
- > ANZECC (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (collectively known as the 'ANZECC Guidelines');
- ANZECC (2018). Australian and New Zealand Guidelines for Water Quality Monitoring and Reporting (collectively known as the 'ANZECC Guidelines'); and
- ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (known as 'ANZG Guidelines').

3 Monitoring Locations

Details of the sampling locations are provided in **Table 3-1**. The locations are provided in **Appendix A**. Representative photographs are presented in **Appendix B**.

3.1 Monitoring Locations

Table 3-1 Surface Water Monitoring Location Details

Sample Location	Latitude	Longitude	Description
WP1 (up-stream)	-33.924014	151.065315	Immediately south of the Boulevarde and east of 118 the Boulevarde.
WP2 (down-stream)	-33.923339	151.064970	Immediately north of the Urunga Parade and west of 4 Urunga Parade.

4 Quality Management

The Data Quality Objective (DQO) process is used to establish a systematic planning approach to set the type, quantity and quality of data required for making decisions based on the environmental condition of the project area. The DQO process involves the seven steps detailed in **0**.

Table 4-1 Data Quality Objectives

able 4-1 Data Quality Objectives					
DQO	Description				
Step 1 State the Problem	Construction work may adversely impact the local surface water quality within the unnamed channel near the site.				
Step 2 Identify the Decisions	Are there any impacts to surface water quality from construction activities at the site?				
Step 3	The primary inputs to the decisions described above are:				
Identify Inputs to the Decision	 Assessment of surface water quality of the unnamed channel within proximity to Wiley Park service building site per the requirements outlined in the site's SWMP, with samples collected from two locations (upstream and downstream of the site); 				
	Laboratory analysis of surface water samples for relevant parameters;				
	 Assessment of the suitability of the analytical data obtained, against the Data Quality Indicators (DQIs); 				
	 Assessment of the analytical results against applicable guideline criteria; and 				
	 Aesthetic observations of surface water bodies, including odours, sheen and condition, if encountered. 				
Step 4 Define the Study Boundaries	The lateral extent of the study area is the channel near the Wiley Park service building site.				
	The temporal boundaries of the study comprise the duration of the monitoring program, including pre-construction monitoring, construction phase, and post-construction monitoring as required.				
Step 5	The decision rules for the water quality monitoring sampling events included:				
Develop a Decision Rule	Were primary and QA/QC samples analysed using methods endorsed by relevant regulatory guidelines at laboratories NATA-accredited for the requested analyses?				
	Did the field and laboratory QA/QC results indicate that the data set was reliable and representative of the water quality with Relative Percentage Difference (RPD) values of 30% or less?				
	• Were the laboratory limits of reporting (LORs) below the applicable guideline criteria for the analysed parameters?				
	Were guideline criteria sourced from endorsed guidelines?				
	• Were surface water aesthetic characteristics evaluated including odours and sheen?				
	Were the monitoring results obtained from the downstream sample collected during construction phase greater than the upstream sample collected during the same monitoring event? If so, then the adverse impact to the quality of water in the unnamed channel is considered to have potentially occurred.				
Step 6 Specify Limits on Decision	In accordance with the relevant guidelines as endorsed under the <i>Contaminated Land Management Act</i> 1997.				
Error	Specific limits for this project are in accordance with the appropriate guidance made or endorsed by state and national regulations, appropriate indicators of data quality, and standard procedures for field sampling and handling.				
	This step also examines the certainty of conclusive statements based on the available new Site data collected. This should include the following points to quantify tolerable limits:				
	 A decision can be made based on a certainty assumption of 95% confidence in any given data set (excluding asbestos). A limit on the decision error will be 5% that a conclusive statement may be a false positive or false negative. 				
	·				

DQO Description

A decision error in the context of the decision rule presented above would lead to either underestimation or overestimation of the risk level associated with a particular sampling area. Decision errors may include:

- Sampling errors may occur when the sampling program does not adequately detect the variability of a contaminant from point to point across the Site. To address this, minimum numbers of samples are proposed to be collected from each media. As such, there may be limitations in the data if aspects of the sampling plan cannot be implemented. Some examples of this scenario include but not limited to:
 - Proposed samples are not collected due to lack of water flow or access being restricted to a given location.
- Limitations in ability to acquire useful and representative information from the data collected. The data are proposed to be collected from multiple locations and sample media.
- Measurement errors can occur during sample collection, handling, preparation, analysis and data reduction. To address this the following measures are proposed:
 - Field staff to follow a standard procedure when undertaking samples, including decontamination of tools, removal of adhered soil to avoid false positives in results, collection of representative samples and use of appropriate sample containers and preservation methods.
 - Laboratories to follow a standard procedure when preparing samples for analysis and undertaking analysis.
 - Laboratories to report QA/QC data for comparison with the DQIs established for the project

Step 7
Optimise the Design for Obtaining Data

To achieve the DQOs and DQIs, the following sampling procedures were implemented to optimise the design for obtaining data:

- Surface water samples was collected from two (2) sampling locations, as available due to access and water level;
- Surface water parameters were selected based on project monitoring requirements provided to Cardno;
- Samples were collected by suitably qualified and experienced environmental scientists;
- Samples were collected and preserved in accordance with relevant standards/guidelines; and
- Field and laboratory QA/QC procedures were adopted and reviewed to indicate the reliability of the results obtained.

4.1 Data Quality Indicators

The following DQIs have been adopted for the project. The DQIs outlined in **Figure 1481564985-0Table 4-2** assist with decisions regarding the usefulness of the data obtained, including the quality of the laboratory data.

Table 4-2 Summary of Data Quality Indicators

Data Quality Indicator	Frequency	Data Acceptance Criteria
Completeness		
Field documentation correct	All samples	The work was documented in accordance with Cardno SOPs
Suitably qualified and experience sampler	All samples	Person deemed competent by Cardno collecting and logging samples
Appropriate lab methods and limits of reporting (LORs)	All samples	Samples were analysed using methods endorsed by relevant regulatory guidelines at laboratories NATA-accredited for the requested analyses.
Chain of custodies (COCs) completed appropriately	All samples	The work was documented in accordance with Cardno SOPs

Data Quality Indicator	Frequency	Data Acceptance Criteria
Sample holding times complied with	All samples	The samples were extracted and analysed within holding times specified by the project NATA-accredited laboratory
Proposed/critical locations sampled	-	Proposed/critical locations sampled
Comparability		
Consistent standard operating procedures for collection of each sample. Samples should be collected, preserved and handled in a consistent manner	All samples	All works undertaken in accordance with Cardno SOPs
Experienced sampler	All samples	Person deemed competent by Cardno collecting and logging samples
Climatic conditions (temp, rain etc) recorded and influence on samples quantified (if required)	All samples	Climatic conditions documented in field sheets
Consistent analytical methods, laboratories and units	All samples	Sample analysis to be in accordance with NATA-approved methods
Representativeness		
Sampling appropriate for media and analytes (appropriate collection, handling and storage)	All samples	Sample analysis to be in accordance with NATA-approved methods
Samples homogenous	All samples	All works undertaken in accordance with Cardno SOPs
Detection of laboratory artefacts, e.g. contamination blanks	-	Laboratory artefacts assessed and impact on results determined
Samples extracted and analysed within holding times	All samples	The samples were extracted and analysed within holding times specified by the laboratory
Precision		
Blind duplicates (intra-laboratory duplicates)	1 per 20 samples	Less than or equal to 30% RPD No Limit RPD Result less than 10 × LOR
Split duplicates (inter-laboratory duplicates)	1 per 20 samples	Less than or equal to 30% RPD No Limit RPD Result less than 10 × LOR
Laboratory duplicates	1 per 20 samples	Results greater than 10 x LOR: less than or equal to 30% RPD Results less than 10 x LOR: No limit on RPD
Accuracy (Bias)		
Surrogate spikes	All organic samples	50-150%
Matrix spikes	1 per 20 samples	70-130%
Laboratory control samples	1 per 20 samples	70-130%
Method blanks	1 per 20 samples	Less than LOR

The DQOs for the project were met during the monitoring event. The DQIs for the project were met during the monitoring event with the exception of the holding time non-compliance of turbidity analysis for inter-laboratory duplicate sample QA200 due to courier delay. However, it is not considered to alter the overall outcome of the assessment. Discussion of the QA/QC assessment is provided in **Appendix E**.

5 Field Investigation

The scope and method of the surface water monitoring is summarised in **Table 5-1**.

Table 5-1 Investigation Activity Summary

Activity	Details
Dates of Fieldwork	23 February
Surface Water Sampling	Cardno inspected two surface water monitoring locations (WP1 – Upstream and WP2 – Downstream). Primary samples were collected from the two locations during the sampling event. Cardno undertook the sampling as per the following procedures:
	<u>Surface Water Body Inspection</u> - The general site condition was observed prior to commencement of field works for signs of any site activities that may have altered the surface water contamination status or require modifications to the field or laboratory works program.
	Each surface water location was inspected for indicators of contamination and the presence as well as the flow of surface water. This information is recorded on the field sheets presented in Appendix C .
	<u>Surface water sampling</u> - Field parameters and visual/olfactory observations were recorded prior to sampling at each location. Physico-chemical parameters including pH, electrical conductivity (EC), dissolved oxygen (DO), reduction-oxidation potential (redox), and temperature were measured using a calibrated water quality meter. Surface water samples were collected either directly into the sampling bottle or directly from the telescopic scoop. Once field parameters were recorded, the surface water samples were transferred to appropriately preserved sample containers provided by the laboratories. Field observations, and parameters are presented in Appendix C .
	Surface water samples were placed into an Esky containing ice and maintained at or below 4°C whilst onsite and in transit to the NATA-accredited laboratories for the targeted analyses.
Surface Water Analysis	Surface water samples from the monitoring event were submitted under standard chain-of-custody (CoC) procedures to NATA-accredited Eurofins Environment Testing Australia analysis of the parameters as follows:
	- Oil & Grease;
	 Total Suspended Solids (TSS);
	 Nutrients (Total Phosphorous, Total Nitrogen);
	 Turbidity; and
	- Chlorophyll-a.
	Tabulated laboratory results are presented in Appendix D . The Data QA /QC program and data quality review including calibration certificates is presented in Appendix E .
	Copies of the original laboratory reports, NATA-stamped laboratory certificates, and CoC documentation are included in Appendix F .
Decontamination	In the event of reusable sampling or monitoring equipment (telescopic scoop, water quality meter) was used decontamination was undertaken. Decontaminated between locations using a standard bucket wash. Equipment was washed in phosphate-free detergent (Liquinox) and rinsed in laboratory supplied rinsate water.

Surface Water Assessment Criteria 6

The assessment criteria for surface water analytical and field data were adopted from Table 11 of the site's SWMP. The criteria for selected parameters are provided in Table 6-1 below. ANZECC guideline criteria are included in the table for reference.

Table 6-1 Water Quality Monitoring Parameters and Adopted Criteria at Wiley Park

Parameter	ANZECC Criteria – Freshwater ¹	Proposed Triger Values ²	Proposed Actions
Temperature (°C)	>80% ile; <20% ile		
DO (%Sat)	Lower limit – 85% Upper limit – 110%	Downstream results are	
Turbidity (NTU)	6-50 NTU	greater than upstream results in rainfall events up	Environment Manager (or
Oil and grease	-	to and including the significant event threshold	delegate) to re-test to confirm results and
рН	Lower limit – 6.5 Upper limit – 8.5	of greater than 20 mm in 24 hours.	undertake an inspection of the adjacent works and
Salinity (as EC)	125 – 2,200 µS/cm	Downstream results are greater than upstream	propose actions where required.
TSS	-	results during dry-weather	
Total Phosphorus as P	25 μg/L	- sampling.	
Total Nitrogen as N	350 μg/L	_	
Chlorophyll-a	3 μg/L		

Note to Table

1 ANZECC guideline criteria are included for reference. It is noted that for dry weather events baseline testing comparison will indicate whether this existing water quality within the channel meet ANZECC guidelines, prior to construction of the services building. For wet-weather events where no baseline data is available a direct comparison to upstream and downstream results is undertaken. Sydney Metro's Principal Contractor will comply with Section 120 of the Protection of the Environment Operations Act 1997.

2 For the ANZECC criteria given in a range (i.e. DO, pH, temperature, etc.), measured field parameters at downstream and upstream were assessed in comparison to the

7 Summary of Results

7.1 Summary of Field Observations

The two (2) surface water sampling locations (WP1 – Upstream and WP2 – Downstream) were able to be accessed during the sampling event conducted on 23 February 2022. Photos of each sampling location are included in **Appendix A**. The following observations were made:

7.1.1 Mid-Construction Wet-weather Event – 23 February 2022

- > The sampling event was considered as a mid-construction wet-weather event based on the rainfall data recorded by the nearby weather station:
 - Canterbury Racecourse AWS station (ID: 066194): approximately 4.6 km from the site with the rainfall data recorded 117.8 mm over the last 24 hours prior to the field sampling. Refer to **Appendix C** for weather recordings.
- > Observation of water body:
 - WP 1 (upstream of work area) contained high flowing clear water with low turbidity. The estimated depth of the water body was 0.3 m to 0.4 m;
 - WP 2 (downstream of work area) contained high flowing clear water with low turbidity. The estimated depth of the water body was 0.2 m to 0.3 m;
- > Additional observation:
 - WP1 (upstream of work area):
 - One discharge point (WP1-DP1) was observed immediately downstream / north of WP1. High flow contribution was observed at the time of sampling. Refer to **Appendix A** for approximate location of WP1-DP1. Refer to **Appendix B** for a detailed photo.
 - WP2 (downstream of work area):
 - During the sampling event, the two discharge points (WP2-DP1 and WP2-DP2) within the rail
 corridor immediately upstream / south from WP2 were observed. High flow contribution from both
 discharge points were observed at the time of sampling. It is noted that WP2-DP2 was observed to
 have greater flow contribution than WP2-DP1. Refer to Appendix A for approximate location of
 WP2-DP1 and WP2-DP2. Refer to Appendix B for detailed photos.

7.2 Field Parameters

The parameters from each location sampled are presented in **Table 7-1**.

Table 7-1 Field Physico-chemical Parameters and Field Observations on 23 February 2022

Location ID	WP1 (upstream)	WP2 (downstream)
Water depth (m)	0.3-0.4	0.2-0.3
Estimated Flow Rate	high	high
Temperature (°C)	22.6	23.4
рН	7.50	7.62
Electrical Conductivity (µS/cm)	230	431
Dissolved Oxygen (mg/L)	4.94	6.00
Dissolved Oxygen (%)	56.7	72.0
Oxidation-Reduction Potential (mV)	55.3	81.4
SHE¹ Redox Potential (mV)²	261.5	287.6

Location ID	WP1 (upstream)	WP2 (downstream)
Condition	Clear Low Turbidity	Clear Low Turbidity
Note to Table		

SHE – Standard Hydrogen Electrode

7.3 Surface Water Analytical Results

Surface Water Analytical results are presented in Appendix D. Copies of the original laboratory reports, NATAstamped laboratory certificates, and Chain of Custody documentation are included in Appendix F.

7.3.1 Mid-Construction Wet-weather Event – 23 February 2022

The results of the monitoring event indicate that:

- > Laboratory analytical results:
 - Concentrations of Chlorophyll-a were reported below the laboratory detection limit and adopted ANZG 2018 / ANZECC 2000 criteria at both sample locations;
 - Concentrations of Oil and Grease were reported below laboratory detection limit at all sample locations;
 - Concentrations of total nitrogen and the total phosphorous were reported above the adopted ANZG 2018 / ANZEEC 2000 criteria within both WP1 and WP2 samples.
 - TSS concentrations were detected within both WP1 and WP2, with concentrations of 18 mg/L at WP1 and 9.6 mg/L at WP2; and
 - Turbidity was detected with concentration of 37 NTU at WP1 to 28 NTU at WP2.

7.3.2 **Baseline Results Comparison**

One sampling event during the pre-construction period (baseline event) was undertaken on 10 March 2021 which was during dry condition. It should be noted that wet-weather and storm-event pre-construction monitoring was not able to be conducted because of the lack of rainfall. The monitoring results of baseline event (10 March 2021) has not been used for comparison with the monitoring results under this report because the conditions encountered were different (i.e. non-trigger for wet-weather event criteria). However, four previous mid-construction wet weather sampling events were used to compare and check if there is any potential adverse impact to the water quality caused by the construction activities.

The parameters from each location sampled are presented in Table 7-2. Overall, conditions are similar between upstream and downstream samples on 23 February 2022 and previous mid-construction wet weather events.

Water quality meter utilised on the day of monitoring contains Ag/AgCl reference electrode with 3.5 M KCl filling solution. As such, SHE was calculated based on Table 1 of US EPA document: SESDPROC-113-R2, Field Measurement of Oxidation-Reduction Potential (ORP).

Table 7-2 Comparison of current wet condition sampling event to previous wet condition sampling events

Time of sampling		20 Marc	ch 2021	5 May	/ 2021	12 Noven	nber 2021	26 Noven	nber 2021	23 Febru	ary 2022
Location ID	Assessment Criteria	WP1	WP2	WP1	WP2	WP1	WP2	WP1	WP2	WP1	WP2
Temperature (°C)	N/A ²	20.2	20	18.6	18.2	19.4	19.5	19.6	19.7	22.6	23.4
рН	6.5 - 8.5	8.10	7.58	7.80	7.73	8.10	8.42	6.07	7.34	7.50	7.62
EC (µS/cm)	125 – 2,200	246.2	133.4	2,500	92.9	514	509	389	484	230	431
DO (mg/L)	N/A²	4.79	3.92	6.35	5.95	6.42	5.63	9.05	9.31	4.94	6.0
DO (%)	85% - 110%	52.9	43.2	65.3	62.8	68	63	99	102	56.7	72
SHE¹ Redox Potential (mV)⁴	N/A ²	122.3	135.9	164.6	109.2	70.8	80.4	184	196	261.5	287.6
Chlorophyll a (µg/L)	3	<5	<5	<5	<5	<2	<2	<2	2.7	<2	<2
Oil and Grease (mg/L)	Comparison	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Kjeldahl Nitrogen Total (mg/L)	N/A²	0.6	0.8	NT ³	NT ³	NT ³	NT ³	NT³	NT ³	0.8	0.8
Nitrate & Nitrite (as N) (mg/L)	N/A²	1.7	1.5	NT ³	NT ³	NT³	NT ³	NT³	NT ³	0.84	1.8
Nitrogen (Total) (mg/L)	0.35	2.3	2.3	5.0	1.0	2.7	2.8	1.6	2.4	1.64	2.6
Phosphate total (as P) (mg/L)	0.025	<0.5	<0.5	0.21	0.15	0.15	0.02	0.13	0.18	0.23	0.28
TSS (mg/L)	N/A²	9.2	35	4.0	47	8.4	7.6	16	7.8	18	9.6
Turbidity (NTU) Note to Table	6-50	9.3	13	4.3	21	21	19	25	17	37	28

SHE – Standard Hydrogen Electrode

Not Applicable

³ NT – Not Tested

Water quality meter utilised on the day of monitoring contains Ag/AgCl reference electrode with 3.5 M KCl filling solution. As such, SHE was calculated based on Table 1 of US EPA document: SESDPROC-113-R2, Field Measurement of Oxidation-Reduction Potential (ORP).

7.4 Results Discussion

7.4.1 Comparison to ANZG 2018 / ANZECC 2000 Criteria

Results for the mid-construction wet-weather event sampled on 23 February generally showed monitored parameters were within the adopted threshold criteria, with the exception of dissolved oxygen saturation, total nitrogen, and total phosphorous.

- Dissolved oxygen saturation measured at both WP1 (56.7%) and WP2 (72%) were below the adopted criterion range. However, this is not considered to be a significant issue because the concentration of dissolved oxygen saturation at WP2 (downstream) was closer to the adopted criterion range in comparison to WP1 (upstream).
- > Total nitrogen measured at both WP1 (1.64 mg/L) and WP2 (2.6 mg/L) were above the adopted criterion range. However, the results from the previous mid-construction wet-weather sampling events show that total nitrogen at WP1 fluctuated between 1.6 mg/L and 5.0 mg/L whereas total nitrogen for WP2 fluctuated between 1.0 mg/L and 2.8 mg/L. Furthermore, the total nitrogen for both WP1 and WP2 sampled on the 23 February 2022 monitoring event were similar to the previous event ranges. As such, this increase in total nitrogen is not considered to be a significant issue.
- > Total phosphorous measured at both WP1 (0.23 mg/L) and WP2 (0.28 mg/L) were above the adopted criterion range. However, the results are similar to the results from previous mid-construction wet-weather events. As such, this is not considered to be a significant issue.

7.4.2 Comparison of Upstream and Downstream Results

Results for upstream and downstream sampling on 23 February 2022 were comparable, with the exception of:

- > DO saturation measured at the downstream WP2 location had higher DO saturation (72%) compared to the upstream WP1 location (56.7%). However, this is not considered to be a significant issue since the downstream result was closer to the ANZG 2018/ANZECC 2000 criterion range in comparison to the upstream.
- > Concentrations of total nitrogen at downstream sample was slightly higher than the upstream sample. However, this is not considered to be a significant issue, since the concentrations were generally consistent with the previous four mid-construction wet-weather events. Refer to **Section 7.4.1.**
- > Concentrations of total phosphorous results at downstream sample was slightly higher than the upstream sample. However, this is not considered to be a significant issue since the results were generally consistent with the previous four mid-construction wet-weather events. Refer to **Section 7.4.1.**
- > The pH result at downstream sample (7.62) was slightly higher than the result at upstream sample (7.50). However, this is not considered to be a significant issue since the pH measurements at both sample points were within the adopted ANZG 2018/ANZECC 2000 criterion range and the difference of the upstream and downstream pH results is only 1.6%.
- > The EC result at the downstream sample (431 μ S/cm) was higher than the upstream sample (230 μ S/cm). However, this is not considered to be a significant issue since the EC measurements at both sample points were within the adopted ANZG 2018/ANZECC 2000 criterion range and the EC values were generally consistent with the previous four mid-construction wet-weather events.

Refer to **Appendix D** for details. It should be noted that wet-weather and storm-event pre-construction monitoring was not able to be conducted because of the lack of rainfall.

8 Conclusion

Cardno was engaged to undertake surface water monitoring of the unnamed channel west of Wiley Park Station in accordance with the SWMP for the project. The objective of the works was to evaluate whether construction activities are impacting water quality downstream of the project footprint in the unnamed channel that receives in part stormwater from the construction area.

This report presents monitoring data from mid-construction wet-weather event on 23 February 2022. Samples were collected from two locations. Sampling point WP1 is located upstream from the work site while sampling point WP2 is located downstream of the work site.

During this wet-weather monitoring event, sampling results showed monitored parameters were generally within the adopted ANZG 2018 / ANZECC 2000 screening criteria with the exception of dissolved oxygen saturation, total nitrogen, and total phosphorous. The comparison of the mid-construction wet-weather event conducted on 23 February 2022 to the four previous wet-weather sampling events on 20 March, 5 May, 12 November and 26 November 2021 showed no significant difference.

During this wet-weather monitoring event, the results between upstream and downstream were generally comparable with the exceptions of pH, EC, DO, total nitrogen, and total phosphorous. The pH and EC measurements at the downstream sample were slightly higher than the upstream sample, but both downstream and upstream results were within the ANZG 2018/ANZECC 2000 criterion range. The DO result at the downstream sample was higher than the upstream sample, but it was closer to the adopted criterion range compared to the upstream sample. The total nitrogen and total phosphorous results at the downstream sample were slightly higher than the upstream sample, but the results at both upstream and downstream samples were generally consistent with the previous four mid-construction wet-weather events. Overall, the comparison of the upstream and downstream samples conducted on 23 February showed no significant difference.

Based on comparison to the criteria, comparison with four previous mid-construction wet-weather events, and comparison of the upstream and downstream results, the results reported for the 23 February 2022 sampling event are not considered to reflect an adverse impact to water quality due to construction activities.

9 References

- Southwest Metro Hurlstone Park, Belmore and Wiley Park Station Upgrades Soil and Water Management Plan, dated 16th February 2021;
- > The Sydney Metro City and Southwest Sydenham to Bankstown Upgrade Conditions of Approval SSI-8256, determined 12 December 2018;
- > Environmental Planning and Assessment Act 1979 (EP&A Act);
- > Contaminated Land Management Act 1997;
- > Protection of the Environment Operations Act 1997 (POEO Act);
- > Water Management Act 2000 Water Management (General) Regulation 2018;
- > Landcom (2004). Managing Urban Stormwater: Soils and Construction. (Volume 1 of the 'Blue Book');
- > DECC (2008). Managing Urban Stormwater: Soils and Construction. Volume 2D: Main Road Construction. (Volume 2D of the 'Blue Book');
- ANZECC (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (collectively known as the 'ANZECC Guidelines');
- > ANZECC (2000). Australian and New Zealand Guidelines for Water Quality Monitoring and Reporting (collectively known as the 'ANZECC Guidelines');
- > ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (known as 'ANZG Guidelines').

10 Limitations

This assessment has been undertaken in general accordance with the current industry standards for a surface water monitoring report for the purpose and objectives and scope identified in this report. The agreed scope of this assessment has been limited for the current purposes of the Client. The assessment may not identify contamination occurring in all areas of the site, or occurring after sampling was conducted. Subsurface conditions may vary considerably away from the sample locations where information has been obtained. This Document has been provided by Cardno subject to the following limitations:

- > This Document has been prepared for the particular purpose outlined in Cardno's proposal and Section 1 of this report and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.
- > The scope and the period of Cardno's services are as described in Cardno's proposal, and are subject to restrictions and limitations. Cardno did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Cardno in regards to it.
- Conditions may exist which were undetectable given the limited nature of the enquiry Cardno was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.
- In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Cardno's opinions are based upon information that existed at the time of the production of the Document. It is understood that the services provided allowed Cardno to form no more than an opinion of the actual conditions of the site at the time this Document was prepared and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.
- > Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.
- Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Cardno for incomplete or inaccurate data supplied by others.
- Cardno may have retained sub consultants affiliated with Cardno to provide services for the benefit of Cardno. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Cardno's affiliated companies, and their employees, officers and directors.

This assessment report is not any of the following:

- > A Site Audit Report or Site Audit Statement (SAR/SAS) as defined under the *Contaminated Land Management Act*, 1997 or an assessment sufficient for an Environmental Auditor to be able to conclude a SAR/SAS.
- > A geotechnical report and the bore logs/test pit logs may not be sufficient for geotechnical advice.
- > An assessment of surface water contaminants potentially arising from other sites or sources nearby.
- > A total assessment of the site to determine suitability of the entire parcel of land at the site for one or more beneficial uses of land

FIGURES

В

PHOTOGRAPHS

Photograph 1. Upstream sampling location WP1. Date: 23 February 2022.

Photograph 2. High stormwater in-flow observed from the discharge point WP1-DP1 which was located within the rail corridor and immediately downstream/north from WP1. Date: 23 February 2022.

Photograph 3. Downstream sampling location WP2. Date: 23 February 2022.

Photograph 4. High stormwater in-flow observed from both discharge points WP2-DP1 and WP2-DP2 which were located within the rail corridor and immediately upstream/south from WP2. Date: 23 February 2022.

C

FILED RECORDS

Page 1 of 1 Printed: 24/02/2022

Surface Water Sampling Field Record

_		iter Sampini		1	
Site / Project: Wiley Park S	Surface Water Mo	onitoring		Sampling F	oint:
Client: Downer				Job No. NE	30161
Person Sampling: JZ				Initials:	
		Site Details			
Sampling Equipment – Directly in	nto bottle / Vater Sco	oop/ Van Dorn Sam	oler / Other:	Date: 23/02/	2022
Observations on Site: Last Rain	Event / Fecent St	orms / Releases /	Other:		
Sample Details, Ob		Coordinates 8 le, record parameter		mical Measure	ments
Sample ID	WP_01	, room paramoter		WP_02	
Start Time:	10:20 am			11:10am	
Easting					
Northing					
Sample Depth (m)	0.3 -0.35			0.2-0.25	
Water Body Depth (m)	0.3-0.4			0.2-0.3	
Location — Onsite/Offsite //Inlet/Outlet/ Middle	upstream			downstream	
Flow Rate None/ Low / Med / High	High			High	
DO (mg/L)	4.94			6.0	
DO (%)	56.7			72	
EC (μS/Cm) -SPC	230			431	
рН	7.50			7.62	
Eh (mV) -ORP	55.3			81.4	
Temp (°C)	22.6			23.4	
Water Colour	clear			clear	
Turbidity Low / Med / High	low			low	
Observations / Notes	rate, contribute	with high flow d to the surface iter		Downstream high flow rate, the surfa	contributed to
	Sample Co	ontainer & Pres	ervation Data		
Number of sample containers:					
Container Volume					
Container Type					
Preservation					
Sample Number (for Lab ID):					
QC Dup Sample No.:		QA100 QA200			

Instrument Serial No.

YSI Quatro Pro Plus 11C100764

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	
Battery	Charge Condition	Pass	Comments
	Fuses		
	Capacity	V	
		*	
Switch/keypad	Operation		
Display		·	
- prej	Intensity	1	
	Operation	4	
Calli File	(segments)		
Grill Filter	Condition	v	
	Seal	1	
PCB	Condition	1	
Connectors	Condition	1	
Sensor	1. pH	1	
	2. mV	1	
	3. EC	1	
	4 D O	1	
	5. Temp	1	
	o. remp	Y	
Alarms	Beeper		
		v	
Software	Settings	1	
Data logger	Version	1	
Download	Operation	1	
Other tests:	Operation	1	
10315.	and the second second		

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading		
1. pH 10.00		pH 10.00		378646	pH 10.01		
2. pH 7.00		pH 7.00		377339	pH 7.02		
3. pH 4.00		pH 4.00		380327	pH 3.98		
4. mV		234.0mV		365451/374424	223.0mV		
5. EC		2.76mS		377099	2.74mS		
6. D.O		0.00 ppm		371864	0.04ppm		
7. Temp		20.6°C		MultiTherm	20.2°C		

Calibrated by:

Michelle Wagner

Calibration date:

21/02/2022

Next calibration due:

20/08/2022

Latest Weather Observations for Canterbury

IDN60801

Issued at 7:32 am EDT Wednesday 23 February 2022 (issued every 10 minutes, with the page automatically refreshed every 10 minutes)

Station Details ID: 066194 Name: CANTERBURY RACECOURSE AWS Lat: -33.91 Lon: 151.11 Height: 3.0 m

Data from the previous 72 hours. | See also: Recent months at Canterbury

Date/Time	Temp	App	Dew	Rel	Delta-T			Wind			Press	Press	Rain since
EDT	<u>°C</u>	<u>Temp</u> <u>°C</u>	Point °C	<u>Hum</u> <u>%</u>	<u>°C</u>	<u>Dir</u>	Spd km/h	Gust km/h	Spd kts	Gust kts	<u>QNH</u> <u>hPa</u>	MSL hPa	9am <u>mm</u>
23/07:30am	20.7	24.8	20.7	100	0.0	CALM	0	0	0	0	-	-	119.2
23/07:24am	20.5	24.5	20.5	100	0.0	CALM	0	0	0	0	-	-	119.2
23/07:00am	20.2	22.7	20.2	100	0.0	NE	7	15	4	8	-	-	117.6
23/06:56am	20.1	23.1	20.1	100	0.0	ENE	4	15	2	8	-	-	116.4
23/06:30am	19.9	23.6	19.9	100	0.0	CALM	0	6	0	3	-	-	114.8
23/06:29am	19.9	23.6	19.9	100	0.0	CALM	0	6	0	3	-	-	114.8
23/06:09am	19.8	23.4	19.8	100	0.0	CALM	0	0	0	0	-	-	114.8
23/06:00am	19.9	23.6	19.9	100	0.0	CALM	0	0	0	0	-	-	114.8
23/05:42am	19.8	23.4	19.8	100	0.0	CALM	0	0	0	0	-	-	114.8
23/05:30am	20.0	23.7	20.0	100	0.0	CALM	0	0	0	0	-	-	114.8
23/05:00am	20.2	24.0	20.2	100	0.0	CALM	0	0	0	0	-	-	114.8
23/04:30am	20.3	22.8	20.3	100	0.0	E	7	11	4	6	-	-	114.6
23/04:19am	20.4	22.6	20.4	100	0.0	E	9	15	5	8	-	-	114.4
23/04:00am	20.5	22.7	20.5	100	0.0	ENE	9	17	5	9	-	-	113.8
23/03:59am	20.5	22.7	20.5	100	0.0	ENE	9	17	5	9	-	-	113.8
23/03:55am	20.4	23.0	20.4	100	0.0	NE	7	13	4	7	-	-	112.8
23/03:30am	20.2	23.6	20.2	100	0.0	NE	2	7	1	4	-	-	111.0
23/03:03am	20.1	22.5	20.1	100	0.0	NE	7	9	4	5	-	-	108.8
23/03:00am	20.1	22.5	20.1	100	0.0	NE	7	7	4	4	-	-	108.6
23/02:57am	20.1	22.7	20.1	100	0.0	NE	6	7	3	4	-	-	108.6
23/02:39am	20.0	23.3	20.0	100	0.0	NE	2	7	1	4	-	-	107.8
23/02:36am	20.0	23.3	20.0	100	0.0	NE	2	7	1	4	-	-	107.8
23/02:30am	20.0	23.3	20.0	100	0.0	NE	2	7	1	4	-	-	107.6
23/02:00am	20.0	22.0	20.0	100	0.0	E	9	13	5	7	-	-	104.8
23/01:30am	20.2	21.9	20.2	100	0.0	N	11	22	6	12	-	-	101.6
23/01:18am	20.3	23.0	20.3	100	0.0	WNW	6	13	3	7		-	95.2
23/01:12am	20.3	23.8	20.3	100	0.0	W	2	7	1	4	-	-	94.6
23/01:00am	20.2	22.3	20.2	100	0.0	W	9	13	5	7	-	-	94.6
23/12:54am	20.2	22.3	20.2	100	0.0	W	9	13	5	7	-	-	94.4

Date/Time	Temp	App	Dew	Rel	Delta-T		Wind				Press	Press	Rain since
<u>EDT</u>	<u>°C</u>	<u>Temp</u> <u>°C</u>	Point °C	<u>Hum</u> <u>%</u>	<u>°C</u>	<u>Dir</u>	Spd km/h	Gust km/h	Spd kts	Gust kts	QNH hPa	MSL hPa	9am <u>mm</u>
23/12:30am	20.1	23.5	20.1	100	0.0	WSW	2	9	1	5	-	-	93.6
23/12:00am	20.1	23.9	20.1	100	0.0	CALM	0	0	0	0	-	-	93.6
Date/Time	Temp	App	Dew	Rel	<u>Delta-T</u>			Wind			Press	Press	Rain since
<u>EDT</u>	<u>°C</u>	<u>Temp</u> <u>°C</u>	Point °C	<u>Hum</u> .%	<u>°C</u>	<u>Dir</u>	Spd km/h	Gust km/h	Spd kts	Gust kts	QNH hPa	MSL hPa	9am <u>mm</u>
22/11:42pm	20.2	23.6	20.2	100	0.0	W	2	7	1	4	-	-	93.6
22/11:30pm	20.2	23.3	20.2	100	0.0	W	4	7	2	4	-	-	93.2
22/11:13pm	20.2	23.3	20.2	100	0.0	SSW	4	9	2	5	-	-	91.8
22/11:00pm	20.0	23.7	20.0	100	0.0	CALM	0	0	0	0	-	-	90.6
22/10:30pm	20.1	22.7	20.1	100	0.0	SSW	6	7	3	4	-	-	90.6
22/10:29pm	20.1	23.1	20.1	100	0.0	SSW	4	7	2	4	-	-	90.6
22/10:00pm	20.2	22.7	20.2	100	0.0	SSE	7	13	4	7	-	-	88.6
22/09:30pm	19.9	22.8	19.9	100	0.0	WSW	4	7	2	4	-	-	86.2
22/09:00pm	19.8	21.7	19.8	100	0.0	NNW	9	17	5	9	-	-	83.2
22/08:44pm	20.0	21.2	19.8	99	0.1	NW	13	28	7	15	-	-	76.8
22/08:30pm	19.9	22.3	19.7	99	0.1	SSW	6	11	3	6	-	-	75.6
22/08:23pm	19.9	22.1	19.7	99	0.1	SSW	7	11	4	6	-	-	75.6
22/08:00pm	20.1	22.0	19.8	98	0.2	SE	9	17	5	9	-	-	74.4
22/07:46pm	20.3	22.1	19.5	95	0.5	SSE	9	13	5	7	-	-	71.6
22/07:30pm	20.6	22.9	19.4	93	0.8	SSE	6	11	3	6	-	-	71.0
22/07:00pm	20.7	22.9	19.5	93	0.8	SSE	7	11	4	6	-	<u> - </u>	70.4
22/06:30pm	20.9	22.8	19.7	93	0.8	SE	9	13	5	7	-	-	70.4
22/06:00pm	20.7	22.3	20.0	96	0.4	SSE	11	19	6	10	-	-	70.4
22/05:30pm	20.6	22.1	20.6	100	0.0	SE	13	17	7	9	-	-	70.4
22/05:00pm	20.6	22.9	20.6	100	0.0	SE	9	15	5	8	-	-	70.4
22/04:30pm	20.8	22.8	20.8	100	0.0	SSE	11	19	6	10	-	-	70.2
22/04:00pm	20.3	24.2	20.3	100	0.0	CALM	0	4	0	2	-	-	69.6
22/03:49pm	20.2	24.0	20.2	100	0.0	CALM	0	0	0	0	-	-	69.4
22/03:30pm	19.9	22.8	19.9	100	0.0	S	4	7	2	4	-	-	68.4
22/03:00pm	19.9	21.9	19.9	100	0.0	ENE	9	13	5	7	-	-	65.8
22/02:30pm	19.4	20.7	19.4	100	0.0	ESE	11	19	6	10	-	-	61.4
22/02:00pm	20.3	22.1	20.3	100	0.0	SSE	11	19	6	10	-	-	48.4
22/01:30pm	20.2	21.9	20.2	100	0.0	S	11	20	6	11	-	-	28.2
22/01:00pm	20.0	21.9	19.8	99	0.1	SW	9	22	5	12	-	-	8.6
22/12:49pm	20.0	21.2	19.8	99	0.1	SW	13	20	7	11	-	-	7.4
22/12:30pm	20.2	22.2	1	99	0.1	SW	9	17	5	9	-	-	6.0
22/12:00pm	20.9	22.5	20.7	99	0.1	S	13	22	7	12	-	-	5.2
22/11:44am	20.6	22.0	20.4	99	0.1	S	13	20	7	11	-	-	5.2
22/11:30am	20.4	21.7	20.1	98	0.2	S	13	19	7	10	-	-	5.2
22/11:24am	20.5	21.8	20.2	98	0.2	S	13	19	7	10	-	-	4.6
22/11:05am	20.8	22.6	20.3	97	0.3	S	11	17	6	9	-	-	3.6
22/11:00am	20.8	22.6	20.3	97	0.3	S	11	17	6	9	-	-	3.6
22/10:42am	21.4	23.0	21.4	100	0.0	SSW	15	37	8	20	-	-	2.8

Date/Time	Temp	App	Dew	Rel	<u>Delta-T</u>			Wind			Press	Press	Rain since
EDT	<u>°C</u>	<u>Temp</u> <u>°C</u>	Point °C	<u>Hum</u> <u>%</u>	<u>°C</u>	<u>Dir</u>	Spd km/h	Gust km/h	Spd kts	Gust kts	QNH hPa	MSL hPa	9am <u>mm</u>
22/10:30am	20.4	21.8	19.6	95	0.5	SSW	11	17	6	9	-	-	1.8
22/10:16am	20.5	21.9	19.5	94	0.6	S	11	20	6	11	-	-	1.8
22/10:00am	20.7	22.5	19.5	93	0.8	S	9	15	5	8	-	_	1.4
22/09:57am	20.7	22.3	19.2	91	0.9	SSE	9	17	5	9	-	-	1.4
22/09:30am	22.1	22.7	19.5	85	1.7	SSE	15	26	8	14	-	-	0.0
22/09:00am	22.3	22.9	20.2	88	1.4	SE	17	28	9	15	-	-	5.0
22/08:33am	20.7	22.4	20.2	97	0.3	S	11	20	6	11	-	-	5.0
22/08:30am	20.4	21.6	19.9	97	0.3	SSW	13	20	7	11	-	-	5.0
22/08:00am	20.2	20.7	19.2	94	0.6	S	15	22	8	12	-	-	3.6
22/07:59am	20.2	21.1	19.2	94	0.6	S	13	20	7	11	-	-	3.4
22/07:30am	20.0	20.0	19.0	94	0.6	S	17	28	9	15	-	-	2.2
22/07:16am	20.0	20.0	19.0	94	0.6	SSE	17	26	9	14	-	-	2.2
22/07:00am	19.9	19.7	18.6	92	0.8	SSE	17	32	9	17	-	-	2.0
22/06:59am	20.0	19.4	18.5	91	0.9	SSE	19	32	10	17	-	-	2.0
22/06:30am	20.7	20.8	18.3	86	1.5	S	15	28	8	15	-	-	1.6
22/06:00am	21.3	21.9	18.7	85	1.6	S	13	22	7	12	-	-	1.6
22/05:30am	21.7	22.4	18.9	84	1.8	S	13	20	7	11	-	-	1.6
22/05:00am	22.9	23.9	19.5	81	2.2	SE	13	20	7	11	-	-	1.6
22/04:30am	22.8	23.4	19.4	81	2.2	SE	15	24	8	13	-	-	1.6
22/04:00am	22.7	23.2	19.3	81	2.2	ESE	15	22	8	12	-	-	1.6
22/03:30am	22.9	23.1	19.3	80	2.3	ESE	17	22	9	12	-	-	1.6
22/03:00am	22.9	23.9	19.5	81	2.2	ESE	13	22	7	12	-	-	1.6
22/02:30am	22.8	24.0	19.8	83	1.9	ESE	13	17	7	9	-	-	1.6
22/02:00am	22.6	24.9	19.9	85	1.7	ESE	7	13	4	7	-	-	1.6
22/01:30am	22.5	24.7	19.7	84	1.8	ESE	7	11	4	6	-	-	1.6
22/01:00am	22.8	24.8	20.0	84	1.8	ESE	9	15	5	8	-	-	1.6
22/12:30am	23.0	24.7	20.1	84	1.9	SE	11	15	6	8	-	-	1.6
22/12:00am	23.0	24.4	20.3	85	1.7	ESE	13	17	7	9	-	-	1.6

Date/Time	Temp	App	Dew	Rel	Delta-T	Wind				Press	Press	Rain since	
EDT	<u>°C</u>	<u>Temp</u> <u>°C</u>	Point °C	<u>Hum</u> <u>%</u>	<u>°C</u>	<u>Dir</u>	Spd km/h	Gust km/h	Spd kts	Gust kts	QNH hPa	MSL hPa	9am <u>mm</u>
21/11:30pm	22.6	26.4	20.9	90	1.1	ESE	2	11	1	6	-	-	1.6
21/11:00pm	22.6	26.9	21.1	91	1.0	CALM	0	0	0	0	-	-	1.6
21/10:30pm	22.8	26.8	20.5	87	1.5	CALM	0	0	0	0	-	-	1.6
21/10:00pm	23.0	25.9	20.7	87	1.5	ENE	6	11	3	6	-	-	1.6
21/09:30pm	22.9	26.7	21.0	89	1.2	NE	2	7	1	4	-	-	1.6
21/09:00pm	22.9	25.9	20.8	88	1.4	E	6	11	3	6	-	-	1.6
21/08:30pm	22.6	25.0	20.9	90	1.1	SE	9	15	5	8	-	-	1.6
21/08:00pm	22.7	24.0	20.8	89	1.2	ESE	15	20	8	11	-	-	1.2
21/07:30pm	22.9	23.8	20.1	84	1.8	E	15	24	8	13	-	-	0.6
21/07:00pm	23.7	23.4	19.2	76	2.9	ESE	19	26	10	14	-	-	0.0
21/06:30pm	24.0	22.8	19.3	75	3.0	SE	24	35	13	19	-	-	0.0
21/06:00pm	24.4	22.9	19.5	74	3.1	SE	26	35	14	19	-	-	0.0

Date/Time	Temp	App	Dew	Rel	Delta-T			Wind			Press	Press	Rain since
<u>EDT</u>	<u>°C</u>	Temp °C	Point °C	<u>Hum</u> <u>%</u>	<u>°C</u>	Dir	Spd km/h	Gust km/h	Spd kts	Gust kts	QNH hPa	MSL hPa	9am <u>mm</u>
21/05:30pm	24.8	23.6	19.2	71	3.6	SE	24	37	13	20	-	1-	0.0
21/05:00pm	26.1	24.1	20.0	69	4.0	SE	30	39	16	21	1-	1-	0.0
21/04:30pm	26.8	25.1	19.9	66	4.5	SSE	28	44	15	24	1-	1-	0.0
21/04:00pm	26.4	24.6	19.5	66	4.5	SE	28	43	15	23	1-	1-	0.0
21/03:30pm	26.6	24.6	19.2	64	4.8	SE	28	39	15	21	1-	1-	0.0
21/03:00pm	26.9	25.8	19.5	64	4.8	SE	24	35	13	19	1-	1-	0.0
21/02:30pm	26.5	25.1	19.6	66	4.5	SE	26	41	14	22	Ĭ-	Î-	0.0
21/02:00pm	26.9	26.0	19.8	65	4.6	SE	24	39	13	21	-	Î-	0.0
21/01:30pm	27.7	26.0	16.3	49	7.0	SE	20	28	11	15	-	1-	0.0
21/01:00pm	28.4	25.5	15.0	44	8.1	SSE	24	32	13	17	-	-	0.0
21/12:30pm	28.9	26.5	14.3	40	8.8	SE	20	32	11	17	-	-	0.0
21/12:00pm	30.9	33.0	17.2	43	8.7	NNW	2	7	1	4	1-	1-	0.0
21/11:30am	29.9	30.7	13.6	36	9.7	NE	2	9	1	5	1-	-	0.0
21/11:00am	28.1	28.4	15.1	45	7.9	E	7	17	4	9	-	-	0.0
21/10:30am	26.9	26.2	14.3	46	7.5	SE	11	15	6	8	1-	1-	0.0
21/10:00am	25.1	24.6	13.9	49	6.6	WNW	9	13	5	7	1-	1-	0.0
21/09:30am	24.2	23.7	13.7	52	6.1	NNW	9	15	5	8	-	-	0.0
21/09:00am	23.8	23.3	13.9	54	5.8	NNW	9	17	5	9	-	-	0.0
21/08:30am	23.7	20.9	12.7	50	6.3	WNW	19	32	10	17	-	-	0.0
21/08:00am	23.7	22.0	12.4	49	6.5	WNW	13	24	7	13	-	-	0.0
21/07:30am	25.3	22.6	10.4	39	8.3	W	15	26	8	14	-	-	0.0
21/07:00am	25.1	21.6	10.9	41	8.0	WNW	20	32	11	17	-	-	0.0
21/06:37am	25.6	20.9	10.6	39	8.4	NW	26	48	14	26	-	-	0.0
21/06:30am	25.7	21.8	10.7	39	8.4	NNW	22	48	12	26	-	-	0.0
21/06:00am	23.7	21.1	13.3	52	6.0	WSW	19	32	10	17	-	-	0.0
21/05:30am	24.3	21.8	14.1	53	6.0	NW	20	33	11	18	-	-	0.0
21/05:00am	23.8	22.8	16.6	64	4.4	NNW	17	28	9	15	-	-	0.0
21/04:30am	23.0	24.2	19.0	78	2.5	NNW	11	20	6	11	-	-	0.0
21/04:00am	22.6	24.2	19.2	81	2.2	NNW	9	13	5	7	-	-	0.0
21/03:30am	22.7	24.8	19.3	81	2.2	NNE	7	11	4	6	-]-	0.0
21/03:00am	22.6	24.5	19.8	84	1.8	NE	9	19	5	10	-	Ĭ-	0.0
21/02:30am	21.3	23.6	19.9	92	0.9	ENE	7	15	4	8	-]-	0.0
21/02:00am	20.5	23.8	19.0	91	0.9	CALM	0	0	0	0	-	Ï-	0.0
21/01:30am	20.5	23.6	18.6	89	1.2	CALM	0	0	0	0	-	Ï-	0.0
21/01:00am	20.8	23.9	18.6	87	1.4	CALM	0	0	0	0	-	Ï-	0.0
21/12:30am	21.7	24.8	18.7	83	1.9	CALM	0	0	0	0	Ī-	Ī-	0.0
21/12:00am	22.7	25.9	18.9	79	2.4	CALM	0	6	0	3	-	-	0.0
D.4. /Time	1 -	1 .	T _	I n.i	D-4- T	_					T _		

Date/Time	Temp °C	App Temp °C	Dew Point °C	Rel Hum %	Delta-T °C			Wind		Press	Press	Rain since	
<u>EDT</u>						<u>Dir</u>	Spd km/h	Gust km/h	Spd kts	Gust kts	<u>QNH</u> hPa	MSL hPa	9am <u>mm</u>
20/11:30pm	23.5	25.5	19.2	77	2.7	NNW	7	11	4	6	-	-	0.0
20/11:00pm	24.1	25.8	19.4	75	3.0	NNE	9	17	5	9	-	-	0.0
20/10:30pm	23.9	25.5	19.2	75	3.0	NE	9	17	5	9	-	-	0.0

Date/Time <u>EDT</u>	Temp °C	App Temp °C	Dew Point °C	Rel Hum %	<u>Delta-T</u> <u>°C</u>			Wind		Press	Press	Rain since	
						Dir	Spd km/h	Gust km/h	Spd kts	Gust kts	QNH hPa	MSL hPa	9am <u>mm</u>
20/10:00pm	24.1	25.0	19.2	74	3.1	NNE	13	22	7	12	-	Ī-	0.0
20/09:30pm	24.0	24.8	19.1	74	3.1	NNE	13	19	7	10	-	Ī-	0.0
20/09:00pm	24.3	24.4	19.1	73	3.3	NE	17	26	9	14	-	1-	0.0
20/08:30pm	24.1	24.1	19.0	73	3.2	NE	17	28	9	15	-	Ĭ -	0.0
20/08:00pm	24.4	23.9	18.6	70	3.7	NNE	19	30	10	16	-	1-	0.0
20/07:30pm	24.8	24.1	18.3	67	4.1	NE	19	35	10	19	-	1-	0.0
20/07:00pm	25.5	24.0	17.7	62	4.9	NE	22	37	12	20	-	1-	0.0
20/06:30pm	26.2	25.1	17.8	60	5.3	NE	20	35	11	19	-	1-	0.0
20/06:00pm	26.9	25.9	17.9	57	5.7	NE	20	30	11	16	-	1-	0.0
20/05:30pm	26.9	25.1	17.9	57	5.7	ENE	24	39	13	21	-	1-	0.0
20/05:00pm	27.6	25.9	18.0	55	6.1	ENE	24	33	13	18	-	1-	0.0
20/04:30pm	28.3	27.1	18.4	55	6.3	ENE	22	33	12	18	-	1-	0.0
20/04:00pm	28.3	26.3	17.5	52	6.8	ENE	24	33	13	18	-	1-	0.0
20/03:30pm	28.3	27.2	17.8	53	6.7	ENE	20	32	11	17	-	1-	0.0
20/03:00pm	27.9	26.9	18.0	55	6.3	ENE	20	32	11	17	-	-	0.0
20/02:30pm	28.1	28.0	18.8	57	6.0	ENE	17	28	9	15	-	-	0.0
20/02:00pm	28.5	29.0	19.2	57	6.0	ENE	15	26	8	14	-	-	0.0
20/01:30pm	27.8	28.2	19.1	59	5.6	NE	15	22	8	12	-	-	0.0
20/01:00pm	27.6	27.4	16.6	51	6.8	NNE	13	24	7	13	-	-	0.0
20/12:30pm	27.0	26.3	16.3	52	6.6	NNE	15	22	8	12	-	-	0.0
20/12:00pm	25.9	25.2	15.3	52	6.4	NNW	13	22	7	12	-	-	0.0
20/11:30am	26.4	24.8	15.1	49	6.8	NNE	17	26	9	14	-	-	0.0
20/11:00am	26.1	24.8	15.8	53	6.3	N	17	26	9	14	-	-	0.0
20/10:30am	25.1	26.0	17.6	63	4.7	N	9	15	5	8	-	-	0.0
20/10:00am	24.1	24.2	17.4	66	4.2	N	13	20	7	11	-	1-	0.0
20/09:30am	23.1	23.7	16.9	68	3.8	WNW	9	15	5	8	-	Î-	0.0
20/09:00am	22.3	22.9	16.8	71	3.4	WNW	9	13	5	7	-	1-	0.2
20/08:30am	21.1	22.2	17.1	78	2.4	NW	7	11	4	6	1-	1-	0.2
20/08:00am	19.8	20.9	17.0	84	1.7	WNW	7	9	4	5	-	1-	0.2

This page was created at 07:38 on Wednesday 23 February 2022 (AEDT)

[©] Copyright Commonwealth of Australia 2022, Bureau of Meteorology (ABN 92 637 533 532) | CRICOS Provider 02015K | Disclaimer | Privacy | Accessibility

LABORATORY SUMMARY TABLES

now				TPH			Inorg	ganics				Phys	io-Chemical	
Stant	ec		Chlorophyll a	Oil and Grease	Kjeldahl Nitrogen Total	Nitrate & Nitrite (as N)	Nitrogen (Total as N)	Phosphorus (Total as P)	TSS	Turbidity	Нd	Temprature	Electrical Conductivity	Dissolved Oxygen
			mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	NTU	Units	°C	uS/cm	%Sat
	0.002	10	0.1	0.01	0.2	0.01	1	1	0.01	0.1	0.1	0.1		
	ANZECC Criteria -	Freshwater	0.003	-	-	-	0.35	25	-	<6-50	6.5-8.5	-	125-2200	85% - 110%
Lab Report Number	Field ID	Date												
861805	WP1	9/02/2022	<2	<10	0.8	0.84	1.64	230	18	37	7.50	22.6	230	56.7
861805	WP2	9/02/2022	<2	<10	0.8	1.8	2.6	280	9.6	28	7.62	23.4	431	72
861805	QA100	9/02/2022	-	<10	1.4	1.8	3.2	290	29	29	-	-	-	-
ES2204592	QA200	9/02/2022	-	<5	0.5	1.52	2	290	13	35.1	-	-	-	-
Statistics														
	Maximum Conc	entration	<2	<10	1.4	1.8	3.2	290	29	37.0	7.62	23.4	431	72
* A Non Detect Multipli														

APPENDIX

Е

QUALITY ASSURANCE/QUALITY CONTRAL

now

Quality Assurance/Quality Control (QA/QC) procedures were implemented to ensure the precision accuracy, representativeness, completeness and comparability of all data gathered. The QA/QC procedures included:

- > Equipment calibration to ensure field measurements obtained are accurate
- > Equipment decontamination to prevent cross contamination
- > Use of appropriate measures (i.e. gloves) to prevent cross contamination
- > Appropriate sample identification
- > Correct sample preservation
- > Sample transport with Chain of Custody (CoC) documentation
- > Laboratory analysis in accordance with NATA accredited methods.

Table E1 details the QA/QC procedures and sample collection details undertaken through the surface water elements of the investigation. Copies of all the CoCs, along with the Sample Receipt Notifications (SRNs), Interpretive QA/QC Reports are provided in Appendix F.

Table E1 Field QA/QC Method Validation

Requirement	Yes / No	Comments
Equipment decontamination	Yes	In the event of involving reusable equipment. Decontamination of sampling equipment (water quality meter, telescopic water scoop etc.) was undertaken by washing with phosphate free detergent (Liquinox) followed by a rinse with potable water.
Sample collection	Yes	Samples were collected using disposable nitrile gloves via telescopic water scoop. A clean pair of gloves was used for each new sample being collected to limit the possibility of cross-contamination.
QA/QC sample collection*	Yes	One (1) surface water duplicate and one (1) surface water triplicate sample were collected for intra and inter-lab QA/QC purposes to monitor the quality of the field practices for sample collection. Cardno based the investigation around a rate of one duplicate and triplicate sample per sampling event, as the requirement for duplicate and triplicate sample collection.
Sample identification	Yes	All samples were marked with a unique identifier including project number, sample location, and date.
Sample preservation	Yes	Samples were placed in a chilled ice box with ice for storage and transport to the laboratory.
CoC documentation	Yes	A CoC form was completed by Cardno detailing sample identification, collection date, sampler and laboratory analysis required. The CoC form was signed off and returned to Cardno by the laboratory staff upon receipt of all the samples. CoC forms and Sample Receipt Notification (SRN) are provided in Appendix F . The SRN indicates that the samples were received at the laboratory intact and chilled and within the required holding times.
NATA accredited methods	Yes	The NATA accredited Eurofins mgt and ALS Analysed the samples in accordance with NATA accredited methods. Analytical methods used are indicated in the stamped laboratory results provided in Appendix F .
Laboratory Internal QC	Yes	All Data Quality Objectives were met by the laboratories.

"It is noted that the inter-laboratory duplicate sample QA200 for turbidity analysis did not meet the compliance time due to the extended sampling holding time by the laboratory. This

Table E2 Field QA/QC Collection Summary

Environmental Media	Date	Primary	Duplicate	Triplicate
Surface Water	23/02/2022	WP2	QA100	QA200

Relative Percentage Difference Determination

Laboratory results for duplicate and triplicate samples are assessed using a determination of the Relative Percentage Difference (RPD). Where a primary sample and a duplicate sample are compared, the RPD provides an indication of the reproducibility of the results, which incorporates the sampling method. Where a primary sample and a split sample are compared, the RPD provides an indication of the accuracy of the primary laboratory results as compared to the secondary laboratory result.

The calculation used to determine the RPD is:

$$RPD = \frac{(Co - Cs)}{\left(\frac{Co + Cs}{2}\right)} x100$$

Where:

Co = Concentration of the original sample

Cs = Concentration of the duplicate sample

In calculating the RPD values the following protocols were adopted:

- > Where both concentrations are above laboratory reporting limits the RPD formula is used;
- > Where both concentrations are below the laboratory reporting limits, no RPD is calculated; and
- > Where one or both sample concentrations are reported to be less than ten times (<10x) the laboratory reporting limit, the RPD is calculated but is not assessed against the adopted criterion.

In accordance with the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended 2013, Cardno adopts an RPD acceptance criterion up to 30% of the mean concentration of the analyte. It should be noted that variations might be higher for organic analysis, due to the volatile nature of the components, and for low concentrations of analytes.

The adopted criterion will not apply to RPDs where one of both concentrations are less than 10 times the reporting limit, as this criterion would otherwise overestimate the significance of minor variations in concentrations at or near the laboratory reporting limit. Large RPDs returned for low concentrations of analytes near the reporting limit is not as indicative of a significant difference in the results as a small RPD is for larger concentrations.

This approach is employed by NATA-accredited laboratories when assessing internal duplicate sample RPDs. This approach acknowledges that concentrations at or around the reporting limit are too low for an accurate evaluation of the significance of the RPD.

This approach has been adopted when assessing the relevance (compliance) of RPDs during this investigation. RPDs will be calculated for sample sets where one or both concentrations are less than 10 times the reporting limit for discussion purposes, but will not be assessed as a pass or fail in relation to the criterion.

The RPD results for duplicate samples are presented in this appendix. Although one (1) RPD value was reported to be above the accepted 30% RPD criteria. The breaches in RPDs are not considered to alter the overall outcome of the assessment. It can be concluded that the analytical data can be relied upon for the purposes of this factual report.

Laboratory QC and QCI Report Summary

The laboratories selected for undertaking the analysis (Eurofins mgt and ALS) are NATA-accredited for the analysis required, and undertook certain QA/QC requirements to demonstrate the suitability of the data that is obtained. The laboratory is required to undertake and report internal laboratory Quality Control (QC) procedures for all chemical analysis undertaken. The QC testing is required to include:

- > Laboratory duplicate sample analysis at the rate of one duplicate analysis per ten samples
- > Method blank at the rate of one method blank analysis per 20 samples

- > Laboratory control sample at the rate of one laboratory control sample analysis per 20 samples
- > Spike recovery analysis at the rate of one spike recovery analysis per 20 samples.

Compliance with the laboratory QA/QC requirements and non-conformance details are discussed in the internal Laboratory QA/QC reports included with the certificates of analysis in **Appendix F**. Laboratory QA/QC requirements were within acceptance limits.

Cardno concludes that the data reported by the NATA-accredited Eurofins mgt and ALS as presented in this report is suitable for interpretative purposes and to make conclusions/recommendations regarding water quality.

Project Number: NE30161 Site Identification: Wiley Park Station Report Title: Surface Water Monitoring

	11011
()	Stantec

now	TPH			Inorg	ganics		
Stantec	Oil and Grease	Kjeldahl Nitrogen Total	Nitrate & Nitrite (as N)	Nitrogen (Total)	Phosphorus	TSS	Turbidity
	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	NTU
	5	0.1	0.01	0.1	10	5	0.1

Lab Report Number	Field ID	Matrix Type	Date							
866292	WP2	water	23/02/2022	<10	0.8	1.8	2.6	280	9.6	28
	QA100	water	23/02/2022	<10	1.4	1.8	3.2	290	29	29
RPD	•	·	,	0	55	0	21	4	101	4
866292	WP2	water	23/02/2022	<10	0.8	1.8	2.6	280	9.6	28
ES2207026	QA200	water	23/02/2022	<5	0.5	1.52	2.0	290	13	35.1
RPD				0	46	17	26	4	30	23

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: (1 - 10 x EQL); 30 (10 - 30 x EQL); 30 (> 30 x EQL))

^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

APPENDIX

F

LABORATORY REPORTS

now

CHAIN OF CUSTODY AND ANALYSIS REQUEST

Page 1 of

iontact Person:	Jiaqi Zhou					Project N	ame:		Downer S	ydney Metr	Stations - 1	Wiley Park						
elephone Number:	0424 106 665					Project N	lumber:		NE30161									1
Uternative Contact:	Chong Zheng					PO No.:												1
elephone Number:	0451 780 991					Project S	pecific Que	ote No. :				19	0408CDNI	L1				1
lampler:	JZ					Turnarou	nd Require	ments:					5 Days TA	Г				Conn
imail Address (results a	nd invoice):	jiaqi.zhou@cardno.co ContamNSW@cardno	om.au; chong.zeng@ca o.com.au	rdno.com.qu;		Lab;			Eurofins	Unit F3, B	uilding F, 10	6 Mars Rd, I			2066			#866292
uddress: Level 9 - The f	Forum, 203 Pacific Highway, St I	eonards, New South	Wales 2065 Australia	a		Attn:			Sample F	Receipt								
		Sample information									Analysis F	Required						Comments
Cardno Sample ID	Laboratory Sample ID	No. Containers	Preservation	Date sampled	Matrix	Chlorophyll-a	158	Turbidity	Oil and Grease	Total Phosphorus	Total Nitrogen							
WP1		5	ICE		Water	1	1	1	1	1	1							Please reduce the detection limit of
WP2		5	ICE	23/02/2022	Water	1	1	1	1	1	1							Chlorophyll a from 5 ug/L to 2 ug/L
QA100		4	ICE	23/02/2022	Water		1	1	1	1	1							
QA200		4	ICE		Water		1	1	1	1	1							Please send to ALS
														1				
				-		-		4										
									-									
						-		-										
					-	-		-	-									
					-	-			-							-		
						-		-								-	-	
					-	-			-	-			-			-		
						1	-		-	-						+	-	
						1		-	-		1					-		
telinquished by:	Jiaqi Zhou Cardno ACT/NSW Pty Ltd	Received by: \(\square\)	EUTOFILLS	1	Refinquished by					Received						Relinquis		
ate & Time:	2/23/2022	Date & Time: 20	(12/22	0:49An	Date & Time:					Date & Ti						Date & Ti		
ignature:	J2	Signature: -	-(6)		Signature:					Signature						Signature		
received by:												1						
name / company)					Received by:					Relinquis						Lab use:		
		(name / company)			(name / compan	У				(name / c	ompany)					Samples	Received:	Cool of Amplent (circle one)
ate & Time:		Date & Time:			Date & Time:	e:			Date & Time: Temperatur				mperature Received at: \$7.200 (if applicable)					
ignature:		Signature:			Signature:					Signature	:					Transpor	ted by Hai	nd delivered / courier

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000
Lane Cove We NATA # 1261 Site # 1254

Unit F3 Building F NATA # 1261 Site # 18217

Brisbane NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 www.eurofins.com.au

ABN: 91 05 0159 898

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 EnviroSales@eurofins.com

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Cardno (NSW/ACT) Pty Ltd

Contact name:

Jiaqi Zhou

Project name:

DOWNER SYDNEY METRO STATIONS - WILEY PARK

Project ID: Turnaround time: NE30161 5 Day

Date/Time received

Feb 24, 2022 10:49 AM

Eurofins reference

866292

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Sample QA200 (1x unpreserved inorganics, 2x Oil and Grease and 1x preserved inorganics containers) forwarded to ALS for analysis.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Ursula Long on phone: or by email: UrsulaLong@eurofins.com

Results will be delivered electronically via email to Jiaqi Zhou - jiaqi.zhou@cardno.com.au.

Note: A copy of these results will also be delivered to the general Cardno (NSW/ACT) Pty Ltd email address.

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland

NZBN: 9429046024954

Mar 3, 2022

Jiaqi Zhou

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450

46-48 Banksia Road 35 O'Rorke Road Welshpool WA 6106 Penrose, Auckland 1061 Phone: +61 8 6253 4444

ABN: 91 05 0159 898

NATA # 2377 Site # 2370

Received:

Priority:

Contact Name:

Due:

Perth

Phone: +64 9 526 45 51 IANZ # 1327

Feb 24, 2022 10:49 AM

IANZ # 1290

Company Name:

Address:

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway

St Leonards

NSW 2065

Project Name:

DOWNER SYDNEY METRO STATIONS - WILEY PARK

Project ID: NE30161 Order No.: Report #:

Phone:

Fax:

866292

0294967700 02 9499 3902

Eurofins Analytical Services Manager: Ursula Long

5 Day

		Sar	mple Detail			Chlorophyll a	Oil & Grease (HEM)	Phosphate total (as P)	Total Suspended Solids Dried at 103°C-105°C	Turbidity	Total Nitrogen Set (as N)
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х				Х
Sydr	ney Laboratory	- NATA # 1261 S	Site # 18217					Х	Х	Х	
Brisl	pane Laboratory	y - NATA # 1261	Site # 20794	1							
May	ield Laboratory	- NATA # 1261	Site # 25079								
Pertl	n Laboratory - N	IATA # 2377 Sit	e # 2370								
Exte	rnal Laboratory	, 									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	WP1	Feb 23, 2022		Water	S22-Fe51030	Х	Х	Х	Х	Х	Χ
2	WP2	Feb 23, 2022		Water	S22-Fe51031	Х	Х	Х	Х	Х	Х
3	QA100	Feb 23, 2022		Water	S22-Fe51032		Х	Х	Х	Х	Х
Test	Counts		2	3	3	3	3	3			

Environment Testing

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway St Leonards NSW 2065

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Jiaqi Zhou

Report 866292-W

Project name DOWNER SYDNEY METRO STATIONS - WILEY PARK

Project ID NE30161
Received Date Feb 24, 2022

Client Sample ID Sample Matrix			WP1 Water	WP2 Water	QA100 Water
Eurofins Sample No.			S22-Fe51030	S22-Fe51031	S22-Fe51032
Date Sampled			Feb 23, 2022	Feb 23, 2022	Feb 23, 2022
Test/Reference	LOR	Unit			
Chlorophyll a	2	ug/L	< 2	< 2	-
Nitrate & Nitrite (as N)	0.05	mg/L	0.84	1.8	1.8
Oil & Grease (HEM)	10	mg/L	< 10	< 10	< 10
Phosphate total (as P)	0.01	mg/L	0.23	0.28	0.29
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.8	0.8	1.4
Total Nitrogen (as N)*	0.2	mg/L	1.64	2.6	3.2
Total Suspended Solids Dried at 103°C–105°C	5	mg/L	18	9.6	29
Turbidity	1	NTU	37	28	29

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chlorophyll a	Melbourne	Mar 01, 2022	28 Days
- Method: LTM-INO-4340 Chlorophyll a in Waters			
Oil & Grease (HEM)	Melbourne	Feb 28, 2022	28 Days
- Method: LTM-INO-4180 Oil and Grease (APHA 5520B)			
Phosphate total (as P)	Sydney	Feb 25, 2022	28 Days
- Method: E052 Total Phosphate (as P)			
Total Suspended Solids Dried at 103°C–105°C	Sydney	Feb 25, 2022	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Turbidity	Sydney	Feb 25, 2022	2 Days
- Method: LTM-INO-4140 Turbidity by Nephelometric Method			
Total Nitrogen Set (as N)			
Nitrate & Nitrite (as N)	Melbourne	Feb 28, 2022	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Total Kjeldahl Nitrogen (as N)	Melbourne	Feb 28, 2022	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

ABN: 91 05 0159 898 NZBN: 9429046024954

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway

St Leonards

NSW 2065

Project Name:

DOWNER SYDNEY METRO STATIONS - WILEY PARK

Project ID:

NE30161

Order No.: Report #:

Phone:

Fax:

866292 0294967700

02 9499 3902

Received: Feb 24, 2022 10:49 AM

IANZ # 1327

Due: Mar 3, 2022 **Priority:** 5 Dav **Contact Name:** Jiaqi Zhou

Eurofins Analytical Services Manager: Ursula Long

		Sai	mple Detail			Chlorophyll a	Oil & Grease (HEM)	Phosphate total (as P)	Total Suspended Solids Dried at 103°C-105°C	Turbidity	Total Nitrogen Set (as N)
Melb	ourne Laborato	ory - NATA # 120	61 Site # 125	4		Х	Х				Х
Sydr	ney Laboratory	- NATA # 1261 S	Site # 18217					Х	Х	Х	
Brist	oane Laboratory	y - NATA # 1261	Site # 20794	1							
Mayf	ield Laboratory	- NATA # 1261	Site # 25079								
Perti	n Laboratory - N	IATA # 2377 Sit	e # 2370								
Exte	rnal Laboratory										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	WP1	Feb 23, 2022		Water	S22-Fe51030	Х	Х	Х	Х	Х	Х
2	WP2	Feb 23, 2022		Water	S22-Fe51031	Х	Х	Х	Х	Х	Х
3	QA100	Feb 23, 2022		Water	S22-Fe51032		Х	Х	Х	Х	Х
Test	Counts					2	3	3	3	3	3

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/k: milligrams per kilogram mg/k: milligrams per litre $\mu g/k$: micrograms per litre

ppm: parts per million **ppb**: parts per billion
%: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report
CRM Certified Reference Material (ISO17034) - reported as percent recovery

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting.

Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data

Environment Testing

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Chlorophyll a			ug/L	< 2			2	Pass	
Oil & Grease (HEM)			mg/L	< 10			10	Pass	
Phosphate total (as P)			mg/L	< 0.01			0.01	Pass	
Total Kjeldahl Nitrogen (as N)			mg/L	< 0.2			0.2	Pass	
Turbidity			NTU	< 1			1	Pass	
LCS - % Recovery									
Oil & Grease (HEM)			%	110			70-130	Pass	
Phosphate total (as P)			%	106			70-130	Pass	
Total Kjeldahl Nitrogen (as N)			%	73			70-130	Pass	
Turbidity			%	93			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Phosphate total (as P)	S22-Fe57560	NCP	%	103			70-130	Pass	
Total Kjeldahl Nitrogen (as N)	S22-Fe51065	NCP	%	94			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Chlorophyll a	S22-Fe51030	CP	ug/L	< 2	< 2	<1	30%	Pass	
Total Kjeldahl Nitrogen (as N)	L22-Fe53184	NCP	mg/L	1.3	1.3	4.6	30%	Pass	
Turbidity	S22-Fe50864	NCP	NTU	2.3	2.4	1.0	30%	Pass	

Report Number: 866292-W

Environment Testing

Comments

Eurofins | Environment Testing accreditation number 1261, site 18217 is currently in progress of a controlled transition to a new custom built location at 179 Magowar Road, Girraween, NSW 2145. All results on this report denoted as being performed by Eurofins | Environment Testing Unit F3, Building F, 16 Mars road, Lane Cove West, NSW 2066, corporate site 18217, will have been performed on either Lane Cove or new Girraween site

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

Ursula Long Analytical Services Manager
Charl Du Preez Senior Analyst-Inorganic (NSW)
Scott Beddoes Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Jiaql Zhou

Contact Person:

CHAIN OF CUSTODY AND ANALYSIS REQUEST

Page

Contact Person:	Jiaqi Zhou					Project Na	alme:		Downer S	ydney Metro	Stations - V	Wiley Park						+		
elephone Number:	0424 106 665					Project Ni	umber:		NE30161	, ,								-		
Uternative Contact:	Chong Zheng					PO No.:												-		
elephone Number:	0451 780 991					Project S	secific Quo	te No. :				191	408CDNN	4				-		
iampler:	JZ						nd Require						Days TAT	· <u>·</u> ····				_	•	
imali Address (results a	nd invoice):	ilagi.zhou@cardno.c	om.au; chong.zeng@ca	dno.com,qu;		Lab;		. ž										- _{il}	£866292	
Widress: Level 9 The E	forum, 203 Pacific Highway, St L	ContamNSW@cardr	no.com.au						Euroina	UNK F3, Bu	Hding F, 16	6 Mars Rd, L	ana Cove Vi	est NSW	2066			_] -#	FOUNDA	
2000			n Wales 2065 Australia			Attn:		1	Sample R	ecelpt										
		Sample Information						Bay.		.,	Analysis F	Required							Comments	
Cardno Sample ID	Laboratory Sample ID	No. Containers	Preservation	Date sampled	Matrix	Chlorophyll-a	SS	urbidity	Oil and Grease	fotal Phosphorus	fotal Nitrogen						i Ang			
WP1		5	ICE		Water	1	1	1	1	1	1				***************************************	1		┪-	Please reduce the detection	n limit of
WP2		5	ICE	23/02/2022	Water	1	1	1	1	1	1					1	-		Chlorophyll a from 5 ug/L to	
QA100		4	ICE	23/02/2022	Water		1	1	1	1	1					+		1		
QA200		4.	ICE		Water		1	1	1	1	1							1	Please send to ALS	S
							ļ													
												Sydn We	ronmer ley ork Orde S22	r Refer	026	6				
elinguished by:	Jiaqi Zhou	Received by: 🚺	R O_		B-0				<u> </u>				<u> </u>				<u> </u>			
name / company)	Cardno ACT/NSW Ptv Ltd		Eurofius		Relinquished by:					Received I	-	,~\\\\\\\	AY	12	<u>اط 2</u>	Relinqui	shed by:			
ate & Time:	2/23/2022	1 07		0:49An	(name / company					(name / co	mpany)	~ /~	- 10	· ·		{name / c	empany)			
Ignature:		Date & Time: 20		 (11-1	Date & Time:					Date & Tin		514	<u> </u>	ූල	3	Date & T	lme:		0.0000	
		Signature; -			Signature:					Signature:	',					Signatur	G :			
eceived by:		Relinquished by:			Received by:					Relinquish	ed by:					Lab use:				
iame / company)		(name / company)			(name / company					(neme / co	mpany)					Samples	Received:	Cool g	Amblent (circle one)	
ate & Time:		Date & Time:			Date & Time:					Date & Tin	10:					Tempera	ture Recely	lved at:	8.2°C (If applicable)	
ignature:		Signature:			Signature:					Signature:									ivered / courier	

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2207026

Client : CARDNO (NSW/ACT) PTY LTD Laboratory : Environmental Division Sydney

Contact : JIAQI ZHOU Contact : Shane Ellis

Address : Level 9 The Forum 203 Pacific Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

(FN/024/20)

St Leonards NSW 2065

Highway

 Telephone
 : --- Telephone
 : +61 2 8784 8555

 Facsimile
 : --- Facsimile
 : +61-2-8784 8500

Project : NE30161 DOWNER SYDNEY METRO Page : 1 of 3

STATIONS - WILEY PARK

Order number : NE30161 Quote number : EP2020CARNSWACT0002

C-O-C number ; ---- QC Level ; NEPM 2013 B3 & ALS QC Standard

Site : ----Sampler : JZ

Dates

Date Samples Received : 01-Mar-2022 15:00 Issue Date : 02-Mar-2022

Client Requested Due : 07-Mar-2022 Scheduled Reporting Date : 07-Mar-2022 Date

Delivery Details

Mode of Delivery : Carrier Security Seal : Intact.

No. of coolers/boxes : 1 Temperature : 12.1'C - Ice Bricks present

Receipt Detail : No. of samples received / analysed : 1 / 1

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date · 02-Mar-2022

Page

2 of 3 ES2207026 Amendment 0 Work Order

Client : CARDNO (NSW/ACT) PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such VATER - EK062G otal Nitrogen as N (TKN + NOx reported) By as the determination of moisture content and preparation otal Phosphorus as P By Discrete Analyser tasks, that are included in the package. If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date uspended Solids - Standard is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component Oil & Grease (O&G) /ATER - EA025H 'ATER - EA045 Matrix: WATER Sample ID Laboratory sample Sampling date / ID time 23-Feb-2022 00:00 ES2207026-001 QA200

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: WATER

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Method		Due for	Due for	Samples Re	eceived	Instructions R	eceived
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation
EA045: Turbidity							
QA200	Clear Plastic Bottle - Natural		25-Feb-2022	01-Mar-2022	×		

Issue Date : 02-Mar-2022

Page

: 3 of 3 : ES2207026 Amendment 0 Work Order

Client : CARDNO (NSW/ACT) PTY LTD

Requested Deliverables

- EDI Format - ENMRG (ENMRG)

- EDI Format - ESDAT (ESDAT)

Chong	Zeng

- *AU Certificate of Analysis - NATA (COA)	Email	chong.zeng@cardno.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	chong.zeng@cardno.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	chong.zeng@cardno.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	chong.zeng@cardno.com.au
- A4 - AU Tax Invoice (INV)	Email	chong.zeng@cardno.com.au
- Chain of Custody (CoC) (COC)	Email	chong.zeng@cardno.com.au
- EDI Format - ENMRG (ENMRG)	Email	chong.zeng@cardno.com.au
- EDI Format - ESDAT (ESDAT)	Email	chong.zeng@cardno.com.au
ContamNSW		
- *AU Certificate of Analysis - NATA (COA)	Email	contamnsw@cardno.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	contamnsw@cardno.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	contamnsw@cardno.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	contamnsw@cardno.com.au
- A4 - AU Tax Invoice (INV)	Email	contamnsw@cardno.com.au
- Chain of Custody (CoC) (COC)	Email	contamnsw@cardno.com.au
- EDI Format - ENMRG (ENMRG)	Email	contamnsw@cardno.com.au
- EDI Format - ESDAT (ESDAT)	Email	contamnsw@cardno.com.au
INVOICES		
- A4 - AU Tax Invoice (INV)	Email	apinvoices@cardno.com.au
JIAQI ZHOU		
 *AU Certificate of Analysis - NATA (COA) 	Email	jiaqi.zhou@cardno.com.au
 - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	jiaqi.zhou@cardno.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	jiaqi.zhou@cardno.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	jiaqi.zhou@cardno.com.au
- A4 - AU Tax Invoice (INV)	Email	jiaqi.zhou@cardno.com.au
- Chain of Custody (CoC) (COC)	Email	jiaqi.zhou@cardno.com.au
EDITE (ENVIDO (ENVIDO)		

Email

Email

jiaqi.zhou@cardno.com.au

jiaqi.zhou@cardno.com.au

CERTIFICATE OF ANALYSIS

Work Order : E\$2207026

Page : 1 of 2

Client : CARDNO (NSW/ACT) PTY LTD

Laboratory : Environmental Division Sydney

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Contact : JIAQI ZHOU

Contact : Shane Ellis

Address : Level 9 The Forum 203 Pacific Highway

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

St Leonards NSW 2065

Telephone : ---

Telephone : +61 2 8784 8555

Date Samples Received : 01-Mar-2022 15:00

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

Date Samples Received : 01-Mar-2022 15:00

Order number : NE30161

Date Analysis Commenced : 02-Mar-2022

Sampler : JZ Site : ----

C-O-C number

Issue Date : 07-Mar-2022 12:31

Quote number : EN/024/20

No. of samples received : 1

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW

Page : 2 of 2 Work Order : ES2207026

Client : CARDNO (NSW/ACT) PTY LTD

Project NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QA200	 	
		Sampli	ng date / time	23-Feb-2022 00:00	 	
Compound	CAS Number	LOR	Unit	ES2207026-001	 	
				Result	 	
EA025: Total Suspended Solids dried	at 104 ± 2°C					
Suspended Solids (SS)		5	mg/L	13	 	
EA045: Turbidity						
Turbidity		0.1	NTU	35.1	 	
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	1.52	 	
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser					
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.5	 	
EK062G: Total Nitrogen as N (TKN + N	IOx) by Discrete An	alyser				
^ Total Nitrogen as N		0.1	mg/L	2.0	 	
EK067G: Total Phosphorus as P by Di	screte Analyser					
Total Phosphorus as P		0.01	mg/L	0.29	 	
EP020: Oil and Grease (O&G)						
Oil & Grease		5	mg/L	<5	 	

QUALITY CONTROL REPORT

· ES2207026 Work Order Page : 1 of 3

Client : CARDNO (NSW/ACT) PTY LTD Laboratory : Environmental Division Sydney

Contact : JIAQI ZHOU Contact : Shane Ellis

Address Address Level 9 The Forum 203 Pacific Highway : 277-289 Woodpark Road Smithfield NSW Australia 2164

St Leonards NSW 2065

Telephone Telephone : +61 2 8784 8555

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK Date Samples Received : 01-Mar-2022

Order number : NE30161 **Date Analysis Commenced** : 02-Mar-2022 · 07-Mar-2022

C-O-C number : ----Sampler ; JZ Site

Quote number : EN/024/20

No. of samples received : 1 No. of samples analysed : 1

Accreditation No. 825 Accredited for compliance with

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

Issue Date

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Page : 2 of 3 Work Order : ES2207026

Client : CARDNO (NSW/ACT) PTY LTD

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA025: Total Susper	nded Solids dried at 104 ± 2°	C (QC Lot: 4205302)							
ES2206493-017	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	6	10	44.8	No Limit
EW2200832-018	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	7	9	24.2	No Limit
EA045: Turbidity (Q	C Lot: 4204893)								
ES2207026-001	QA200	EA045: Turbidity		0.1	NTU	35.1	36.2	3.1	0% - 20%
ES2207107-002	Anonymous	EA045: Turbidity		0.1	NTU	44.2	44.6	0.9	0% - 20%
EK059G: Nitrite plus	s Nitrate as N (NOx) by Disc	rete Analyser (QC Lot: 4205371)							
ES2206948-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	1.83	1.84	0.0	0% - 20%
EK061G: Total Kjeld	ahl Nitrogen By Discrete An	alyser (QC Lot: 4205366)							
ES2206462-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	2.0	1.9	0.0	No Limit
ES2206874-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	1.6	1.5	0.0	No Limit
EK067G: Total Phos	phorus as P by Discrete Ana	alyser (QC Lot: 4205367)							
ME2200343-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.22	0.22	0.0	No Limit
EW2200956-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.0	No Limit

Page : 3 of 3 Work Order : ES2207026

Client : CARDNO (NSW/ACT) PTY LTD

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA025: Total Suspended Solids dried at 104 ± 2°C (QCLot: 4205302)							
EA025H: Suspended Solids (SS)	5	mg/L	<5	150 mg/L	95.0	83.0	129
			<5	1000 mg/L	97.9	82.0	110
			<5	463 mg/L	103	83.0	118
EA045: Turbidity (QCLot: 4204893)							
EA045: Turbidity	0.1	NTU	<0.1	40 NTU	98.0	91.0	105
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 4	205371)						
EK059G: Nitrite + Nitrate as N	0.01	mg/L	<0.01	0.5 mg/L	104	91.0	113
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 4205366)							
EK061G: Total Kjeldahl Nitrogen as N	0.1	mg/L	<0.1	10 mg/L	88.0	69.0	101
			<0.1	1 mg/L	88.2	70.0	118
			<0.1	5 mg/L	97.0	70.0	130
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 4205367)							
EK067G: Total Phosphorus as P	0.01	mg/L	<0.01	4.42 mg/L	96.3	71.3	126
			<0.01	0.442 mg/L	97.7	71.3	126
			<0.01	1 mg/L	106	71.3	126
EP020: Oil and Grease (O&G) (QCLot: 4208052)							
EP020: Oil & Grease	5	mg/L	<5	5000 mg/L	108	81.0	121

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER		Matrix Spike (MS) Report					
		Spike	SpikeRecovery(%)	Acceptable Limits (%)			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 420	5371)					
ES2206948-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	79.2	70.0	130
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 4205366)						
ES2206462-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		10 mg/L	96.5	70.0	130
EK067G: Total Pho	sphorus as P by Discrete Analyser (QCLot: 4205367)						
ME2200342-001	Anonymous	EK067G: Total Phosphorus as P		5 mg/L	104	70.0	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2207026** Page : 1 of 4

Client : CARDNO (NSW/ACT) PTY LTD Laboratory : Environmental Division Sydney

Contact : JIAQI ZHOU Telephone : +61 2 8784 8555

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK Date Samples Received : 01-Mar-2022

Site : ---- Issue Date : 07-Mar-2022

Sampler : JZ No. of samples received : 1
Order number : NE30161 No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4
Work Order : ES2207026

Client : CARDNO (NSW/ACT) PTY LTD

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

Outliers: Analysis Holding Time Compliance

Matrix: WATER

Method	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
			overdue			overdue
EA045: Turbidity						
Clear Plastic Bottle - Natural						
QA200				02-Mar-2022	25-Feb-2022	5

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: **x** = Holding time breach : ✓ = Within holding time.

Matrix: WATER				Evaluation	. * = Holding time	breach; ∨ = withi	n notaling time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA025: Total Suspended Solids dried at 104 ± 2°C							
Clear Plastic Bottle - Natural (EA025H) QA200	23-Feb-2022				02-Mar-2022	02-Mar-2022	✓
EA045: Turbidity							
Clear Plastic Bottle - Natural (EA045) QA200	23-Feb-2022				02-Mar-2022	25-Feb-2022	×
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) QA200	23-Feb-2022				03-Mar-2022	23-Mar-2022	√
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G) QA200	23-Feb-2022	03-Mar-2022	23-Mar-2022	1	03-Mar-2022	23-Mar-2022	✓
EK067G: Total Phosphorus as P by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK067G) QA200	23-Feb-2022	03-Mar-2022	23-Mar-2022	1	03-Mar-2022	23-Mar-2022	√
EP020: Oil and Grease (O&G)							
Amber Jar - Sulfuric Acid or Sodium Bisulfate (EP020) QA200	23-Feb-2022				04-Mar-2022	23-Mar-2022	√

Page : 3 of 4 Work Order ES2207026

CARDNO (NSW/ACT) PTY LTD Client

NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Oil and Grease	EP020	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	3	12	25.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Oil and Grease	EP020	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 4 of 4
Work Order : ES2207026

Client : CARDNO (NSW/ACT) PTY LTD

Project : NE30161 DOWNER SYDNEY METRO STATIONS - WILEY PARK

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions	
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)	
Turbidity	EA045	WATER	In house: Referenced to APHA 2130 B. This method is compliant with NEPM Schedule B(3)	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)	
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)	
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)	
Oil and Grease	EP020	WATER	In house: Referenced to APHA 5520 B. Oil & grease is a gravimetric procedure to determine the amount of dissolved or emulsified oil & grease residue in an aqueous sample. The sample is serially extracted three times n-hexane. The resultant extracts are combined, dehydrated and concentrated prior to gravimetric determination. This method is compliant with NEPM Schedule B(3)	
Preparation Methods	Method	Matrix	Method Descriptions	
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)	

Construction Monitoring Report November 2021 to April 2022

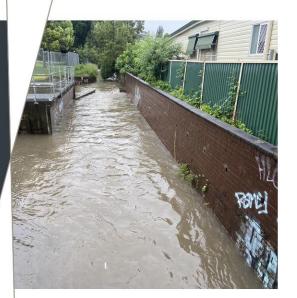
Sydney Metro City & Southwest - Package 5 & 6

Appendix 4 – Surface Water Monitoring Report – Wiley Park Station NE30161_R008_SWM_WileyPark_Rev0

Internal Use Only
© Downer 2020. All Rights Reserved

Page 40

Warning: Printed documents are UNCONTROLLED Version: Rev A


Surface Water Monitoring Report - Wiley Park Station

Wiley Park Station

NE30161

Prepared for Downer EDI Works Pty Ltd

28 March 2022

now

NE30161

Contact Information

Document Information

Cardno (NSW/ACT) Pty Ltd Prepared for Downer EDI Works Pty Ltd

ABN 95 001 145 035 **Project Name** Wiley Park Station

Level 9 - The Forum File Reference NE30161_R008_SWM_Wile

Job Reference

203 Pacific Highway yPark_Rev0.docx

Suburb State 2065 PO Box 19

Date 28 March 2022 www.cardno.com

Phone +61 2 9496 7700 Version Number Rev0

Author(s):

Chome

Fax

Chong Zeng Effective Date 28/03/2022

Environmental Engineer

+61 2 9439 5170

Approved By:

Mike Jorgensen **Date Approved** 28/03/2022

Principal Hydrogeologist

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
RevA	28/03/2022	Draft for Client Review	C.Zeng	M.Jorgensen
Rev0	28/03/2022	First Final	C.Zeng	M.Jorgensen

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

[©] Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Table of Contents

1	Introduction	1	
	1.1 Background	1	
	1.1 Purpose and Objective	2	
	1.2 Scope of Works	2	
2	Guidelines and Legislation	3	
3	Monitoring Locations	3	
	3.1 Monitoring Locations	3	
4	Quality Management	4	
	4.1 Data Quality Indicators	5	
5	Field Investigation	7	
6	Surface Water Assessment Criteria	8	
7	Summary of Results	9	
	7.1 Summary of Field Observations	9	
	7.2 Field Parameters	9	
	7.3 Surface Water Analytical Results	10	
	7.4 Results Discussion	12	
8	Conclusion	13	
9	References	14	
10	Limitations	15	
Append	dices		
Appendix	A Figures		
Appendix	B Photographs		
Appendix	C Filed Records		
Appendix	D Laboratory Summary Tables		
Appendix	E Quality Assurance/Quality Contral		
Appendix	F Laboratory Reports		
Tables			
Table 1-1	Summary of Surface Water Monitoring Event Undertaken to Date	1	
Table 1-2	Wiley Park Water Quality Monitoring Program	2	
Table 3-1	Surface Water Monitoring Location Details	3	
Table 4-1	Data Quality Objectives	4	
Table 4-2	Summary of Data Quality Indicators	5	
Table 5-1	Investigation Activity Summary	7	
Table 6-1	Water Quality Monitoring Parameters and Adopted Criteria at Wiley Park	8	
Table 7-1			
Table 7-2	Comparison of current wet condition sampling event to previous wet condition sa	ampling events 11	

1 Introduction

1.1 Background

Cardno (NSW/ACT) Pty Ltd ("Cardno") was commissioned by Downer EDI Works Pty Ltd ("Downer") to undertake monitoring and reporting of surface water quality of the unnamed channel within proximity to Wiley Park Station Upgrade Site. The proposed works includes the upgrade of the main station and installation of the Metro Services Building (MSB).

Surface water quality of the channel within proximity to Wiley Park Upgrade Site is to be monitored as per the requirements summarised in the **Table 1-2**, which is excerpted from the Southwest Metro – Hurlstone Park, Belmore and Wiley Park Station Upgrades Soil and Water Management Plan (SWMP). The monitoring program are prepared to meet the requirements outlined in *The Sydney Metro City and Southwest – Sydenham to Bankstown Upgrade Conditions of Approval SSi-8256*, specifically Condition 8 to Condition 10. The sampling locations (WP1 – Upstream and WP2 – Downstream) of the water quality monitoring are shown on in **Appendix A.**

The closest Project worksite to an existing watercourse is Wiley Park Station services building, which is located approximately 100 m from an unnamed concrete-lined channel, which forms the upper reaches of Coxs Creek and is identified as a first-order stream.

For the purpose of establishing baseline water quality data within the first-order stream at Wiley Park, water quality monitoring was intended to be undertaken for a period prior to construction of the Wiley Park services building as outlined in the Table 13 of the SWMP. At a minimum, one dry-weather sample and one wet weather sample (weather permitting) were intended to be collected during the pre-construction period. The frequency of pre-construction water quality monitoring within this channel was subject to water being present within the structure. However, during the baseline monitoring period no wet-weather events were able to be captured prior to commencement of construction. A dry-weather baseline monitoring event was undertaken on 10 March 2021.

This report presents the findings from the tenth surface water monitoring event, which was undertaken by Cardno on 9 March 2022. The event undertaken was a mid-construction wet-weather event. **Table 1-1** below summarised the surface water monitoring events undertaken to date by Cardno.

Table 1-1 Summary of Surface Water Monitoring Event Undertaken to Date

Date of Monitoring	Type of Event	Report Reference
10 March 2021	Pre-construction Dry Baseline	4NE30187_R001_SWM_WileyPark_Rev0
20 March 2021	Mid Construction Wet Weather	4NE30187_R001_SWM_WileyPark_Rev0
5 May 2021	Mid Construction Wet Weather	4NE30187_R002_SWM_WileyPark_Rev0
1 July 2021	Mid Construction Dry Weather	NE30161_R003_SWM_WileyPark_Rev0
30 September 2021	Mid Construction Dry Weather	NE30161_R004_SWM_WileyPark_Rev0
12 November 2021	Mid Construction Wet Weather	NE30161_R005_SWM_WileyPark_Rev0
26 November 2021	Mid Construction Wet Weather	NE30161_R005_SWM_WileyPark_Rev0
9 and 10 February 2022	Mid Construction Dry Weather	NE30161_R006_SWM_WileyPark_Rev0
23 February 2022	Mid Construction Wet Weather	NE30161_R007_SWM_WileyPark_Rev0

1.1 Purpose and Objective

The purpose of the surface water monitoring works is to monitor and record surface water quality within the unnamed channel in accordance with the monitoring program as outlined in the Site's SWMP. The objective of the works is to evaluate whether construction activities are impacting water quality downstream of the project footprint in the unnamed channel.

1.2 Scope of Works

Cardno undertook the following tasks during the surface water monitoring events:

- Inspected and sampled two (2) nominated surface water sampling locations (WP1 Upstream and WP2 Downstream) on 9 March 2022 as part of mid-construction wet-weather monitoring event.
- > Recorded field parameters and noted observations of the water bodies during sampling.
- Collected two (2) primary surface water samples, one (1) intra-lab duplicate sample and one (1) inter-lab duplicate sample per sampling event for submission to a National Association of Testing Authorities, Australia (NATA) certified laboratory for analytical testing of primary and additional quality assurance/quality control (QA/QC) samples. Samples were submitted for analysis of:
 - Oil & Grease;
 - Total Suspended Solids (TSS);
 - Nutrients (Total Phosphorous, Total Nitrogen);
 - Turbidity; and
 - Chlorophyll-a.
- > Reviewed the analytical and field data and prepared this report.

Details of the monitoring program are shown below.

Table 1-2 Wiley Park Water Quality Monitoring Program

Table 1-2 Wiley Falk Water Quality Monitoring Flogram			
	Wiley Park Water Quality Monitoring Program		
Waterway	Sydney Water Cooks River Channel (first-order stream)		
Indicative monitoring points	WP1 – Upstream		
	WP2 – Downstream		
Interaction with Project works	Channel within proximity to Wiley Park service building site		
Pre-construction works	Monthly for parameters detailed in Table 11 (including at least one dry-weather round of sampling). One wet-weather event, if possible, for the parameters detailed in Table 11, subject to event occurrence, safe conditions for monitoring and access being available to conduct monitoring. Note: A wet-weather event is when the receiving area has received greater than 20 mm of rain in 24 hours. The sampling is undertaken immediately during construction hours and if it is safe		
D 100	to do so.		
During construction of the Wiley Park services building	Quarterly for parameters detailed in Table 11 (including during dry weather). Four wet-weather events per year for the parameters in Table 11, subject to event occurrence, safe conditions for monitoring and access being available to conduct monitoring. Note: A wet-weather event is when the receiving area has received greater than 20 mm of rain in 24 hours. The sampling was undertaken immediately during construction hours and if it is safe to do so.		

2 Guidelines and Legislation

There are a range of Guidelines and Legislation and Conditions of Approval (CoA) that are applicable to the surface water monitoring program which are summarised below.

The CoA applicable to this job include:

> The Sydney Metro City and Southwest - Sydenham to Bankstown Upgrade Conditions of Approval SSI-8256, determined 12 December 2018;

The State and Federal legislation and policy and guidelines that apply to the program include:

- Environmental Planning and Assessment Act 1979 (EP&A Act);
- > Contaminated Land Management Act 1997;
- > Protection of the Environment Operations Act 1997 (POEO Act); and
- > Water Management Act 2000 Water Management (General) Regulation 2018;

Additional guidelines and standards to the management of soil and water include:

- > Landcom (2004). Managing Urban Stormwater: Soils and Construction. (Volume 1 of the 'Blue Book');
- > DECC (2008). Managing Urban Stormwater: Soils and Construction. Volume 2D: Main Road Construction. (Volume 2D of the 'Blue Book');
- > ANZECC (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (collectively known as the 'ANZECC Guidelines');
- ANZECC (2018). Australian and New Zealand Guidelines for Water Quality Monitoring and Reporting (collectively known as the 'ANZECC Guidelines'); and
- > ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (known as 'ANZG Guidelines').

3 Monitoring Locations

Details of the sampling locations are provided in **Table 3-1**. The locations are provided in **Appendix A.** Representative photographs are presented in **Appendix B**.

3.1 Monitoring Locations

Table 3-1 Surface Water Monitoring Location Details

Sample Location	Latitude	Longitude	Description
WP1 (up-stream)	-33.924014	151.065315	Immediately south of the Boulevarde and east of 118 the Boulevarde.
WP2 (down-stream)	-33.923339	151.064970	Immediately north of the Urunga Parade and west of 4 Urunga Parade.

4 Quality Management

The Data Quality Objective (DQO) process is used to establish a systematic planning approach to set the type, quantity and quality of data required for making decisions based on the environmental condition of the project area. The DQO process involves the seven steps detailed in **0**.

Table 4-1 Data Quality Objectives

Table 4-1 Data Quality Objectives								
DQO	Description							
Step 1 State the Problem	Construction work may adversely impact the local surface water quality within the unnamed channel near the site.							
Step 2 Identify the Decisions	Are there any impacts to surface water quality from construction activities at the site?							
Step 3	The primary inputs to the decisions described above are:							
Identify Inputs to the Decision	 Assessment of surface water quality of the unnamed channel within proximity to Wiley Park service building site per the requirements outlined in the site's SWMP, with samples collected from two locations (upstream and downstream of the site); 							
	 Laboratory analysis of surface water samples for relevant parameters; Assessment of the quitability of the analytical data obtained against the Data. 							
	 Assessment of the suitability of the analytical data obtained, against the Data Quality Indicators (DQIs); 							
	 Assessment of the analytical results against applicable guideline criteria; and 							
	 Aesthetic observations of surface water bodies, including odours, sheen and condition, if encountered. 							
Step 4 Define the Study Boundaries	The lateral extent of the study area is the channel near the Wiley Park service building site.							
Domino and Globy Dountained	The temporal boundaries of the study comprise the duration of the monitoring program, including pre-construction monitoring, construction phase, and post-construction monitoring as required.							
Step 5	The decision rules for the water quality monitoring sampling events included:							
Develop a Decision Rule	Were primary and QA/QC samples analysed using methods endorsed by relevant regulatory guidelines at laboratories NATA-accredited for the requested analyses?							
	Did the field and laboratory QA/QC results indicate that the data set was reliable and representative of the water quality with Relative Percentage Difference (RPD) values of 30% or less?							
	• Were the laboratory limits of reporting (LORs) below the applicable guideline criteria for the analysed parameters?							
	Were guideline criteria sourced from endorsed guidelines?							
	Were surface water aesthetic characteristics evaluated including odours and sheen?							
	Were the monitoring results obtained from the downstream sample collected during construction phase greater than the upstream sample collected during the same monitoring event? If so, then the adverse impact to the quality of water in the unnamed channel is considered to have potentially occurred.							
Step 6 Specify Limits on Decision	In accordance with the relevant guidelines as endorsed under the Contaminated Land Management Act 1997.							
Error	Specific limits for this project are in accordance with the appropriate guidance made or endorsed by state and national regulations, appropriate indicators of data quality, and standard procedures for field sampling and handling.							
	This step also examines the certainty of conclusive statements based on the available new Site data collected. This should include the following points to quantify tolerable limits:							
	A decision can be made based on a certainty assumption of 95% confidence in any given data set (excluding asbestos). A limit on the decision error will be 5% that a conclusive attempt may be a follow positive or follow positive.							
	that a conclusive statement may be a false positive or false negative.							

DQO Description

A decision error in the context of the decision rule presented above would lead to either underestimation or overestimation of the risk level associated with a particular sampling area. Decision errors may include:

- Sampling errors may occur when the sampling program does not adequately detect the variability of a contaminant from point to point across the Site. To address this, minimum numbers of samples are proposed to be collected from each media. As such, there may be limitations in the data if aspects of the sampling plan cannot be implemented. Some examples of this scenario include but not limited to:
 - Proposed samples are not collected due to lack of water flow or access being restricted to a given location.
- Limitations in ability to acquire useful and representative information from the data collected. The data are proposed to be collected from multiple locations and sample media.
- Measurement errors can occur during sample collection, handling, preparation, analysis and data reduction. To address this the following measures are proposed:
 - Field staff to follow a standard procedure when undertaking samples, including decontamination of tools, removal of adhered soil to avoid false positives in results, collection of representative samples and use of appropriate sample containers and preservation methods.
 - Laboratories to follow a standard procedure when preparing samples for analysis and undertaking analysis.
 - Laboratories to report QA/QC data for comparison with the DQIs established for the project

Step 7
Optimise the Design for Obtaining Data

To achieve the DQOs and DQIs, the following sampling procedures were implemented to optimise the design for obtaining data:

- Surface water samples was collected from two (2) sampling locations, as available
 due to access and water level:
- Surface water parameters were selected based on project monitoring requirements provided to Cardno;
- Samples were collected by suitably qualified and experienced environmental scientists;
- Samples were collected and preserved in accordance with relevant standards/guidelines; and
- Field and laboratory QA/QC procedures were adopted and reviewed to indicate the reliability of the results obtained.

4.1 Data Quality Indicators

The following DQIs have been adopted for the project. The DQIs outlined in **Figure 1352327993-0Table 4-2** assist with decisions regarding the usefulness of the data obtained, including the quality of the laboratory data.

Table 4-2 Summary of Data Quality Indicators

Data Quality Indicator	Frequency	Data Acceptance Criteria
Completeness		
Field documentation correct	All samples	The work was documented in accordance with Cardno SOPs
Suitably qualified and experience sampler	All samples	Person deemed competent by Cardno collecting and logging samples
Appropriate lab methods and limits of reporting (LORs)	All samples	Samples were analysed using methods endorsed by relevant regulatory guidelines at laboratories NATA-accredited for the requested analyses.
Chain of custodies (COCs) completed appropriately	All samples	The work was documented in accordance with Cardno SOPs

Data Quality Indicator	Frequency	Data Acceptance Criteria
Sample holding times complied with	All samples	The samples were extracted and analysed within holding times specified by the project NATA-accredited laboratory
Proposed/critical locations sampled	-	Proposed/critical locations sampled
Comparability		
Consistent standard operating procedures for collection of each sample. Samples should be collected, preserved and handled in a consistent manner	All samples	All works undertaken in accordance with Cardno SOPs
Experienced sampler	All samples	Person deemed competent by Cardno collecting and logging samples
Climatic conditions (temp, rain etc) recorded and influence on samples quantified (if required)	All samples	Climatic conditions documented in field sheets
Consistent analytical methods, laboratories and units	All samples	Sample analysis to be in accordance with NATA-approved methods
Representativeness		
Sampling appropriate for media and analytes (appropriate collection, handling and storage)	All samples	Sample analysis to be in accordance with NATA-approved methods
Samples homogenous	All samples	All works undertaken in accordance with Cardno SOPs
Detection of laboratory artefacts, e.g. contamination blanks	-	Laboratory artefacts assessed and impact on results determined
Samples extracted and analysed within holding times	All samples	The samples were extracted and analysed within holding times specified by the laboratory
Precision		
Blind duplicates (intra-laboratory duplicates)	1 per 20 samples	Less than or equal to 30% RPD No Limit RPD Result less than 10 × LOR
Split duplicates (inter-laboratory duplicates)	1 per 20 samples	Less than or equal to 30% RPD No Limit RPD Result less than 10 × LOR
Laboratory duplicates	1 per 20 samples	Results greater than 10 x LOR: less than or equal to 30% RPD Results less than 10 x LOR: No limit on RPD
Accuracy (Bias)		
Surrogate spikes	All organic samples	50-150%
Matrix spikes	1 per 20 samples	70-130%
Laboratory control samples	1 per 20 samples	70-130%
Method blanks	1 per 20 samples	Less than LOR

The DQOs for the project were met during the monitoring event. Discussion of the QA/QC assessment is provided in $\bf Appendix \, E$.

5 Field Investigation

The scope and method of the surface water monitoring is summarised in **Table 5-1**.

Table 5-1 Investigation Activity Summary

Activity	Details
Dates of Fieldwork	9 March 2022
Surface Water Sampling	Cardno inspected two surface water monitoring locations (WP1 – Upstream and WP2 – Downstream). Primary samples were collected from the two locations during the sampling event. Cardno undertook the sampling as per the following procedures:
	<u>Surface Water Body Inspection</u> - The general site condition was observed prior to commencement of field works for signs of any site activities that may have altered the surface water contamination status or require modifications to the field or laboratory works program.
	Each surface water location was inspected for indicators of contamination and the presence as well as the flow of surface water. This information is recorded on the field sheets presented in Appendix C .
	<u>Surface water sampling</u> - Field parameters and visual/olfactory observations were recorded prior to sampling at each location. Physico-chemical parameters including pH, electrical conductivity (EC), dissolved oxygen (DO), reduction-oxidation potential (redox), and temperature were measured using a calibrated water quality meter. Surface water samples were collected either directly into the sampling bottle or directly from the telescopic scoop. Once field parameters were recorded, the surface water samples were transferred to appropriately preserved sample containers provided by the laboratories. Field observations, and parameters are presented in Appendix C .
	Surface water samples were placed into an Esky containing ice and maintained at or below 4°C whilst onsite and in transit to the NATA-accredited laboratories for the targeted analyses.
Surface Water Analysis	Surface water samples from the monitoring event were submitted under standard chain-of-custody (CoC) procedures to NATA-accredited Eurofins Environment Testing Australia analysis of the parameters as follows:
	- Oil & Grease;
	 Total Suspended Solids (TSS);
	 Nutrients (Total Phosphorous, Total Nitrogen);
	 Turbidity; and
	- Chlorophyll-a.
	Tabulated laboratory results are presented in Appendix D . The Data QA /QC program and data quality review including calibration certificates is presented in Appendix E .
	Copies of the original laboratory reports, NATA-stamped laboratory certificates, and CoC documentation are included in Appendix F .
Decontamination	In the event of reusable sampling or monitoring equipment (telescopic scoop, water quality meter) was used decontamination was undertaken. Decontaminated between locations using a standard bucket wash. Equipment was washed in phosphate-free detergent (Liquinox) and rinsed in laboratory supplied rinsate water.

Surface Water Assessment Criteria 6

The assessment criteria for surface water analytical and field data were adopted from Table 11 of the site's SWMP. The criteria for selected parameters are provided in Table 6-1 below. ANZECC guideline criteria are included in the table for reference.

Table 6-1 Water Quality Monitoring Parameters and Adopted Criteria at Wiley Park

Parameter	ANZECC Criteria – Freshwater ¹	Proposed Triger Values ²	Proposed Actions
Temperature (°C)	>80% ile; <20% ile		
DO (%Sat)	Lower limit – 85% Upper limit – 110%	Downstream results are	
Turbidity (NTU)	6-50 NTU	greater than upstream results in rainfall events up	Environment Manager (or
Oil and grease	-	to and including the significant event threshold	delegate) to re-test to confirm results and
рН	Lower limit – 6.5 Upper limit – 8.5	of greater than 20 mm in 24 hours.	undertake an inspection of the adjacent works and
Salinity (as EC)	125 – 2,200 μS/cm	Downstream results are greater than upstream	propose actions where required.
TSS	-	results during dry-weather	
Total Phosphorus as P	25 μg/L	sampling.	
Total Nitrogen as N	350 μg/L	_	
Chlorophyll-a	3 μg/L		

Note to Table

ANZECC guideline criteria are included for reference. It is noted that for dry weather events baseline testing comparison will indicate whether this existing water quality within the channel meet ANZECC guidelines, prior to construction of the services building. For wet-weather events where no baseline data is available a direct comparison to upstream and downstream results is undertaken. Sydney Metro's Principal Contractor will comply with Section 120 of the Protection of the Environment Operations Act 1997.

For the ANZECC criteria given in a range (i.e. DO, pH, temperature, etc.), measured field parameters at downstream and upstream were assessed in comparison to the

7 Summary of Results

7.1 Summary of Field Observations

The two (2) surface water sampling locations (WP1 – Upstream and WP2 – Downstream) were able to be accessed during the sampling event conducted on 9 March 2022. Photos of each sampling location are included in **Appendix A**. The following observations were made:

7.1.1 Mid-Construction Wet-weather Event – 9 March 2022

- > The sampling event was considered as a mid-construction wet-weather event based on the rainfall data recorded by the nearby weather station:
 - Canterbury Racecourse AWS station (ID: 066194): approximately 4.6 km from the site with the rainfall data recorded 68.6 mm over the last 24 hours prior to the field sampling. Refer to **Appendix C** for weather recordings.
- > Observation of water body:
 - WP 1 (upstream of work area) contained high flowing clear water with low turbidity. The estimated depth
 of the water body was 0.15 to 0.2 m;
 - WP 2 (downstream of work area) contained high flowing clear water with low turbidity. The estimated depth of the water body was 0.15 to 0.2 m;
- > Additional observation:
 - WP1 (upstream of work area):
 - One discharge point (WP1-DP1) was observed immediately downstream / north of WP1. Medium flow contribution was observed at the time of sampling. Refer to **Appendix A** for approximate location of WP1-DP1. Refer to **Appendix B** for a detailed photo.
 - WP2 (downstream of work area):
 - During the sampling event, the two discharge points (WP2-DP1 and WP2-DP2) within the rail corridor immediately upstream / south from WP2 were observed. Medium level of flow contribution was observed from discharge point WP2-DP1 and high level of flow contribution was observed from discharge point WP2-DP2. Refer to Appendix A for approximate location of WP2-DP1 and WP2-DP2. Refer to Appendix B for detailed photos.

7.2 Field Parameters

The parameters from each location sampled are presented in **Table 7-1**.

Table 7-1 Field Physico-chemical Parameters and Field Observations on 9 March 2022

Location ID	WP1 (upstream)	WP2 (downstream)
Water depth (m)	0.15-0.2	0.15-0.2
Estimated Flow Rate	high	high
Temperature (°C)	19.4	19.4
рН	7.78	7.85
Electrical Conductivity (µS/cm)	622	659
Dissolved Oxygen (mg/L)	5.38	5.34
Dissolved Oxygen (%)	58.4	58.1
Oxidation-Reduction Potential (mV)	73.5	81.6
SHE ¹ Redox Potential (mV) ²	282.3	290.4

Location ID	WP1 (upstream)	WP2 (downstream)
Condition	Clear Low Turbidity	Clear Low Turbidity
Note to Table	Low Fulbidity	Low Turbidity

Note to Table

SHE – Standard Hydrogen Electrode

Water quality meter utilised on the day of monitoring contains Ag/AgCI reference electrode with 3.5 M KCI filling solution. As such, SHE was calculated based on Table 1 of US EPA document: SESDPROC-113-R2, Field Measurement of Oxidation-Reduction Potential (ORP).

7.3 Surface Water Analytical Results

Surface Water Analytical results are presented in **Appendix D**. Copies of the original laboratory reports, NATA-stamped laboratory certificates, and Chain of Custody documentation are included in **Appendix F**.

7.3.1 Mid-Construction Wet-weather Event – 23 February 2022

The results of the monitoring event indicate that:

- > Laboratory analytical results:
 - Concentrations of Chlorophyll-a were reported below the laboratory detection limit at both sample locations;
 - Concentrations of Oil and Grease were reported at 10 mg/L within the upstream sample (WP1) and below laboratory detection limit within the downstream sample (WP2);
 - Concentrations of inorganics (total nitrogen and the total phosphorous) were reported:
 - Total nitrogen:
 - > Upstream (WP1): 1.9 mg/L
 - > Downstream (WP2): 1.8 mg/L
 - Total phosphorous:
 - > Upstream (WP1): 0.16 mg/L
 - > Downstream (WP2): 0.14 mg/L
 - TSS were reported with concentration of 17 mg/L at upstream sample (WP1) and 7.8 mg/L at downstream sample WP2; and
 - Turbidity was reported with concentration of 31 NTU at upstream sample (WP1) and 22 NTU at downstream sample (WP2).

7.3.2 Baseline Results Comparison

One sampling event during the pre-construction period (baseline event) was undertaken on 10 March 2021 which was during dry condition. It should be noted that wet-weather and storm-event pre-construction monitoring was not able to be conducted because of the lack of rainfall. The monitoring results of baseline event (10 March 2021) has not been used for comparison with the monitoring results under this report because the conditions encountered were different (i.e. non-trigger for wet-weather event criteria). However, five previous mid-construction wet weather sampling events were used to compare and check if there is any potential adverse impact to the water quality caused by the construction activities.

The parameters from each location sampled are presented in **Table 7-2**. Overall, conditions are similar between upstream and downstream samples on 9 March 2022 and previous mid-construction wet weather events.

Table 7-2 Comparison of current wet condition sampling event to previous wet condition sampling events

Time of sampling		20 Mar	ch 2021	5 May	/ 2021	12 Noven	nber 2021	26 Noven	nber 2021	23 Febru	uary 2022	9 Marc	h 2022
Location ID	Assessment Criteria	WP1	WP2	WP1	WP2	WP1	WP2	WP1	WP2	WP1	WP2	WP1	WP2
Temperature (°C)	N/A ²	20.2	20	18.6	18.2	19.4	19.5	19.6	19.7	22.6	23.4	19.4	19.4
рН	6.5 - 8.5	8.10	7.58	7.80	7.73	8.10	8.42	6.07	7.34	7.50	7.62	7.78	7.85
EC (µS/cm)	125 – 2,200	246.2	133.4	2,500	92.9	514	509	389	484	230	431	622	659
DO (mg/L)	N/A ²	4.79	3.92	6.35	5.95	6.42	5.63	9.05	9.31	4.94	6.0	5.38	5.34
DO (%)	85% - 110%	52.9	43.2	65.3	62.8	68	63	99	102	56.7	72	58.4	58.1
SHE ¹ Redox Potential (mV) ⁴	N/A²	122.3	135.9	164.6	109.2	70.8	80.4	184	196	261.5	287.6	282.3	290.4
Chlorophyll a (μg/L)	3	<5	<5	<5	<5	<2	<2	<2	2.7	<2	<2	<2	<2
Oil and Grease (mg/L)	Comparison	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	10	<10
Kjeldahl Nitrogen Total (mg/L)	N/A ²	0.6	0.8	NT ³	NT ³	NT ³	NT³	NT ³	NT ³	0.8	0.8	NT³	NT³
Nitrate & Nitrite (as N) (mg/L)	N/A ²	1.7	1.5	NT ³	NT³	NT ³	NT³	NT ³	NT ³	0.84	1.8	NT³	NT³
Nitrogen (Total) (mg/L)	0.35	2.3	2.3	5.0	1.0	2.7	2.8	1.6	2.4	1.64	2.6	1.9	1.8
Phosphate total (as P) (mg/L)	0.025	<0.5	<0.5	0.21	0.15	0.15	0.02	0.13	0.18	0.23	0.28	0.16	0.14
TSS (mg/L)	N/A ²	9.2	35	4.0	47	8.4	7.6	16	7.8	18	9.6	17	7.8
Turbidity (NTU) Note to Table	6-50	9.3	13	4.3	21	21	19	25	17	37	28	31	22

SHE – Standard Hydrogen Electrode

² Not Applicable

³ NT – Not Tested

Water quality meter utilised on the day of monitoring contains Ag/AgCl reference electrode with 3.5 M KCl filling solution. As such, SHE was calculated based on Table 1 of US EPA document: SESDPROC-113-R2, Field Measurement of Oxidation-Reduction Potential (ORP).

7.4 Results Discussion

7.4.1 Comparison to ANZG 2018 / ANZECC 2000 Criteria

Results for the mid-construction wet-weather event sampled on 9 March 2022 generally showed monitored parameters were within the adopted threshold criteria, with the exception of dissolved oxygen saturation, total nitrogen, and total phosphorous.

- Dissolved oxygen saturation measured at both upstream sample (WP1: 58.4%) and downstream sample (WP2: 58.1%) were outside of the adopted criterion range (i.e., 85% to 110%). However, this is not considered to be a significant issue as the difference measured between WP1 and WP2 is minor with only 0.5% difference.
- > Total nitrogen measured at both upstream sample (WP1: 1.9 mg/L) and downstream sample (WP2: 1.8 mg/L) were above the adopted criteria (i.e. 0.350 mg/L). However, the results from the previous mid-construction wet-weather sampling events show that total nitrogen at WP1 fluctuated between 1.6 mg/L and 5.0 mg/L whereas total nitrogen for WP2 fluctuated between 1.0 mg/L and 2.8 mg/L. Furthermore, the total nitrogen for both WP1 and WP2 sampled on the 9 March 2022 monitoring event were similar to the previous event ranges. As such, this elevated in total nitrogen concentrations is not considered to be a significant issue.
- > Total phosphorous measured at both upstream sample (WP1: 0.16 mg/L) and downstream sample (WP2: 0.14 mg/L) were above the adopted criteria (i.e. 0.025 mg/L). However, the results from the previous mid-construction wet-weather sampling events show that total phosphorous at WP1 fluctuated between 0.13 mg/L and 0.23 mg/L whereas total phosphorous at WP2 fluctuated between 0.02 mg/L and 0.28 mg/L. Furthermore, the total phosphorous for both WP1 and WP2 sampled on the 9 March 2022 monitoring event were similar to the previous event ranges. As such, this elevated in total phosphorus concentrations is not considered to be a significant issue.

7.4.2 Comparison of Upstream and Downstream Results

Results for upstream and downstream sampling on 9 March 2022 were comparable, with the exception of:

- > The pH result at upstream sample (WP1: 7.78) was measured slightly lower than the result at downstream sample (WP2: 7.85). However, this is not considered to be a significant issue since the pH measurements at both sample points were within the adopted ANZG 2018/ANZECC 2000 criterion range (i.e., 6.5 to 8.5) and the difference of the upstream and downstream pH results is only 0.9%.
- > The EC result at the upstream sample (WP1: $622 \,\mu\text{S/cm}$) was measured lower than the downstream sample (WP2: $659 \,\mu\text{S/cm}$). However, this is not considered to be a significant issue since the EC measurements at both sample points were within the adopted ANZG 2018/ANZECC 2000 criterion range (125 $\,\mu\text{S/cm}$ to 2,200 $\,\mu\text{S/cm}$) and the difference of the upstream and downstream pH results is only 5.6%.

Refer to **Appendix D** for details. It should be noted that wet-weather and storm-event pre-construction monitoring was not able to be conducted because of the lack of rainfall.

8 Conclusion

Cardno was engaged to undertake surface water monitoring of the unnamed channel west of Wiley Park Station in accordance with the SWMP for the project. The objective of the works was to evaluate whether construction activities are impacting water quality downstream of the project footprint in the unnamed channel that receives in part stormwater from the construction area.

This report presents monitoring data from mid-construction wet-weather event on 9 March 2022. Samples were collected from two locations. Sampling point WP1 is located upstream from the work site while sampling point WP2 is located downstream of the work site.

During this wet-weather monitoring event, sampling results showed monitored parameters were generally within the adopted ANZG 2018 / ANZECC 2000 screening criteria with the exception of dissolved oxygen saturation, total nitrogen, and total phosphorous. The comparison of the mid-construction wet-weather event conducted on 9 March 2022 to the four previous wet-weather sampling events on 20 March, 5 May, 12 November, 26 November 2021 and 23 February 2022 showed no significant difference.

During this wet-weather monitoring event, the results between upstream and downstream were generally comparable with the exceptions of pH and EC. The pH and EC measurements at the downstream sample were slightly higher than the upstream sample, but both downstream and upstream results were within the ANZG 2018/ANZECC 2000 criterion range. Overall, the comparison of the upstream and downstream samples conducted on 9 March 2022 showed no significant difference.

Based on comparison to the criteria, comparison with four previous mid-construction wet-weather events, and comparison of the upstream and downstream results, the results reported for the 9 March 2022 sampling event are not considered to reflect an adverse impact to water quality due to construction activities at the subject site.

9 References

- Southwest Metro Hurlstone Park, Belmore and Wiley Park Station Upgrades Soil and Water Management Plan, dated 16th February 2021;
- > The Sydney Metro City and Southwest Sydenham to Bankstown Upgrade Conditions of Approval SSI-8256, determined 12 December 2018;
- > Environmental Planning and Assessment Act 1979 (EP&A Act);
- > Contaminated Land Management Act 1997;
- > Protection of the Environment Operations Act 1997 (POEO Act);
- > Water Management Act 2000 Water Management (General) Regulation 2018;
- > Landcom (2004). Managing Urban Stormwater: Soils and Construction. (Volume 1 of the 'Blue Book');
- > DECC (2008). Managing Urban Stormwater: Soils and Construction. Volume 2D: Main Road Construction. (Volume 2D of the 'Blue Book');
- > ANZECC (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (collectively known as the 'ANZECC Guidelines');
- > ANZECC (2000). Australian and New Zealand Guidelines for Water Quality Monitoring and Reporting (collectively known as the 'ANZECC Guidelines');
- > ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (known as 'ANZG Guidelines').

10 Limitations

This assessment has been undertaken in general accordance with the current industry standards for a surface water monitoring report for the purpose and objectives and scope identified in this report. The agreed scope of this assessment has been limited for the current purposes of the Client. The assessment may not identify contamination occurring in all areas of the site, or occurring after sampling was conducted. Subsurface conditions may vary considerably away from the sample locations where information has been obtained. This Document has been provided by Cardno subject to the following limitations:

- This Document has been prepared for the particular purpose outlined in Cardno's proposal and Section 1 of this report and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.
- > The scope and the period of Cardno's services are as described in Cardno's proposal, and are subject to restrictions and limitations. Cardno did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Cardno in regards to it.
- Conditions may exist which were undetectable given the limited nature of the enquiry Cardno was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.
- In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Cardno's opinions are based upon information that existed at the time of the production of the Document. It is understood that the services provided allowed Cardno to form no more than an opinion of the actual conditions of the site at the time this Document was prepared and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.
- > Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.
- Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Cardno for incomplete or inaccurate data supplied by others.
- Cardno may have retained sub consultants affiliated with Cardno to provide services for the benefit of Cardno. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Cardno's affiliated companies, and their employees, officers and directors.

This assessment report is not any of the following:

- > A Site Audit Report or Site Audit Statement (SAR/SAS) as defined under the *Contaminated Land Management Act*, 1997 or an assessment sufficient for an Environmental Auditor to be able to conclude a SAR/SAS.
- > A geotechnical report and the bore logs/test pit logs may not be sufficient for geotechnical advice.
- > An assessment of surface water contaminants potentially arising from other sites or sources nearby.
- > A total assessment of the site to determine suitability of the entire parcel of land at the site for one or more beneficial uses of land

FIGURES

B

PHOTOGRAPHS

Photograph 1. Upstream sampling location WP1. Date: 9 March 2022.

Photograph 2. Medium stormwater in-flow observed from the discharge point WP1-DP1 which was located within the rail corridor and immediately downstream/north from WP1. Date: 9 March 2022.

Photograph 3. Downstream sampling location WP2. Date: 9 March 2022.

Photograph 4. Medium level of flow contribution was observed from discharge point WP2-DP1 and high level of flow contribution was observed from discharge point WP2-DP2. Date: 9 March 2022.

C

FILED RECORDS

Surface Water Sampling Field Record

T	Surface Wat							
Site / Project: Wiley Park Sur	Site / Project: Wiley Park Surface Water Monitoring							
Client: Downer	Job No. NE30161							
Person Sampling: Jiaqi		Initials: JZ						
		Site Details						
Sampling Equipment – Directly i	nto bottle / Water	Scoop / Van Dorr	n Sampler / Other:	Date: 09/03/2	22			
Observations on Site: Last Rain	Event / Recent S	torms / Releases	/ Other :					
Sample Details, Obs		Coordinates 8 le, record parameter		emical Measure	ements			
Sample ID	WP01	b, record parameter	o once stable)	WP02				
Start Time:	7:50am			9:00am				
Easting								
Northing								
Sample Depth (m)	0.1-0.15			0.1-0.15				
Water Body Depth (m)	0.15-0.2			0.15-0.2				
Location — Onsite/Offsite /Inlet/Outlet/ Middle	Upstream			Downstream				
Flow Rate None/ Low / Med / High	High			High				
DO (mg/L)	5.38			5.34				
DO (%)	58.4			58.1				
EC (μS/Cm)	622			659				
рН	7.78			7.85				
Eh (mV)	73.5			81.6				
Temp (°C)	19.4			19.4				
Water Colour	Clear			Clear				
Turbidity Low / Med / High	Low			Low				
Observations / Notes	Upstream DP flow rate, con water	Downstream DPs contributed to the water body, east DP with medium flow rate, west DP with high flow rate						
	Sample Co	ontainer & Pres	ervation Data					
Number of sample containers:								
Container Volume								
Container Type								
Preservation								
Sample Number (for Lab ID):								
QC Dup Sample No.:				QA100/QA200				

Multi Parameter Water Meter

Instrument YSI Quatro Pro Plus

Serial No. 20M101183

Item	Test	Pass	Comments
Battery	Charge Condition	✓	
	Fuses	✓	
	Capacity	✓	
Switch/keypad	Operation	✓	
Display	Intensity	✓	
	Operation	✓	
	(segments)		
Grill Filter	Condition	✓	
	Seal	✓	
PCB	Condition	✓	
Connectors	Condition	✓	
Sensor	1. pH	✓	
	2. mV	✓	
	3. EC	✓	
	4. D.O	✓	
	5. Temp	✓	
Alarms	Beeper		
	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle	Instrument Reading
				Number	
1. pH 10.00		pH 10.00		378646	pH 9.87
2. pH 7.00		pH 7.00		377339	pH 6.99
3. pH 4.00		pH 4.00		380327	pH 4.02
4. mV		229.6mV		365451/374424	229.5mV
5. EC		2.76mS/cm		377099	2.74mS/cm
6. D.O		0.00ppm		371864	0.00ppm
7. Temp		22.3°C		MultiTherm	21.4°C

Calibrated by: Sarah Lian

Calibration date: 4/03/2022

Next calibration due: 3/04/2022

NSW | VIC | QLD | WA | SA | TAS | ACT | NT | AUSTRALIA | ANTARCTICA

Latest Weather Observations for Canterbury

IDN60801

Issued at 12:53 pm EDT Wednesday 9 March 2022 (issued every 10 minutes, with the page automatically refreshed every 10 minutes)

About weather observations | Map of weather stations | Latest weather observations for NSW | Other Formats

Station Details ID: 066194 Name: CANTERBURY RACECOURSE AWS Lat: -33.91 Lon: 151.11 Height: 3.0 m

Data from the previous 72 hours. | See also: Recent months at Canterbury

Date/Time Temp				Rel	Delta-T	Wind					Press	Press	Rain since
EDT °C Temp	Temp °C		Hum %		Dir	Spd km/h	Gust km/h	Spd kts	Gust kts	QNH hPa	MSL hPa	9am mm	
09/12:33pm	23.0	19.2	14.6	59	5.0	SSW	28	46	15	25	-	-	0.0
09/12:30pm	23.2	19.7	14.5	58	5.1	SSW	26	46	14	25	-	-	0.0
09/12:00pm	22.9	18.8	15.0	61	4.7	SSW	30	54	16	29	-	-	0.0
09/11:56am	22.6	18.4	14.7	61	4.7	SSW	30	54	16	29	-	-	0.0
09/11:54am	22.5	18.8	14.9	62	4.5	SSW	28	54	15	29	-	-	0.0
09/11:30am	22.7	20.7	15.0	61	4.6	ssw	19	35	10	19	-	-	0.0
09/11:00am	22.6	19.8	15.4	64	4.3	SSW	24	39	13	21	-	-	0.0
09/10:30am	22.4	21.4	15.7	66	4.0	sw	15	24	8	13	-	-	0.0
09/10:00am	21.9	21.1	16.0	69	3.6	wsw	15	28	8	15	-	-	0.0
09/09:30am	21.4	20.9	15.9	71	3.3	wsw	13	24	7	13	-	-	0.0
09/09:00am	21.3	21.3	16.3	73	3.0	wsw	11	17	6	9	-	-	52.2
09/08:30am	20.7	20.2	15.9	74	2.9	wsw	13	28	7	15	-	-	52.2
09/08:00am	20.6	19.1	15.4	72	3.1	WSW	17	35	9	19	-	-	52.2
09/07:30am	20.2	20.1	16.0	77	2.5	WSW	11	26	6	14	-	-	52.2
09/07:00am	19.9	19.9	16.3	80	2.2	W	11	17	6	9	-	-	52.2
09/06:30am	19.9	20.4	16.5	81	2.0	wsw	9	15	5	8	-	-	52.2
09/06:00am	19.8	19.9	16.4	81	2.0	WSW	11	19	6	10	-	-	52.2
09/05:30am	19.6	19.7	16.4	82	1.9	wsw	11	19	6	10	-	-	52.2
09/05:00am	19.7	19.4	16.5	82	1.9	W	13	20	7	11	-	-	52.2
09/04:30am	19.7	19.4	16.5	82	1.9	wsw	13	22	7	12	-	-	52.2
09/04:00am	19.5	19.1	16.3	82	1.9	wsw	13	26	7	14	-	-	52.2
09/03:30am	19.6	19.4	16.6	83	1.8	SW	13	30	7	16	-	-	52.2
09/03:00am	18.9	19.0	16.5	86	1.4	wsw	11	19	6	10	-	-	52.2
09/02:30am	19.3	18.3	16.5	84	1.7	WSW	17	28	9	15	-	-	52.2
09/02:00am	19.0	19.1	16.6	86	1.4	sw	11	20	6	11	-	-	52.2
)9/01:30am	19.2	17.5	16.2	83	1.8	ssw	20	39	11	21	-	-	51.8
09/01:00am	19.9	17.6	15.7	77	2.5	SSW	22	35	12	19	-	-	51.4
)9/12:30am	19.7	17.4	15.8	78	2.3	ssw	22	46	12	25	-	-	51.4
09/12:00am	19.5	16.9	15.8	79	2.2	SSW	24	46	13	25	-	-	51.4

Date/Time	Temp	App	Dew	Rel	Delta-T			Wind			Press	Press	Rain since
EDT	°C	Temp °C	Point °C	Hum %	°C	Dir	Spd km/h	Gust km/h	Spd kts	Gust kts	QNH hPa	MSL hPa	9am mm
08/11:34pm	19.6	16.3	16.1	80	2.1	SSW	28	52	15	28	-	-	51.4
08/11:30pm	19.4	16.9	16.1	81	2.0	SSW	24	50	13	27	-	-	51.4
08/11:15pm	19.3	16.1	16.3	83	1.8	SSW	28	57	15	31	-	-	51.4
08/11:00pm	18.9	16.2	16.7	87	1.3	SSW	26	46	14	25	-	-	51.4
08/10:30pm	18.7	17.1	17.4	92	0.8	SSW	22	50	12	27	-	-	50.4
08/10:18pm	18.5	15.7	17.2	92	0.8	SSW	28	50	15	27	-	-	49.6
08/10:00pm	18.9	16.0	17.9	94	0.6	SSW	30	54	16	29	-	-	48.2
08/09:30pm	18.8	16.2	17.8	94	0.6	SSW	28	59	15	32	-	-	41.6
08/09:22pm	19.0	16.4	17.7	92	0.8	SSW	28	59	15	32	-	-	38.8
08/09:13pm	19.3	16.6	17.6	90	1.0	SSW	28	48	15	26	-	-	38.4
08/09:00pm	19.3	16.6	17.6	90	1.0	SSW	28	44	15	24	-	-	38.2
08/08:33pm	19.3	16.7	17.8	91	0.9	SSW	28	46	15	25	-	-	38.0
08/08:30pm	19.3	15.9	17.6	90	1.0	SSW	32	48	17	26	-	-	37.8

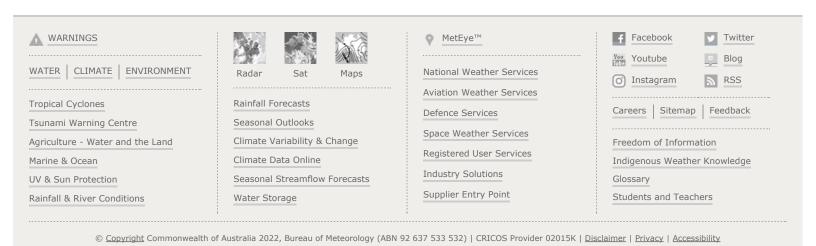
08/08:00pm	20.4	17.6	17.2	82	2.0	SW	28	50	15	27	-	-	37.2
08/07:53pm	20.6	17.8	17.4	82	2.0	SSW	28	50	15	27	-	-	37.2
08/07:30pm	20.6	18.3	17.6	83	1.8	SSW	26	39	14	21	_	-	37.2
08/07:00pm	20.2	19.4	18.0	87	1.4	SW	19	35	10	19	-	-	37.0
08/06:30pm	20.1	19.2	18.2	89	1.2	SW	20	41	11	22	_	_	36.8
08/06:00pm	20.0	19.4	18.5	91	0.9	SW	19	32	10	17	_	_	36.8
08/05:30pm	20.0	18.9	18.7	92	0.8	SSW	22	35	12	19	_	_	36.8
08/05:05pm	19.5	19.1	18.8	96	0.4	SSW	19	35	10	19	_		36.8
08/05:00pm	19.5	18.5	18.8	96	0.4	SSW	22	41	12	22	<u> </u>	<u> </u>	36.8
•	19.5	17.3	18.8	96	0.4	SSW	28	48	15	26	_	-	36.6
08/04:54pm												-	
08/04:30pm	19.9	18.3	19.1	95	0.5	SSW	26	41	14	22	-	-	35.6
08/04:16pm	20.3	18.4	19.3	94	0.6	SSW	28	52	15	28	-	-	34.4
08/04:14pm	20.3	19.6	19.5	95	0.5	SSW	22	43	12	23	-	-	34.2
08/04:12pm	20.4	19.7	19.6	95	0.5	SSW	22	39	12	21	-	-	33.8
08/04:00pm	20.3	20.5	20.1	99	0.1	SSW	19	32	10	17	-	-	33.2
08/03:30pm	20.3	19.9	20.1	99	0.1	SSW	22	44	12	24	-	-	31.6
08/03:00pm	20.3	19.8	20.0	98	0.2	SSW	22	44	12	24	-	-	27.4
08/02:34pm	20.6	20.7	19.9	96	0.4	SSW	19	32	10	17	-	-	21.8
08/02:30pm	20.6	21.1	20.1	97	0.3	SSW	17	30	9	16	-	-	21.4
08/02:26pm	20.7	21.3	20.2	97	0.3	ssw	17	30	9	16	-	-	21.2
08/02:04pm	20.8	20.9	20.0	95	0.5	SSW	19	30	10	16	-	-	19.8
08/02:00pm	20.8	20.6	19.8	94	0.6	SSW	20	35	11	19	-	-	19.4
08/01:30pm	20.8	20.8	20.1	96	0.4	S	20	35	11	19	_	_	18.2
08/01:00pm	21.0	21.3	20.3	96	0.4	S	19	35	10	19	_	_	16.6
08/12:30pm	21.5	21.8	20.8	96	0.5	S	20	43	11	23			14.8
08/12:00pm	21.6	23.2	21.4	99	0.3	ssw	15	26	8	14	<u>-</u>		13.4
•											-	-	
08/11:46am	21.6	22.8	21.4	99	0.1	S	17	30	9	16	-	-	13.0
08/11:30am	21.5	22.2	21.5	100	0.0	SSW	20	35	11	19	-	-	12.6
08/11:06am	21.8	23.2	21.8	100	0.0	SSW	17	28	9	15	-	-	9.8
08/11:00am	22.0	23.5	22.0	100	0.0	SSW	17	26	9	14	-	-	9.4
08/10:35am	21.8	23.6	21.8	100	0.0	SSW	15	22	8	12	-	-	9.2
08/10:30am	21.8	23.6	21.8	100	0.0	SSW	15	22	8	12	-	-	9.0
08/10:04am	21.8	24.0	21.8	100	0.0	S	13	22	7	12	-	-	4.8
08/10:00am	21.8	24.3	21.8	100	0.0	S	11	19	6	10	-	-	4.0
08/09:58am	21.7	24.2	21.7	100	0.0	S	11	19	6	10	-	-	4.0
08/09:38am	21.4	23.7	21.4	100	0.0	S	11	17	6	9	-	-	3.0
08/09:30am	21.4	24.1	21.4	100	0.0	SW	9	13	5	7	-	-	2.2
08/09:29am	21.4	24.1	21.4	100	0.0	SW	9	13	5	7	-	-	2.2
08/09:00am	21.4	24.1	21.4	100	0.0	W	9	17	5	9	-	-	125.2
08/08:30am	21.5	23.9	21.5	100	0.0	SSE	11	17	6	9	_	_	115.4
08/08:00am	21.6	23.6	21.6	100	0.0	SSE	13	24	7	13	_	_	108.8
08/07:30am	21.5	24.3	21.5	100	0.0	S	9	19	5	10	_	_	104.6
08/07:13am	21.5	23.9	21.5	100	0.0	SSE	11	17	6	9	[104.0
												-	
08/07:00am	21.4	23.3	21.4	100	0.0	SSE	13	19	7	10	-	<u>-</u>	103.6
08/06:30am	21.4	23.7	21.4	100	0.0	SE	11	17	6	9	-	-	102.6
08/06:00am	21.4	23.7	21.4	100	0.0	SSE	11	15	6	8	-	-	102.6
08/05:30am	21.2	23.8	21.2	100	0.0	SSE	9	13	5	7	-	-	102.6
08/05:00am	21.3	24.0	21.3	100	0.0	S	9	19	5	10	-	-	102.6
08/04:30am	21.3	24.0	21.3	100	0.0	S	9	17	5	9	-	-	102.2
08/04:09am	21.4	23.7	21.4	100	0.0	SE	11	19	6	10	-	-	101.6
08/04:00am	21.4	24.1	21.4	100	0.0	SSE	9	17	5	9	-	-	101.0
08/03:30am	21.3	24.3	21.3	100	0.0	ESE	7	9	4	5	-	-	97.6
08/03:00am	21.1	25.4	21.1	100	0.0	CALM	0	0	0	0	-	-	94.4
08/02:30am	21.0	25.2	21.0	100	0.0	CALM	0	0	0	0	-	-	90.2
08/02:25am	21.0	25.2	21.0	100	0.0	CALM	0	0	0	0	_	_	89.6
08/02:06am	21.2	24.2	21.2	100	0.0	SE	7	9	4	5	_	_	88.6
08/02:00am	21.2	25.1	21.2	100	0.0	SSE	2	9	1	5	_	-	88.4
												-	
08/01:30am	21.1	24.6	21.1	100	0.0	SSW	4	9	2	5	-	-	85.4
08/01:29am	21.2	24.8	21.2	100	0.0	SSW	4	9	2	5	-	-	85.4
08/01:00am	21.1	25.4	21.1	100	0.0	CALM	0	4	0	2	-	-	84.4
08/12:55am	21.1	24.6	21.1	100	0.0	S	4	9	2	5	-	-	84.4
00/12.004													

08/12:29am	21.1	23.6	21.1	100	0.0	S	9	11	5	6	-	-	82.8
08/12:27am	21.1	23.6	21.1	100	0.0	S	9	11	5	6	-	-	82.6
08/12:00am	21.4	25.8	21.4	100	0.0	CALM	0	0	0	0	-	-	80.6

Date/Time	Temp	App	Dew	Rel	Delta-T			Wind			Press	Press	Rain since
EDT	°C	°C	Point °C	Hum %	°C	Dir	Spd km/h	Gust km/h	Spd kts	Gust kts	QNH hPa	MSL hPa	9am mm
7/11:53pm	21.3	25.7	21.3	100	0.0	CALM	0	0	0	0	-	-	80.2
7/11:44pm	21.3	25.7	21.3	100	0.0	CALM	0	0	0	0	_	-	79.6
7/11:30pm	21.5	24.3	21.5	100	0.0	SSE	9	11	5	6	-	-	79.4
7/11:00pm	21.4	25.1	21.4	100	0.0	SSE	4	11	2	6	-	-	76.6
7/10:30pm	21.7	24.9	21.7	100	0.0	S	7	11	4	6	-	-	54.2
7/10:00pm	22.2	24.6	22.2	100	0.0	ESE	13	28	7	15	-	-	46.8
07/09:31pm	22.3	27.2	22.3	100	0.0	CALM	0	0	0	0	-	-	37.0
07/09:30pm	22.4	27.3	22.4	100	0.0	CALM	0	0	0	0	-	-	36.2
07/09:29pm	22.4	27.3	22.4	100	0.0	CALM	0	0	0	0	_	-	35.6
07/09:00pm	22.4	26.2	22.4	100	0.0	NW	6	7	3	4	-	_	33.6
07/08:59pm	22.4	26.2	22.4	100	0.0	NW	6	7	3	4	-	_	33.4
07/08:30pm	22.3	26.0	22.3	100	0.0	WNW	6	9	3	5	_	_	32.2
07/08:00pm	22.4	26.0	22.4	100	0.0	SW	7	11	4	6	_	_	31.8
)7/07:42pm	22.3	25.9	22.3	100	0.0	SW	7	11	4	6	_	_	31.8
07/07: 42 pm	22.3	25.9	22.3	100	0.0	SSW	7	11	4	6	-		31.8
07/07:30pm	22.3	24.3	21.6	96	0.5	NE	13	17	7	9	-	1	18.8
•				1 1					7			-	
)7/06:44pm	23.7	26.5	23.0	96	0.5	ESE	13	24		13	-	-	6.0
)7/06:30pm	23.8	26.6	23.0	95	0.5	SE	13	19	7	10	-	-	5.2
07/06:00pm	24.3	25.1	22.4	89	1.3	SE	22	32	12	17	-	-	4.6
)7/05:30pm	24.7	25.1	22.4	87	1.5	SE	24	33	13	18	-	-	4.6
07/05:00pm	25.2	27.6	22.9	87	1.6	SE	15	28	8	15	-	-	4.6
07/04:30pm	25.6	26.5	21.9	80	2.5	ESE	20	30	11	16	-	-	4.6
7/04:00pm	25.9	27.8	22.8	83	2.1	ESE	17	28	9	15	-	-	4.6
7/03:30pm	26.1	27.9	23.2	84	2.0	ESE	19	30	10	16	-	-	4.6
07/03:20pm	25.6	28.7	24.2	92	1.0	ESE	15	24	8	13	-	-	4.6
07/03:03pm	24.9	27.2	23.5	92	1.0	ESE	17	26	9	14	_	-	4.6
7/03:00pm	25.0	26.9	23.4	91	1.1	ESE	19	26	10	14	-	-	4.4
07/02:44pm	25.1	29.9	23.5	91	1.1	ENE	4	13	2	7	-	-	4.2
07/02:30pm	24.5	28.6	22.9	91	1.1	ENE	6	11	3	6	-	-	4.2
07/02:24pm	24.7	28.2	22.8	89	1.3	ESE	9	17	5	9	ĺ-	ĺ-	4.2
07/02:00pm	25.0	27.5	23.2	90	1.2	ESE	15	22	8	12	-	-	3.0
07/01:30pm	24.4	27.6	23.0	92	0.9	SE	11	15	6	8	-	-	3.0
07/01:00pm	24.0	28.5	23.7	98	0.2	SE	6	9	3	5	-	-	3.0
07/12:30pm	23.1	25.8	22.8	98	0.2	Е	13	19	7	10	-	-	2.8
)7/12:00pm	23.3	25.1	22.6	96	0.5	E	17	22	9	12	-	-	2.2
)7/11:30am	23.5	25.8	22.8	96	0.5	E	15	20	8	11	-	_	1.2
)7/11:11am	23.8	25.8	23.0	95	0.5	ESE	17	26	9	14	_	_	0.6
)7/11:00am	23.8	25.1	22.6	93	0.8	E	20	28	11	15	_	<u> </u>	0.6
)7/10:56am	24.0	25.3	22.6	92	0.9	ESE	20	28	11	15	_	_	0.4
07/10:30am	24.6	26.3	22.3	87	1.5	ESE	17	28	9	15		<u> </u>	0.0
07/10:30am	24.8	26.4	22.3	85	1.8	ESE	17	22	9	12	- -	1	0.0
				92	0.9	ESE		24	7	13	-	-	0.0
07/09:30am	24.1	26.7	22.7			SE	13			_		-	
07/09:00am	23.6	27.0	23.3	98	0.2		11	15	6	8	-	-	50.8
07/08:30am	23.3	25.8	22.5	95	0.5	ESE	13	22	7	12	-	-	50.8
7/08:00am	23.5	25.3	22.5	94	0.7	ESE	17	26	9	14	-	-	50.6
7/07:30am	23.6	25.2	22.9	96	0.5	ESE	19	26	10	14	-	-	50.6
7/07:00am	23.5	25.1	23.3	99	0.1	ESE	20	32	11	17	-	-	50.6
7/06:30am	23.4	25.1	23.4	100	0.0	ESE	20	32	11	17	-	-	50.6
7/06:11am	23.4	24.7	23.4	100	0.0	ESE	22	33	12	18	-	-	50.4
7/06:00am	23.4	24.7	23.4	100	0.0	ESE	22	46	12	25	-	-	50.4
7/05:54am	23.4	24.7	23.4	100	0.0	SE	22	35	12	19	-	-	50.2
7/05:34am	23.3	24.2	23.3	100	0.0	SE	24	37	13	20	-	-	50.0
7/05:30am	23.2	24.4	23.2	100	0.0	SE	22	30	12	16	-	-	50.0
7/05:09am	23.1	24.8	23.1	100	0.0	SE	19	28	10	15	-	-	47.8
)7/05:00am	23.1	24.8	23.1	100	0.0	SE	19	24	10	13	_	_	46.6

07/04:42am	22.4	23.7	22.4	100	0.0	SE	19	28	10	15	-	-	46.6
07/04:30am	22.2	22.5	22.2	100	0.0	SE	24	35	13	19	-	-	46.6
07/04:15am	22.9	23.9	22.9	100	0.0	SSE	22	33	12	18	-	-	44.6
07/04:14am	22.9	24.3	22.9	100	0.0	SSE	20	33	11	18	-	-	44.4
07/04:00am	22.8	23.4	22.8	100	0.0	SSE	24	37	13	20	-	-	43.2
07/03:46am	22.9	23.9	22.9	100	0.0	SSE	22	37	12	20	-	-	42.0
07/03:43am	23.0	24.7	23.0	100	0.0	SSE	19	37	10	20	-	-	41.6
07/03:30am	22.7	23.6	22.7	100	0.0	SE	22	35	12	19	-	-	41.4
07/03:18am	23.1	24.8	23.1	100	0.0	SSE	19	30	10	16	-	-	40.8
07/03:00am	23.2	24.0	23.2	100	0.0	SSE	24	35	13	19	-	-	40.6
07/02:47am	23.0	24.5	23.0	100	0.0	SSE	20	30	11	16	-	-	40.6
07/02:30am	22.8	24.7	22.8	100	0.0	SSE	17	33	9	18	-	-	40.0
07/02:09am	23.0	25.8	23.0	100	0.0	SSE	13	22	7	12	-	-	35.6
07/02:00am	23.0	25.4	23.0	100	0.0	SSE	15	22	8	12	-	-	34.8
07/01:30am	22.8	25.3	22.5	98	0.2	S	13	24	7	13	-	-	34.6
07/01:00am	22.9	25.3	22.9	100	0.0	SSE	15	22	8	12	-	-	34.6
07/12:30am	23.0	25.0	23.0	100	0.0	SSE	17	32	9	17	-	-	34.6
07/12:00am	22.9	24.9	22.9	100	0.0	SSE	17	22	9	12	-	-	34.4

Date/Time	Temp	App	Dew	Rel	Delta-T			Wind			Press	Press	Rain since
EDT	°C	Temp °C	Point °C	Hum %	°C	Dir	Spd km/h	Gust km/h	Spd kts	Gust kts	QNH hPa	MSL hPa	9am mm
06/11:36pm	22.9	24.9	22.9	100	0.0	SSE	17	28	9	15	-	-	34.4
06/11:30pm	22.7	24.6	22.7	100	0.0	SSE	17	28	9	15	-	-	34.4
06/11:00pm	22.9	24.2	22.6	98	0.2	SE	20	33	11	18	-	-	25.8
06/10:41pm	23.3	25.7	22.3	94	0.7	SSE	13	20	7	11	-	-	23.0
06/10:30pm	23.5	25.1	22.1	92	0.9	SSE	17	28	9	15	-	-	22.6
06/10:00pm	23.3	25.4	22.5	95	0.5	SSE	15	30	8	16	-	-	22.6
06/09:30pm	22.9	25.5	22.6	98	0.2	SSE	13	22	7	12	ĺ -	-	22.6
06/09:00pm	22.7	25.0	22.7	100	0.0	SSE	15	26	8	14	-	-	22.6
06/08:30pm	22.9	24.9	22.9	100	0.0	SSE	17	26	9	14	ĺ-	-	22.6
06/08:02pm	22.9	24.9	22.9	100	0.0	SSE	17	30	9	16	-	-	22.6
06/08:00pm	22.9	24.9	22.9	100	0.0	SSE	17	30	9	16	ĺ-	-	22.6
06/07:30pm	22.9	25.3	22.9	100	0.0	SSE	15	28	8	15	-	-	19.2
06/07:16pm	23.0	25.3	22.0	94	0.7	SSE	13	22	7	12	-	-	15.0
06/07:00pm	23.1	25.8	21.4	90	1.1	S	9	17	5	9	ĺ -	-	12.8
06/06:30pm	23.1	25.3	21.2	89	1.2	S	11	20	6	11	-	-	12.8
06/06:00pm	23.1	24.9	21.2	89	1.2	SSW	13	20	7	11	ĺ-	-	12.8
06/05:30pm	23.0	24.7	21.6	92	0.9	S	15	22	8	12	-	-	12.8
06/05:00pm	22.8	24.6	21.8	94	0.7	S	15	30	8	16	-	-	12.8
06/04:30pm	22.2	23.7	22.0	99	0.1	S	17	30	9	16	-	-	12.8
06/04:00pm	21.5	22.1	21.3	99	0.1	S	20	32	11	17	ĺ-	-	12.8
06/03:55pm	21.5	22.1	21.3	99	0.1	s	20	32	11	17	-	-	12.6
06/03:30pm	21.4	21.7	20.7	96	0.5	S	20	35	11	19	ĺ-	-	9.4
06/03:19pm	22.2	21.6	20.5	90	1.1	s	24	41	13	22	-	-	2.4
06/03:00pm	23.3	22.0	20.6	85	1.8	S	28	48	15	26	-	-	1.0
06/02:49pm	22.8	22.8	20.9	89	1.2	S	22	39	12	21	-	-	1.0
06/02:31pm	22.2	21.5	20.3	89	1.2	s	24	41	13	22	-	-	1.0
06/02:30pm	22.4	21.8	20.5	89	1.2	S	24	41	13	22	-	-	0.8
06/02:00pm	23.7	22.0	19.8	79	2.5	S	28	52	15	28	-	-	0.2
06/01:33pm	24.1	22.0	19.8	77	2.8	S	30	48	16	26	-	-	0.2
06/01:30pm	24.1	21.5	19.6	76	2.9	S	32	48	17	26	-	-	0.2
06/01:25pm	24.6	22.7	20.1	76	2.9	S	30	48	16	26	-	-	0.2
06/01:00pm	24.3	23.5	20.0	77	2.8	S	24	41	13	22	-	-	0.2


Other formats

Comma delimited format used in spreadsheet applications http://www.bom.gov.au/fwo/IDN60801/IDN60801.94766.axf

JavaScript Object Notation format (JSON) in row-major order http://www.bom.gov.au/fwo/IDN60801/IDN60801.94766.json

Data quality

Most of these data are generated automatically and are frequently updated. Quality checks on data are not normally performed. It is possible for incorrect values to appear. Refer to information at About Latest Weather Observations and please check the disclaimer before using these data.

LABORATORY SUMMARY TABLES

11011				TPH			Inor	ganics				Physi	o-Chemical	•
Stant	ec		Chlorophyll a	Oil and Grease	Kjeldahl Nitrogen Total	Nitrate & Nitrite (as N)	Nitrogen (Total as N)	Phosphorus (Total as P)	TSS	Turbidity	Hd	Temprature	Electrical Conductivity	Dissolved Oxygen
			mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	NTU	Units	°C	uS/cm	%Sat
	EQL		0.002	10	0.1	0.01	0.2	0.01	1	1	0.01	0.1	0.1	0.1
	ANZECC Criteria - I	Freshwater	0.003	-	-	-	0.35	25	-	<6-50	6.5-8.5	-	125-2200	85% - 110%
Lab Report Number	Field ID	Date												
869657	WP1	9/03/2022	<0.002	10	NT	NT	1.9	160	17	31	7.78	19.4	622	58.4
869657	WP2	9/03/2022	<0.002	<10	NT	NT	1.8	140	7.8	22	7.85	19.4	659	58.1
869657	QA100	9/03/2022	-	<10	NT	NT	1.8	140	6.2	20	-	-	-	-
ES2208343	QA200	9/03/2022	-	<5	1	1.69	2.7	190	7	14.7	-	-	-	-
	Maximum Conce	entration	<0.002	<10	1	1.69	2.7	190	17	31	7.85	19.4	659	58.4

^{*} A Non Detect Multiplier of 0.5 has been applied.

NT - Not Test

Е

QUALITY ASSURANCE/QUALITY CONTRAL

Quality Assurance/Quality Control (QA/QC) procedures were implemented to ensure the precision accuracy, representativeness, completeness and comparability of all data gathered. The QA/QC procedures included:

- > Equipment calibration to ensure field measurements obtained are accurate
- > Equipment decontamination to prevent cross contamination
- > Use of appropriate measures (i.e. gloves) to prevent cross contamination
- > Appropriate sample identification
- > Correct sample preservation
- > Sample transport with Chain of Custody (CoC) documentation
- > Laboratory analysis in accordance with NATA accredited methods.

Table E1 details the QA/QC procedures and sample collection details undertaken through the surface water elements of the investigation. Copies of all the CoCs, along with the Sample Receipt Notifications (SRNs), Interpretive QA/QC Reports are provided in **Appendix F**.

Table E1 Field QA/QC Method Validation

Domision ent	Yes / No	Comments
Requirement	res / No	Comments
Equipment decontamination	Yes	In the event of involving reusable equipment. Decontamination of sampling equipment (water quality meter, telescopic water scoop etc.) was undertaken by washing with phosphate free detergent (Liquinox) followed by a rinse with potable water.
Sample collection	Yes	Samples were collected using disposable nitrile gloves via telescopic water scoop. A clean pair of gloves was used for each new sample being collected to limit the possibility of cross-contamination.
QA/QC sample collection*	Yes	One (1) surface water duplicate and one (1) surface water triplicate sample were collected for intra and inter-lab QA/QC purposes to monitor the quality of the field practices for sample collection. Cardno based the investigation around a rate of one duplicate and triplicate sample per sampling event, as the requirement for duplicate and triplicate sample collection.
Sample identification	Yes	All samples were marked with a unique identifier including project number, sample location, and date.
Sample preservation	Yes	Samples were placed in a chilled ice box with ice for storage and transport to the laboratory.
CoC documentation	Yes	A CoC form was completed by Cardno detailing sample identification, collection date, sampler and laboratory analysis required. The CoC form was signed off and returned to Cardno by the laboratory staff upon receipt of all the samples. CoC forms and Sample Receipt Notification (SRN) are provided in Appendix F . The SRN indicates that the samples were received at the laboratory intact and chilled and within the required holding times.
NATA accredited methods	Yes	The NATA accredited Eurofins mgt and ALS Analysed the samples in accordance with NATA accredited methods. Analytical methods used are indicated in the stamped laboratory results provided in Appendix F .
Laboratory Internal QC	Yes	All Data Quality Objectives were met by the laboratories.

Note of Table

Table E2 Field QA/QC Collection Summary

Environmental Media	Date	Primary	Duplicate	Triplicate
Surface Water	09/03/2022	WP2	QA100	QA200

^{*}It is noted that the inter-laboratory duplicate sample QA200 for turbidity analysis did not meet the compliance time due to the extended sampling holding time by the laboratory. This is not expected to alter the current surface of the exceedant.

Relative Percentage Difference Determination

Laboratory results for duplicate and triplicate samples are assessed using a determination of the Relative Percentage Difference (RPD). Where a primary sample and a duplicate sample are compared, the RPD provides an indication of the reproducibility of the results, which incorporates the sampling method. Where a primary sample and a split sample are compared, the RPD provides an indication of the accuracy of the primary laboratory results as compared to the secondary laboratory result.

The calculation used to determine the RPD is:

$$RPD = \frac{(Co - Cs)}{\left(\frac{Co + Cs}{2}\right)} x100$$

Where:

Co = Concentration of the original sample

Cs = Concentration of the duplicate sample

In calculating the RPD values the following protocols were adopted:

- > Where both concentrations are above laboratory reporting limits the RPD formula is used;
- > Where both concentrations are below the laboratory reporting limits, no RPD is calculated; and
- > Where one or both sample concentrations are reported to be less than ten times (<10x) the laboratory reporting limit, the RPD is calculated but is not assessed against the adopted criterion.

In accordance with the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended 2013, Cardno adopts an RPD acceptance criterion up to 30% of the mean concentration of the analyte. It should be noted that variations might be higher for organic analysis, due to the volatile nature of the components, and for low concentrations of analytes.

The adopted criterion will not apply to RPDs where one of both concentrations are less than 10 times the reporting limit, as this criterion would otherwise overestimate the significance of minor variations in concentrations at or near the laboratory reporting limit. Large RPDs returned for low concentrations of analytes near the reporting limit is not as indicative of a significant difference in the results as a small RPD is for larger concentrations.

This approach is employed by NATA-accredited laboratories when assessing internal duplicate sample RPDs. This approach acknowledges that concentrations at or around the reporting limit are too low for an accurate evaluation of the significance of the RPD.

This approach has been adopted when assessing the relevance (compliance) of RPDs during this investigation. RPDs will be calculated for sample sets where one or both concentrations are less than 10 times the reporting limit for discussion purposes, but will not be assessed as a pass or fail in relation to the criterion.

The RPD results for duplicate samples are presented in this appendix. Although two (2) RPD values were reported to be above the accepted 30% RPD criteria. The breaches in RPDs are not considered to alter the overall outcome of the assessment. It can be concluded that the analytical data can be relied upon for the purposes of this factual report.

Laboratory QC and QCI Report Summary

The laboratories selected for undertaking the analysis (Eurofins mgt and ALS) are NATA-accredited for the analysis required, and undertook certain QA/QC requirements to demonstrate the suitability of the data that is obtained. The laboratory is required to undertake and report internal laboratory Quality Control (QC) procedures for all chemical analysis undertaken. The QC testing is required to include:

- > Laboratory duplicate sample analysis at the rate of one duplicate analysis per ten samples
- > Method blank at the rate of one method blank analysis per 20 samples

- > Laboratory control sample at the rate of one laboratory control sample analysis per 20 samples
- > Spike recovery analysis at the rate of one spike recovery analysis per 20 samples.

Compliance with the laboratory QA/QC requirements and non-conformance details are discussed in the internal Laboratory QA/QC reports included with the certificates of analysis in **Appendix F**. Laboratory QA/QC requirements were within acceptance limits.

Cardno concludes that the data reported by the NATA-accredited Eurofins mgt and ALS as presented in this report is suitable for interpretative purposes and to make conclusions/recommendations regarding water quality.

(Cardno

DOW

RPD Table

Field ID	Lab Report Number	Matrix Type	Date					
WP2	869657	water	9/03/2022	<10	1.8	140	7.8	22
QA100	869657	water	9/03/2022	<10	1.8	140	6.2	20
RPD				0	0	0	23	10
WP2	869657	water	9/03/2022	<10	1.8	140	7.8	22
QA200	ES2208343	water	9/03/2022	<5	2.7	190	7	14.7
RPD				0	40	30	11	40

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

Project Number: NE30161 Site Identification: Wiley Park Station Report Title: Surface Water Monitoring

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: {1 - 10 x EQL}; 30 (10 - 30 x EQL); 30 (> 30 x EQL))

^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

F

LABORATORY REPORTS

CHAIN OF CUSTODY AND ANALYSIS REQUEST

Part 1	anaping the ruture							-										
ontact Person:	Jlaqi Zhou					Project N	ame:		Downer S	удлау Меіл	Stations - \	Viley Park	····					
elsphone Number:	0424 106 665				***************************************	Project N	umber:		NE30161				• •			******	-	1
Iternative Contact:	Chong Zheng					PO No.:												1
elephone Number:	0451 780 991					Project S	pecific Quo	le No. ;				190	408CDNN	1				1
ampler:	JZ				-	Turnarou	nd Require:	nents:					Days TAT					-
mail Address (results a		ContamNSW@care	.com.au; chong.zeng@ca dno.com.au			Lab:			Eurofins	Unit F3, B	uliding F, 10	Mars Rd, L	ane Cove V	Vost NSW	2066			1
ddress: Level 9 - The	Forum, 203 Pacific Highwa	y, St Leonards, New Sci	ith Wales 2065 Australi	a		Attn:			Sample R	leceipt								†
		Sample informatio	n								Analysis f	Required						Comments
Cardno Sample ID	Laboratory Sampl	e ID No. Container	s Preservation	Date sampled	Matrix	Chlorophyll-a	T.S.S	Turbidity	Oil and Grease	Total Phosphorus	Total Nitrogen							
WP1		5	ICE		Water	1	1	1	1	1	1						†	Diagon radium the detection limit of
WP2		5	ICE		Water	1	1	1	1	1	1							Please reduce the detection limit of Chlorophyll a from 5 ug/L to 2 ug/L
QA100		4	ICE	9/03/2022	Water		1	1	1	1	1							
QA200		4	ICE		Water		1	1	1	1	1							Please send to ALS
	\																	
					···				ļ		<u> </u>						I	
												L ⊨m	rironme	ental [Oivisio	n		
- IVALVA III.										-		- 200	Inev					
							<u> </u>			 	<u> </u>	<u> </u>	Nork Ord	er Ref	erence	^		
									 	-	 	I	Iney Work Ord ES2	208	334	3	-	
											1	ATT. 1					<u> </u>	
									***************************************		 	Η,		114		111	<u> </u>	
										1			\\\ \ \\\		% (4)	1111	-	
	<u> </u>											T		MAY.	100	1111		
							<u> </u>		<u> </u>		1			* 11.12		1111		
	<u> </u>						<u> </u>								M. I ==	,,,,,		
							<u> </u>		_			rel	ephone - *	61-2-878	4 8556			
							 		_	 		<u> </u>						
alinquished by:	4. 1~		<u> </u>			<u> </u>	1	<u> </u>			.l				<u> </u>			
ame / company)	Jiaqi Zivou Gardno ACT/NSW Pty	Received by: Ltd (name / company)	G.L		Relinquished by: {name / company		#86	9657		Received	by: ompany)					Relinquis (name / c	_	
ste & Timo:	3/9/2022	Date & Time:	9/3/m 1:6	i Wm	Date & Time:		****			Date & T						Date & Ti		
gnature:	JZ	Signature;		L	Signature:		12.	ا پُل		Signatur						Signature		
tcelved by:				<	mod	11 6 18	4	1								A Property of the Control of the Con		
ame / company)					. OF	1217	119	. (⊃.⊘	Relinquis	-					Leb use:		1.5	
ıte & Time;	promote voluments				a 13	$\frac{1316}{152}$	173	<u></u>		ompany)					7		Cool or Ambient (circle one)	
gnature:	Data of Fillips			- (1 %	1.16			Date & T						7	ture Receiv			
3		Signature:			Signature			3-9	Samuel Control of the	Sinnahan	•					1▼	and been the	مرين والمراجع المراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

Cardno sample submission- NE30161

Jiaqi Zhou <iiaqi.zhou@cardno.com.au>

Wed 3/9/2022 1:09 PM

To: #AU04 Enviro Sample NSW <EnviroSampleNSW@eurofins.com>

Cc; Ursula Long <UrsulaLong@eurofins.com>; Chong Zeng <chong.zeng@cardno.com.au>

1 attachments (23 KB)

WP_SWM_COC_09032022.xlsx;

CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins.

Do not click on links or open attachments unless you recognise the sender and are certain that the content is safe.

Hi Ursula.

Please find the attached COC for the water samples I dropped off this morning (Please note that QA200 sample need to be sent to ALS ASAP). Could you please reduce the detection limit of Chlorophyll a from 5 ug/L to 2 ug/L? Please feel free to contact me if there is any issue. Thank you for your help.

Jiagi Zhou ENVIRONMENTAL ENGINEER CARDNO

Phone Direct +61 2 9024 7073

Address Level 9, The Forum, 203 Pacific Highway, St Leonards, New South Wales 2065 Australia

Email jiaqi,zhou@cardno.com.au Web www.cardno.com

CONNECT WITH CARDNO

Cardno acknowledges the Traditional Owners of the land upon which we live and work and pay our respects to their Elders past, present and

Cardno's management systems are certified to ISO9001 (quality) and AS/NZS4801/OHSAS18001 (occupational health and safety)

This email and its attachments may contain confidential and/or privileged information for the sole use of the intended recipient(s). All electronically supplied data must be checked against an applicable hardcopy version which shall be the only document which Cardno warrants accuracy, If you are not the intended recipient, any use, distribution or copying of the information contained in this email and its attachments is strictly prohibited. If you have received this email in error, please email the sender by replying to this message and immediately delete and destroy any copies of this email and any attachments. The views or opinions expressed are the author's own and may not reflect the views or opinions of Cardno.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2208343

Client : CARDNO (NSW/ACT) PTY LTD Laboratory : Environmental Division Sydney

Contact : JIAQI ZHOU Contact : Shane Ellis

Address : Level 9 The Forum 203 Pacific Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

Highway St Leonards NSW 2065

 Telephone
 : --- Telephone
 : +61 2 8784 8555

 Facsimile
 : --- Facsimile
 : +61-2-8784 8500

Project : Downer Sydney Metro Stations - Wiley Page : 1 of 3

Park

Order number : NE30161 Quote number : EP2020CARNSWACT0002

(EN/024/20)

C-O-C number : ---- QC Level : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler : JIAQI ZHOU

Dates

Date Samples Received : 09-Mar-2022 18:21 Issue Date : 14-Mar-2022 Client Requested Due : 17-Mar-2022 Scheduled Reporting Date : 17-Mar-2022

Date

Delivery Details

Mode of Delivery : Carrier Security Seal : Intact.

No. of coolers/boxes : 1 Temperature : 3.9'C - Ice Bricks present

Receipt Detail : No. of samples received / analysed : 1 / 1

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 14-Mar-2022 Issue Date

Page

2 of 3 ES2208343 Amendment 0 Work Order

Client : CARDNO (NSW/ACT) PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Sample ID	Sample Container Received	Preferred Sample Container for Analysis
Suspended Solids (High Leve	l) : EA025H	
QA200	- Amber Jar - Sulfuric Acid or Sodium Bisulfate	- Clear Plastic Bottle - Natural
Turbidity : EA045		
QA200	- Amber Jar - Sulfuric Acid or Sodium Bisulfate	- Clear Plastic Bottle - Natural

Summary of Sample(s) and Requested Analysis

process necessar tasks. Packages as the determinant tasks, that are inclu- lif no sampling default 00:00 on the	ry for the execution may contain addition of moisture outled in the package. It is provided, the date of sampling	g. If no sampling date	EA025H ed Solids - Standard Level	EA045	ER - EP020 Grease (O&G)	ER - NT-11 Nitrogen and Total Phosphorus
Laboratory sample	Sampling date / time	Sample ID	WATER - Suspende	WATER . Turbidity	WATER OII & Gre	WATER -
ES2208343-001	09-Mar-2022 00:00	QA200	✓	✓	✓	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

: 14-Mar-2022 Issue Date

Page

: 3 of 3 : ES2208343 Amendment 0 Work Order

Client : CARDNO (NSW/ACT) PTY LTD

Requested Deliverables

- EDI Format - ENMRG (ENMRG)

- EDI Format - ESDAT (ESDAT)

Chong	Zena

enong zong		
- *AU Certificate of Analysis - NATA (COA)	Email	chong.zeng@cardno.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	chong.zeng@cardno.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	chong.zeng@cardno.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	chong.zeng@cardno.com.au
- A4 - AU Tax Invoice (INV)	Email	chong.zeng@cardno.com.au
- Chain of Custody (CoC) (COC)	Email	chong.zeng@cardno.com.au
- EDI Format - ENMRG (ENMRG)	Email	chong.zeng@cardno.com.au
- EDI Format - ESDAT (ESDAT)	Email	chong.zeng@cardno.com.au
ContamNSW		
- *AU Certificate of Analysis - NATA (COA)	Email	contamnsw@cardno.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	contamnsw@cardno.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	contamnsw@cardno.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	contamnsw@cardno.com.au
- A4 - AU Tax Invoice (INV)	Email	contamnsw@cardno.com.au
- Chain of Custody (CoC) (COC)	Email	contamnsw@cardno.com.au
- EDI Format - ENMRG (ENMRG)	Email	contamnsw@cardno.com.au
- EDI Format - ESDAT (ESDAT)	Email	contamnsw@cardno.com.au
INVOICES		
- A4 - AU Tax Invoice (INV)	Email	apinvoices@cardno.com.au
JIAQI ZHOU		
 *AU Certificate of Analysis - NATA (COA) 	Email	jiaqi.zhou@cardno.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	jiaqi.zhou@cardno.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	jiaqi.zhou@cardno.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	jiaqi.zhou@cardno.com.au
- A4 - AU Tax Invoice (INV)	Email	jiaqi.zhou@cardno.com.au
- Chain of Custody (CoC) (COC)	Email	jiaqi.zhou@cardno.com.au

Email

Email

jiaqi.zhou@cardno.com.au

jiaqi.zhou@cardno.com.au

QUALITY CONTROL REPORT

Work Order : **ES2208343**

: CARDNO (NSW/ACT) PTY LTD

Contact : JIAQI ZHOU

Address : Level 9 The Forum 203 Pacific Highway

St Leonards NSW 2065

Telephone : ---

Client

Project : Downer Sydney Metro Stations - Wiley Park

Order number : NE30161

C-O-C number : -

Sampler : JIAQI ZHOU

Site · ---

Quote number : EN/024/20

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 3

Laboratory : Environmental Division Sydney

Contact : Shane Ellis

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 09-Mar-2022

Date Analysis Commenced : 15-Mar-2022

Issue Date · 17-Mar-2022

150/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW

Page : 2 of 3 Work Order : ES2208343

Client : CARDNO (NSW/ACT) PTY LTD

Project : Downer Sydney Metro Stations - Wiley Park

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER			Γ			Laboratory D	Ouplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA025: Total Suspen	ded Solids dried at 104 ± 2°	C (QC Lot: 4229099)							
ES2208233-002	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	3560	3810	6.8	0% - 20%
ES2208510-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	267	282	5.3	0% - 20%
EA045: Turbidity (Q0	C Lot: 4231366)								
ES2208343-001	QA200	EA045: Turbidity		0.1	NTU	14.7	14.6	0.7	0% - 20%
ES2209265-001	Anonymous	EA045: Turbidity		0.1	NTU	121	121	0.0	0% - 20%
EK059G: Nitrite plus	Nitrate as N (NOx) by Disci	rete Analyser (QC Lot: 4228449)							
ES2208233-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	16.7	16.7	0.2	0% - 20%
ES2208278-015	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.01	0.02	0.0	No Limit
EK061G: Total Kjelda	ahl Nitrogen By Discrete Ana	alyser (QC Lot: 4228456)							
ES2208233-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	3.5	3.4	0.0	No Limit
ES2208278-017	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	79.4	78.6	1.1	0% - 20%
EK067G: Total Phosp	phorus as P by Discrete Ana	lyser (QC Lot: 4228455)							
ES2208233-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	10.4	10.1	2.7	0% - 20%
ES2208278-017	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	2.41	2.30	4.3	0% - 20%

Page : 3 of 3 Work Order : ES2208343

Client : CARDNO (NSW/ACT) PTY LTD

Project : Downer Sydney Metro Stations - Wiley Park

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report					
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)		
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EA025: Total Suspended Solids dried at 104 ± 2°C (QCLot: 4229099)									
EA025H: Suspended Solids (SS)	5	mg/L	<5	150 mg/L	99.7	83.0	129		
			<5	1000 mg/L	100	82.0	110		
			<5	463 mg/L	101	83.0	118		
EA045: Turbidity (QCLot: 4231366)									
EA045: Turbidity	0.1	NTU	<0.1	40 NTU	98.2	91.0	105		
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot:	4228449)								
EK059G: Nitrite + Nitrate as N	0.01	mg/L	<0.01	0.5 mg/L	102	91.0	113		
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 4228456	5)								
EK061G: Total Kjeldahl Nitrogen as N	0.1	mg/L	<0.1	10 mg/L	88.5	69.0	101		
			<0.1	1 mg/L	80.1	70.0	118		
			<0.1	5 mg/L	101	70.0	130		
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 4228455)								
EK067G: Total Phosphorus as P	0.01	mg/L	<0.01	4.42 mg/L	94.9	71.3	126		
			<0.01	0.442 mg/L	109	71.3	126		
			<0.01	1 mg/L	112	71.3	126		
EP020: Oil and Grease (O&G) (QCLot: 4229287)									
EP020: Oil & Grease	5	mg/L	<5	5000 mg/L	112	81.0	121		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs), Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	atrix: WATER			Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable l	_imits (%)	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 422							
ES2208233-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	# Not	70.0	130	
					Determined			
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 4228456)							
ES2208247-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	101	70.0	130	
EK067G: Total Pho	sphorus as P by Discrete Analyser (QCLot: 4228455)							
ES2208247-001	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	111	70.0	130	

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2208343** Page : 1 of 5

Client : CARDNO (NSW/ACT) PTY LTD Laboratory : Environmental Division Sydney

Contact : JIAQI ZHOU Telephone : +61 2 8784 8555

Project : Downer Sydney Metro Stations - Wiley Park Date Samples Received : 09-Mar-2022

Site :---- Issue Date : 17-Mar-2022

Sampler : JIAQI ZHOU No. of samples received : 1
Order number : NE30161 No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 5 Work Order : ES2208343

Client : CARDNO (NSW/ACT) PTY LTD

Project : Downer Sydney Metro Stations - Wiley Park

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

	Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
N	latrix Spike (MS) Recoveries							
	EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ar	ES2208233001	Anonymous	Nitrite + Nitrate as N		Not		MS recovery not determined,
						Determined		background level greater than or
								equal to 4x spike level.

Outliers: Analysis Holding Time Compliance

Matrix: WATER

Matrix. Water						
Method	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)	Date extracted	Date extracted			Due for analysis	Days
			overdue			overdue
EA045: Turbidity						
Amber Jar - Sulfuric Acid or Sodium Bisulfate						
QA200				16-Mar-2022	11-Mar-2022	5

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Method	Sample Date Extraction / Pre						
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA025: Total Suspended Solids dried at 104 ± 2°C							
Amber Jar - Sulfuric Acid or Sodium Bisulfate (EA025H) QA200	09-Mar-2022				16-Mar-2022	16-Mar-2022	✓
EA045: Turbidity							
Amber Jar - Sulfuric Acid or Sodium Bisulfate (EA045) QA200	09-Mar-2022				16-Mar-2022	11-Mar-2022	5 0
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) QA200	09-Mar-2022				15-Mar-2022	06-Apr-2022	✓
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G) QA200	09-Mar-2022	15-Mar-2022	06-Apr-2022	✓	15-Mar-2022	06-Apr-2022	✓
EK067G: Total Phosphorus as P by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK067G) QA200	09-Mar-2022	15-Mar-2022	06-Apr-2022	✓	15-Mar-2022	06-Apr-2022	✓

Page : 3 of 5 Work Order : ES2208343

Client : CARDNO (NSW/ACT) PTY LTD

Project : Downer Sydney Metro Stations - Wiley Park

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method	Sample Date	e Date Extraction / Preparation Analysis				Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP020: Oil and Grease (O&G)							
Amber Jar - Sulfuric Acid or Sodium Bisulfate (EP020)							
QA200	09-Mar-2022				16-Mar-2022	06-Apr-2022	✓

Page : 4 of 5 Work Order : ES2208343

Client : CARDNO (NSW/ACT) PTY LTD

Project : Downer Sydney Metro Stations - Wiley Park

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

The expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: x = Quality Control frequency not within specification: $\sqrt{}$ = Quality Control frequency within specification.

Matrix: WATER	Evaluation: * = Quality Control frequency						
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Oil and Grease	EP020	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Oil and Grease	EP020	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 5 Work Order : ES2208343

Client : CARDNO (NSW/ACT) PTY LTD

Project : Downer Sydney Metro Stations - Wiley Park

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Turbidity	EA045	WATER	In house: Referenced to APHA 2130 B. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)
Oil and Grease	EP020	WATER	In house: Referenced to APHA 5520 B. Oil & grease is a gravimetric procedure to determine the amount of dissolved or emulsified oil & grease residue in an aqueous sample. The sample is serially extracted three times n-hexane. The resultant extracts are combined, dehydrated and concentrated prior to gravimetric determination. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)

CERTIFICATE OF ANALYSIS

Work Order : ES2208343

: CARDNO (NSW/ACT) PTY LTD

Contact : JIAQI ZHOU

Address : Level 9 The Forum 203 Pacific Highway

St Leonards NSW 2065

Telephone : ---

Client

Project : Downer Sydney Metro Stations - Wiley Park

Order number : NE30161

C-O-C number : ----

Sampler : JIAQI ZHOU

Site : ---

Quote number : EN/024/20

No. of samples received : 1

No. of samples analysed : 1

Page : 1 of 2

Laboratory : Environmental Division Sydney

Contact : Shane Ellis

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 09-Mar-2022 18:21

Date Analysis Commenced : 15-Mar-2022

Date Analysis Commenced : 15-Mar-2022
Issue Date : 17-Mar-2022 15:34

Accreditation No. 825
Accredited for compliance with

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW

Page : 2 of 2 Work Order : ES2208343

Client : CARDNO (NSW/ACT) PTY LTD

Project Downer Sydney Metro Stations - Wiley Park

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QA200					
		Sampli	ng date / time	09-Mar-2022 00:00					
Compound	CAS Number	LOR	Unit	ES2208343-001					
				Result					
A025: Total Suspended Solids dried at 104 ± 2°C									
Suspended Solids (SS)		5	mg/L	7					
EA045: Turbidity									
Turbidity		0.1	NTU	14.7					
EK059G: Nitrite plus Nitrate as N (NO)	k) by Discrete Ana	lyser							
Nitrite + Nitrate as N		0.01	mg/L	1.69					
EK061G: Total Kjeldahl Nitrogen By Di	screte Analyser								
Total Kjeldahl Nitrogen as N		0.1	mg/L	1.0					
EK062G: Total Nitrogen as N (TKN + N	Ox) by Discrete An	alyser							
^ Total Nitrogen as N		0.1	mg/L	2.7					
EK067G: Total Phosphorus as P by Dis	screte Analyser								
Total Phosphorus as P		0.01	mg/L	0.19					
EP020: Oil and Grease (O&G)									
Oil & Grease		5	mg/L	<5					

CHAIN OF CUSTODY AND ANALYSIS REQUEST

Page

Contact Person: Jiaqi Zhou Project Name: Downer Sydney Metro Stations - Wiley Park 0424 106 665 elephone Number: Project Number: NE30161 **Itemative Contact:** Chong Zheng PO No.: elephone Number: 0451 780 991 Project Specific Quote No. : 190408CDNN_1 Turnaround Regulrements: 5 Days TAT jiaqi.zhou@cardno.com.au; chong.zeng@cardno.com.qu; imail Address (results and invoice): Eurofins | Unit F3, Building F, 16 Mars Rd, Lane Cove West NSW2066 ContamNSW@cardno.com.au uddress: Level 9 - The Forum, 203 Pacific Highway, St Leonards, New South Wales 2065 Australia Attn: Sample Receipt Sample information Analysis Required Comments Date otal Phosphorus Cardno Sample ID Laboratory Sample ID No. Containers Preservation Matrix sampled and Grease Nitrogen Chlorophyll-a urbidity otal SS WP1 5 ICE Water 1 1 1 Please reduce the detection limit of WP2 5 ICE Water Chlorophyll a from 5 ug/L to 2 ug/L 1 1 9/03/2022 QA100 ICE Water 1 1 1 QA200 ICE Water Please send to ALS telinquished by: Jiaqi Zhou Received by: Relinquished by: Received by: Relinquished by: name / company) Cardno ACT/NSW Pty Ltd (name / company) (name / company (name / company) (name / company 9/3/2 1:10 upm Jate & Time: 3/9/2022 Date & Time: Date & Time: Date & Time: Date & Time: 12-130 Cerl JZ lignature: Signature: Signature: Signature: Signature: teceived by: Relinquished by: Received by: Relinguished by: Lab use: name / company) (name / company) (name / company (name / company) Samples Received: Cool or Ambient (circle one))ate & Time: Date & Time: Date & Time: Date & Time Temperature Received at: (if applicable) lignature: Signature: Signature: Transported by: Hand delivered / courier

Cardno sample submission- NE30161

Jiaqi Zhou <jiaqi.zhou@cardno.com.au>

Wed 3/9/2022 1:09 PM

To: #AU04_Enviro_Sample_NSW <EnviroSampleNSW@eurofins.com>

Cc: Ursula Long <UrsulaLong@eurofins.com>; Chong Zeng <chong.zeng@cardno.com.au>

1 attachments (23 KB)

WP_SWM_COC_09032022.xlsx;

CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins.

Do not click on links or open attachments unless you recognise the sender and are certain that the content is safe.

Hi Ursula.

Please find the attached COC for the water samples I dropped off this morning (Please note that QA200 sample need to be sent to ALS ASAP). Could you please reduce the detection limit of Chlorophyll a from 5 ug/L to 2 ug/L? Please feel free to contact me if there is any issue. Thank you for your help.

Jiagi Zhou **ENVIRONMENTAL ENGINEER CARDNO**

Phone Direct +61 2 9024 7073

Address Level 9, The Forum, 203 Pacific Highway, St Leonards, New South Wales 2065 Australia

Email jiaqi.zhou@cardno.com.au Web www.cardno.com

CONNECT WITH CARDNO | | | | | | | |

Cardno acknowledges the Traditional Owners of the land upon which we live and work and pay our respects to their Elders past, present and

Cardno's management systems are certified to ISO9001 (quality) and AS/NZS4801/OHSAS18001 (occupational health and safety)

This email and its attachments may contain confidential and/or privileged information for the sole use of the intended recipient(s). All electronically supplied data must be checked against an applicable hardcopy version which shall be the only document which Cardno warrants accuracy. If you are not the intended recipient, any use, distribution or copying of the information contained in this email and its attachments is strictly prohibited. If you have received this email in error, please email the sender by replying to this message and immediately delete and destroy any copies of this email and any attachments. The views or opinions expressed are the author's own and may not reflect the views or opinions of Cardno.

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000
Lane Cove We NATA # 1261 Site # 1254

Unit F3 Building F NATA # 1261 Site # 18217

NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 www.eurofins.com.au

ABN: 91 05 0159 898

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 EnviroSales@eurofins.com

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Cardno (NSW/ACT) Pty Ltd

Contact name:

Jiaqi Zhou

Project name:

DOWNER SYDNEY METRO STATIONS- WILEY PARK

Project ID: Turnaround time: NE30161 5 Day

Date/Time received

Mar 9, 2022 1:10 PM

Eurofins reference 869657

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

QA200 TO BE SENT FOR ALS ANALYSIS 9/3/22

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Ursula Long on phone: or by email: UrsulaLong@eurofins.com

Results will be delivered electronically via email to Jiaqi Zhou - jiaqi.zhou@cardno.com.au.

Note: A copy of these results will also be delivered to the general Cardno (NSW/ACT) Pty Ltd email address.

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Eurofins Environment Testing Australia Pty Ltd

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

NZBN: 9429046024954

Mar 9, 2022 1:10 PM

Mar 16, 2022

Jiaqi Zhou

5 Day

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Cardno (NSW/ACT) Pty Ltd

Level 9, 203 Pacific Highway St Leonards

NSW 2065

Project Name:

DOWNER SYDNEY METRO STATIONS- WILEY PARK

Project ID: NE30161 Order No.: Report #:

Phone:

Fax:

869657 0294967700

02 9499 3902

Eurofins Analytical Services Manager: Ursula Long

Contact Name:

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

			Chlorophyll a	Oil & Grease (HEM)	Phosphate total (as P)	Total Nitrogen (as N)	Total Suspended Solids Dried at 103°C–105°C	Turbidity			
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х		Х		
Sydr	ney Laboratory	- NATA # 1261 S	Site # 18217					Х		Х	Х
Brist	oane Laborator	y - NATA # 1261	Site # 20794	ļ							
Mayf	ield Laboratory	/ - NATA # 1261	Site # 25079								
Perti	n Laboratory - N	NATA # 2377 Sit	e # 2370								
Exte	rnal Laboratory			•							
No	No Sample ID Sample Date Sampling Matrix LAB ID Time										
1	1 WP1 Mar 09, 2022 Water S22-Ma17605							Х	Х	Х	Х
2	2 WP2 Mar 09, 2022 Water S22-Ma17606							Х	Х	Х	Х
3	QA100 Mar 09, 2022 Water S22-Ma17607								Х	Х	Х
Test	Counts					2	3	3	3	3	3

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway St Leonards NSW 2065

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Jiaqi Zhou

Report 869657-W

Project name DOWNER SYDNEY METRO STATIONS- WILEY PARK

Project ID NE30161
Received Date Mar 09, 2022

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			WP1 Water S22-Ma17605 Mar 09, 2022	WP2 Water S22-Ma17606 Mar 09, 2022	QA100 Water S22-Ma17607 Mar 09, 2022
Test/Reference	LOR	Unit			
	<u> </u>		_	_	
Chlorophyll a	2	ug/L	< 2	< 2	-
Oil & Grease (HEM)	10	mg/L	10	< 10	< 10
Phosphate total (as P)	0.01	mg/L	0.16	0.14	0.14
Total Nitrogen (as N)	0.2	mg/L	1.9	1.8	1.8
Total Suspended Solids Dried at 103°C–105°C	5	mg/L	17	7.8	6.2
Turbidity	1	NTU	31	22	20

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chlorophyll a	Melbourne	Mar 11, 2022	28 Days
- Method: LTM-INO-4340 Chlorophyll a in Waters			
Oil & Grease (HEM)	Melbourne	Mar 10, 2022	28 Days
- Method: LTM-INO-4180 Oil and Grease (APHA 5520B)			
Phosphate total (as P)	Sydney	Mar 09, 2022	28 Days
- Method: E052 Total Phosphate (as P)			
Total Nitrogen (as N)	Melbourne	Mar 17, 2022	7 Days
- Method: LTM-INO-4040 Phosphate and Nitrogen in waters			
Total Suspended Solids Dried at 103°C–105°C	Sydney	Mar 09, 2022	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Turbidity	Sydney	Mar 09, 2022	2 Days

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

Auckland 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Cardno (NSW/ACT) Pty Ltd Address:

Level 9, 203 Pacific Highway St Leonards

NSW 2065

Project Name:

DOWNER SYDNEY METRO STATIONS- WILEY PARK

Project ID:

NE30161

Order No.: Report #:

Phone:

Fax:

869657

0294967700 02 9499 3902

Received: Mar 9, 2022 1:10 PM Due: Mar 16, 2022

Priority: 5 Dav **Contact Name:** Jiaqi Zhou

Eurofins Analytical Services Manager: Ursula Long

		Sai	mple Detail			Chlorophyll a	Oil & Grease (HEM)	Phosphate total (as P)	Total Nitrogen (as N)	Total Suspended Solids Dried at 103°C-105°C	Turbidity
Melb	ourne Laborato	ory - NATA # 120	61 Site # 125	4		Χ	Х		Х		
Sydr	ey Laboratory	- NATA # 1261 S	Site # 18217					Х		Х	Х
Brisk	oane Laborator	y - NATA # 1261	Site # 20794	l .							
Mayf	ield Laboratory	- NATA # 1261	Site # 25079								
Perth	Laboratory - N	IATA # 2377 Sit	e # 2370								
Exte	rnal Laboratory										
No	No Sample ID Sample Date Sampling Matrix LAB ID Time										
1	WP1	Mar 09, 2022		Water	S22-Ma17605	Х	Х	Х	Х	Х	Х
2	WP2	Mar 09, 2022		Water	S22-Ma17606	Χ	Х	Х	Χ	Х	Х
3	QA100 Mar 09, 2022 Water S22-Ma17607							Х	Χ	Х	Х
Test	Counts					2	3	3	3	3	3

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre μg/L: micrograms per litre

ppm: parts per million **ppb:** parts per billion
%: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report

CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting.

Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank							•		
Chlorophyll a			ug/L	< 2			2	Pass	
Oil & Grease (HEM)			mg/L	< 10			10	Pass	
Total Suspended Solids Dried at 10	3°C-105°C		mg/L	< 5			5	Pass	
Turbidity			NTU	< 1			1	Pass	
LCS - % Recovery									
Oil & Grease (HEM)			%	83			70-130	Pass	
Total Suspended Solids Dried at 10	3°C-105°C		%	102			70-130	Pass	
Turbidity			%	93			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Total Suspended Solids Dried at 103°C–105°C	S22-Ma24731	NCP	%	116			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Chlorophyll a	S22-Ma17605	CP	ug/L	< 2	< 2	<1	30%	Pass	
Oil & Grease (HEM)	S22-Ma17262	NCP	mg/L	< 10	< 10	<1	30%	Pass	
Total Suspended Solids Dried at 103°C–105°C	S22-Ma24731	NCP	mg/L	140	140	3.0	30%	Pass	
Duplicate									
		•		Result 1	Result 2	RPD			
Turbidity	S22-Ma17607	CP	NTU	20	20	3.0	30%	Pass	

Comments

Eurofins | Environment Testing accreditation number 1261, site 18217 is currently in progress of a controlled transition to a new custom built location at 179 Magowar Road, Girraween, NSW 2145. All results on this report denoted as being performed by Eurofins | Environment Testing Unit F3, Building F, 16 Mars road, Lane Cove West, NSW 2066, corporate site 18217, will have been performed on either Lane Cove or new Girraween site

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

Ursula Long Analytical Services Manager
Charl Du Preez Senior Analyst-Inorganic (NSW)
Scott Beddoes Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Construction Monitoring Report November 2021 to April 2022

Sydney Metro City & Southwest - Package 5 & 6

Appendix 5 – TL927-1-18F01 Hurlstone Park Station Vibration MonitoringReport (r1)

Internal Use Only
© Downer 2020. All Rights Reserved

Page 41

Version: Rev A

8 December 2021

TL927-1-18F01 Hurlstone Park Station Vibration Monitoring Report (r1)

Downer EDI Works Pty Ltd 76 Berry Street Nth Sydney NSW 2060

Sydney Metro Southwest - Station Upgrades - Hurlstone Park Station Vibration Monitoring

1 Introduction

Renzo Tonin & Associates was engaged by Downer EDI Works to conduct vibration monitoring during the Station Upgrades works for Sydney Metro Southwest. The vibration monitoring was undertaken to monitor potentially affected structures. This report provides a summary of the monitoring results.

2 Details of monitoring

Two unattended vibration monitors were installed at the neighbouring garage structure at 3A Commons Street, Hurlstone Park between 10:30am 29th November and 03:00pm 3rd December 2021.

2.1 Measurement location

The measurement locations are listed in Table 2-1. Figures depicting the monitoring locations are included in APPENDIX A.

Table 2-1: Measurement locations

Measurement ID	Assessment Point	Date and time	Measured plant	Monitoring type	Approx. distance to measured plant	Temporary noise barrier between measured plant/receiver
M1	Neighbouring garage structure at 3A Commons Street, Hurlstone Park (Appendix A.1)	29.11.2021 – 03.12.2021 10:30am – 03:00pm	Excavator with hammer attachment	Vibration	5m	N/A

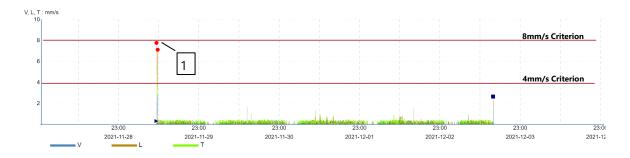
2.2 Measurement equipment

The instrumentation used for the vibration measurement are summarised in Table 2-2. The accelerometers used in the measurements have current calibration certificates.

Table 2-2: Summary of vibration instrumentation

Туре	Make / Model
Triaxial Transducers	Sigicom C12 (SN: 66830)
Triaxial Transducers	Sigicom C12 (SN: 70250)

3 Vibration Monitoring results


3.1 Neighbouring garage structure at 3A Commons Street Vibration Monitoring

In accordance with the Hurlstone Park Station Vibration Monitoring Plan¹, the established vibration limits for the affected garage structure are shown below:

- Greater than or equal to 4 mm/s (cosmetic damage is possible);
- Greater than or equal to 8 mm/s (cosmetic damage becoming more likely).

The results of the unattended vibration measurements for the neighbouring garage structure at 3A Commons Street are presented in Figure 3-1 and Figure 3-2.

Figure 3-1: Unattended vibration monitoring location 1 results (refer to Appendix A.1)

_

¹ Sydney Metro Southwest – Station Upgrades – Hurlstone Park Station Vibration Monitoring Plan (ref: TL927-1-14F01 Hurlstone Park Stn VIB MON PLAN (r2)), dated 14 October 2021

V. L. T. mm/s

8mm/s Criterion

4

2

23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 2021-12-03 2021

Figure 3-2: Unattended vibration monitoring location 2 results (refer to Appendix A.1)

The discussion of the unattended vibration measurements is summarised in Table 3-1 below.

Table 3-1: Unattended vibration monitoring summary

Exceedance ID	Date and Time	Cause of exceedance
1	29.11.2021 10:30am	At this time, the vibration monitor was mounted on the ground spike to commence monitoring. Exceedance was not caused by the nearby construction activities.
2	29.11.2021 11:00am	At this time, the vibration monitor was mounted on the ground spike to commence monitoring. Exceedance was not caused by the nearby construction activities.
3	03.12.2021 03:00pm	At this time, the vibration monitor was removed from the ground spike at the completion of monitoring. Exceedance was not caused by the nearby construction activities.

It can be seen in Figure 3-1 and Figure 3-2 that the vibration levels produced from the vibration intensive works in the vicinity of the affected garage structure is below 4 mm/s. Note that there were events that resulted in an instantaneous vibration level of above 4 mm/s which are justified in Table 3-1.

4 Conclusion

Renzo Tonin & Associates completed vibration monitoring for the Station Upgrades works. The results of the unattended vibration measurements were typically below the established vibration criteria presented in the Hurlstone Park Station Vibration Monitoring Plan prepared for the works. There were events that resulted in an instantaneous vibration level of above 4 mm/s. The cause of each event is outlined in Table 3-1.

Document control

Date	Revision history	Non-issued revision	Issued revision	Prepared	Instructed	Reviewed / Authorised
08.12.2021	First Issue	0	1	R. Zhafranata	T. Gowen	T. Gowen

File Path: R:\AssocSydProjects\TL901-TL950\TL927 Southwest Metro - Stations Upgrades\1 Docs\18 November Hurlstone Park Stn Vibration Monitoring\TL927-1-18F01 Hurlstone Park Station Vibration Monitoring Report (r1).docx

Important Disclaimers

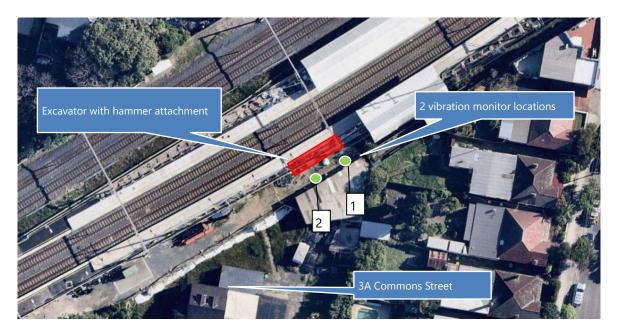
The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.


We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.

External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systems (eg facade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

APPENDIX A Measurement locations

A.1 Hurlstone Park Station (Vibration)

Construction Monitoring Report November 2021 to April 2022

Sydney Metro City & Southwest - Package 5 & 6

Appendix 6 - TL927-1-19F01 WE25 Noise and Vibration Monitoring Report (r2)

Internal Use Only
© Downer 2020. All Rights Reserved

Page 42 Version: Rev A

23 December 2021

TL927-1-19F01 WE25 Noise and Vibration Monitoring Report (r2)

Downer EDI Works Pty Ltd 76 Berry Street Nth Sydney NSW 2060

Sydney Metro Southwest - Station Upgrades - WE25 Possession Works

1 Introduction

Renzo Tonin & Associates was engaged by Downer EDI Works to conduct noise and vibration monitoring during the Station Upgrades WE25 possession works for Sydney Metro Southwest. The noise monitoring was undertaken to verify predicted noise levels in the corresponding Gatewave model (Gatewave scenario ID: 2973 for high impact activities and Gatewave scenario ID: 2971 for typical activities). The vibration monitoring was undertaken to establish site specific minimum working distances for vibration intensive plant and monitor potentially affected structures. This report provides a summary of the monitoring results.

2 Details of monitoring

Noise monitoring was undertaken at Hurlstone Park, Dulwich Hill, Campsie, Punchbowl and Wiley Park Station on 18th December 2021. Attended vibration monitoring was undertaken at Hurlstone Park and Campsie Station on 18th December 2021. Two unattended vibration monitors were installed at the neighbouring garage structure at 3A Commons Street, Hurlstone Park between 7:30am 18th December and 4:00pm 19th December 2021.

2.1 Measurement location

The noise measurements were conducted at the worst affected residential receiver, relative to the measured works. The attended vibration monitoring was conducted at Campsie Station during rockhammering and core drilling works. The attended vibration monitoring was also conducted at Hurlstone Park Station during asphalt excavation activity on the station platform. The measurement locations are listed in Table 2-1. Figures depicting the monitoring locations are included in APPENDIX A.

Table 2-1: Measurement locations

Measurement ID	Assessment Point	Date and time	Measured plant	Monitoring type	Approx. distance to measured plant	Temporary noise barrier between measured plant/receiver
M1	105 Duntroon Street, Hurlstone Park (Appendix A.1)	18.12.2021 08:17am - 08:31am	Two 4T excavator with bucket attachment and two hi-rail Moxy trucks, handheld cutter	Noise	35m	No
M2	3A Commons Street, Hurlstone Park (Appendix A.2)	18.12.2021 08:36am - 08:52am	Two 4T excavator with bucket attachment and two hi-rail Moxy trucks, handheld cutter	Noise	45m	No
M3	57A Ewart Lane, Dulwich Hill (Appendix A.3)	18.12.2021 09:43am - 09:59am	Handheld drill, vacuum truck, concrete saw and 5T excavator with hammer attachment	Noise	35m	No
M4	59 Ewart Street, Dulwich Hill (Appendix A.3)	18.12.2021 10:00am - 10:15am	Handheld drill, vacuum truck, concrete saw and 5T excavator with hammer attachment	Noise	40m	No
M5	13-15 Anglo Road, Campsie (Appendix A.4)	18.12.2021 11:30am - 11:45am	Vacuum truck and 7T excavator with bucket attachment	Noise	80-95m	No
M6	3 Wilfred Avenue, Campsie (Appendix A.4)	18.12.2021 11:55am - 12:10pm	Vacuum truck and 7T excavator with bucket attachment	Noise	60-65m	No
M7	41 Urunga Parade, Punchbowl (Appendix A.5)	18.12.2021 02:04pm - 02:20pm	4T excavator with hammer attachment, vacuum truck and handheld cutter	Noise	100-110m	No
M8	228 The Boulevarde, Punchbowl (Appendix A.5)	18.12.2021 02:37pm - 02:52pm	Handheld jackhammer, 4T excavator with hammer attachment and 4T excavator with bucket attachment	Noise	45-50m	No
M9	3 Shadforth Street, Wiley Park (Appendix A.6)	18.12.2021 03:09pm - 03:24pm	Pressure washer	Noise	15m	No
M10	Hurlstone Park Station (Appendix A.8)	18.12.2021 09:04am - 09:10am	4T Excavator with bucket attachment	Vibration	1m	N/A
M11	Campsie Station (Appendix A.7)	18.12.2021 01:08pm - 01:20pm	7T Excavator with hammer attachment	Vibration	2.5m and 5.5m	N/A

Measurement ID	Assessment Point	Date and time	Measured plant	Monitoring type	Approx. distance to measured plant	Temporary noise barrier between measured plant/receiver
M12	Campsie Station (Appendix A.7)	18.12.2021 03:54pm - 04:10pm	Core drill	Vibration	6m	N/A
M13	Neighbouring garage structure at 3A Commons Street, Hurlstone Park (Appendix A.8)	18.12.2021 - 19.12.2021 07:30am - 04:00pm	Excavator with bucket attachment and excavator with hammer attachment	Vibration	5m	N/A

2.2 Measurement equipment

Noise measurement equipment consisted of one NTi Audio XL2 Type 1 sound level meter and microphone calibrator. The microphone was checked prior and after measurements using a Bruel & Kjaer Type 4231 calibrator. No significant drift in calibration was observed. All instrumentation complies with AS IEC 61672.1 2004 'Electroacoustics - Sound Level Meters' and carries current NATA certification (or if less than 2 years old, manufacturers certification).

Table 2-2 summarises the details of noise measurement equipment.

Table 2-2: Summary of noise measurement equipment

Instrument	Make	Model	Serial Number	Last Calibrated
Type 1 Sound Level Meter (XL2-B)	NTi	XL2	A2A-16217-E0	13 August 2021
Type 1 Sound Level Meter Calibrator	B&K	Type 4231	3009707	2 December 2020

The instrumentation used for the vibration measurement are summarised in Table 2-3. The accelerometers used in the measurements have current calibration certificates.

Table 2-3: Summary of vibration instrumentation

Туре	Make / Model
Triaxial Transducers	Sigicom C12 (SN: 70250)
Triaxial Transducers	Sigicom C22 (SN: 102479)
Accelerometer	Endevco 61C13
Type 1 Signal Analyser	Soundbook-1

2.3 Environmental conditions

Environmental conditions recorded during the measurements are provided in Table 2-4. Environmental conditions did not have an adverse effect on the measured noise and vibration levels.

Table 2-4: Environmental conditions

Measurement ID	Assessment Point	Date and Start Time	Environmental Conditions
M1	103 Duntroon Street, Hurlstone Park	18.12.2021 08:17am	Clear sky; air temperature 19°C, wind speed <5 m/s; relative humidity 51%.
M2	3A Commons Street, Hurlstone Park	18.12.2021 08:36am	Clear sky; air temperature 20°C, wind speed <5 m/s; relative humidity 51%.
M3	57a Ewart Lane, Dulwich Hill	18.12.2021 09:43am	Clear sky; air temperature 24°C, wind speed <5 m/s; relative humidity 51%.
M4	59 Ewart Street, Dulwich Hill	18.12.2021 10:00am	Clear sky; air temperature 25°C, wind speed <5 m/s; relative humidity 51%.
M5	11 Anglo Road, Campsie	18.12.2021 11:30am	Clear sky; air temperature 27°C, wind speed <5 m/s; relative humidity 48%.
M6	3 Wilfred Avenue, Campsie	18.12.2021 11:55am	Clear sky; air temperature 27°C, wind speed <5 m/s; relative humidity 48%.
M7	41 Urunga Parade, Punchbowl	18.12.2021 02:04pm	Clear sky; air temperature 30°C, wind speed <5 m/s; relative humidity 48%.
M8	228 The Boulevarde, Punchbowl	18.12.2021 02:37pm	Clear sky; air temperature 31°C, wind speed <5 m/s; relative humidity 48%.
M9	3 Shadforth Street, Wiley Park	18.12.2021 03:09pm	Clear sky; air temperature 32°C, wind speed <5 m/s; relative humidity 48%.

3 Noise Monitoring results

The results of the noise monitoring are presented in Table 3-1 below.

Table 3-1: Measured noise levels L_{Aeq(15min)}

Measurement	Assessment Point	Prediction assumption (plant and equipment)	Predicted noise level dB(A)	Measured plant	Measured noise level dB(A)		•	Comments	
ID					L _{Aeq(15min)}	L _{Amax}	level?		
M1	105 Duntroon Street, Hurlstone Park	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	82 ^T	Two 4T excavator with bucket attachment, two hi- rail Moxy trucks and handheld cutter	69	77	No (Laeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. Note that the majority of the works were occurring on the western side of the platform at a lower ground level compared to monitoring location. As a result, the works were mostly shielded at this monitoring location. Furthermore, only two 4T excavator with bucket attachment, two hi-rail Moxy trucks and a handheld cutter were operating intermittently during this measurement. In the prediction model, the distance between the work area and the receiver is approximately 3 metres. The measured works were approximately 35m away from the monitoring location. These factors contribute to the measured noise level from the works being less noisy than the predicted noise level.	
M2	3A Commons Street, Hurlstone Park	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	80 ^T	Two 4T excavator with bucket attachment, two hi- rail Moxy trucks and handheld cutter	63	83	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted level. Factors contributing to this include the intermittent nature of the works during the measurement and less noisy plant operating during this measurement compared to the prediction assumptions. Furthermore, the measured works were approximately 45m away from the monitoring location, which is further than in the prediction model, where the distance between the closest typical impact work area and the most affected facade is approximately 10 metres.	
M3	57A Ewart Lane, Dulwich Hill	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	77 ^H	Handheld drill, vacuum truck, concrete saw and 5T excavator with hammer attachment	73*	98	No (L _{Aeq, 15min})	The measured $L_{Aeq, 15min}$ is lower than the predicted noise level. Note that the measured construction activity was approximately 35 metres away from the measurement location. In the prediction model, the distance between the closest high impact work area and the most affected facade is approximately 20 metres.	
M4	59 Ewart Street, Dulwich Hill	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	74 ^H	Handheld drill, vacuum truck, concrete saw and 5T excavator with hammer attachment	68*	89	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. Note that the rockhammering activity only occurred for approximately 2 minutes of the 15 minute measurement period. Furthermore, the measured construction activity was approximately 40 metres away from the measurement location. In the prediction model, the distance between the closest high impact work area and the most affected facade is approximately 25 metres.	
M5	13-15 Anglo Road, Campsie	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	74 ^T	Vacuum truck and 7T excavator with bucket attachment	61	73	No (LAeq. 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. Note that the measured noise level is significantly lower than the predicted noise level because less noisy plant were operating during this measurement compared to the prediction assumptions. Furthermore, the measured construction activity was approximately 80 to 95 metres away from the measurement location. In the prediction model, the distance between the closest typical work area and the most affected facade is approximately 15 metres.	
M6	3 Wilfred Avenue, Campsie	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	69 ^T	Vacuum truck and 7T excavator with bucket attachment	60	90	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. Note that the measured noise level is lower than the predicted noise level because only the vacuum truck and 7T excavator with bucket attachment were operating during this measurement, compared to noisier plant in the prediction assumptions. Furthermore, the measured construction activity was approximately 60 to 65 metres away from the measurement location. In the prediction model, the distance between the closest typical work area and the most affected facade is approximately 25 metres.	
M7	41 Urunga Parade, Punchbowl	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	72 ^H	4T excavator with hammer attachment, vacuum truck and handheld cutter	61*	81	No (Laeq, 15min)	The measured L _{Aeq. 15min} is lower than the predicted noise level. Note that the measured noise level is significantly lower than the predicted noise level because only the 4T excavator with hammer attachment, vacuum truck and handheld cutter were operating during this measurement, compared to noisier plant in the prediction assumptions. Furthermore, the measured construction activity was approximately 100 to 110 metres away from the measurement location. In the prediction model, the distance between the closest high impact work area and the most affected facade is approximately 80 metres.	
M8	228 The Boulevarde, Punchbowl	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	70 ^H	Handheld jackhammer, 4T excavator with hammer attachment and 4T excavator with bucket attachment	75*	84	Yes (LAeq, 15min)	The measurement location is a commercial receiver. The measured L _{Aeq, 15min} is higher than the predicted noise level, after applying the 5 dB(A) penalty. Note that this monitoring location was heavily affected by the constant road traffic along The Boulevarde throughout the measurement. It was not possible to measure the construction activity in the absence of traffic noise.	
M9	3 Shadforth Street, Wiley Park	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	79 [†]	Pressure washer	71	76	No (Laeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted level. Note that the measured construction activity was approximately 15 metres away from the measurement location. In the prediction model, the distance between the closest typical impact work area and the most affected facade is approximately 10 metres.	

Notes:

^{*: 5}dB(A) penalty applied for hammering works.

T: Predicted L_{Aeq, 15min} for Typical activities

H: Predicted L_{Aeq, 15min} for High impact activities

4 Vibration Monitoring results

4.1 Attended vibration monitoring and minimum working distance

The established vibration criteria for cosmetic damage in the Construction Noise & Vibration – OOHW Assessment Stage 2 Possession Works (CNV-OOHWA)¹ is as follows:

• Reinforced or frame structures: 25.0 mm/s

• Unreinforced or light framed structures: 7.5 mm/s

Heritage structures: 2.5 mm/s

The results of the vibration monitoring are presented in Table 4-1.

Table 4-1: Measured vibration levels

Measure ment ID	Assessment point	Plant	Distance from source	95th percentile PPV (mm/s)	Maximum PPV (mm/s)	Comments
M10	Hurlstone Park Station	4T excavator with bucket attachment	1m	0.90	0.95	At a distance of 1 metre away, the 4T excavator with bucket attachment produced vibration levels that are below the established vibration screening criteria.
M11	Campsie Station	7T excavator with hammer attachment	5.5m	0.60	0.58	At a distance of 5.5 metres away, the 7T excavator with hammer attachment produced vibration levels that are below the established vibration screening criteria. Vibration monitor was attached on the nearest affected structure.
		7T excavator with hammer attachment	2.5m	1.60	1.53	At a distance of 2.5 metres away, the 7T excavator with hammer attachment produced vibration levels that are below the established vibration screening criteria. Vibration monitor was attached on the nearest affected structure.
M12	Campsie Station	Core drilling	6m	0.13	0.16	At a distance of 6 metres away, the core drilling activity produced vibration levels that are below the established vibration screening criteria.

It can be seen from Table 4-1 that the measured vibration levels were below the established criteria for heritage, reinforced or unreinforced structures. As a result, the risk of cosmetic damage from the measured plant items are considered to be low.

_

¹ TL927-1-02F01 CNV_OOHWA WE42 Possession April 2021 (r4), dated: 06 April 2021

4.2 Neighbouring garage structure at 3A Commons Street Vibration Monitoring

In accordance with the Hurlstone Park Station Vibration Monitoring Plan², the established vibration limits for the affected garage structure are shown below:

- Greater than or equal to 4 mm/s (cosmetic damage is possible);
- Greater than or equal to 8 mm/s (cosmetic damage becoming more likely).

The results of the unattended vibration measurements for the neighbouring garage structure at 3A Commons Street are presented in Figure 4-1 and Figure 4-2.

Figure 4-1: Unattended vibration monitoring location 1 results (refer to Appendix A.8)

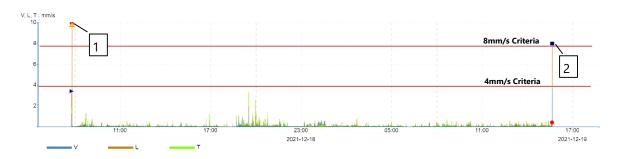
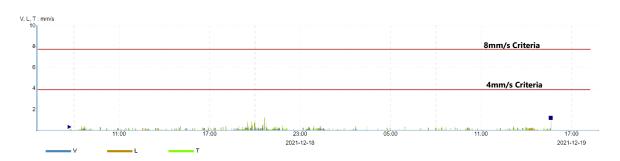



Figure 4-2: Unattended vibration monitoring location 2 results (refer to Appendix A.8)

² Sydney Metro Southwest – Station Upgrades – Hurlstone Park Station Vibration Monitoring Plan (ref: TL927-1-14F01 Hurlstone Park Stn VIB MON PLAN (r2)), dated 14 October 2021

The discussion of the unattended vibration measurements is summarised in Table 4-2 below.

Table 4-2: Unattended vibration monitoring summary

Exceedance ID	Date and Time	Cause of exceedance
1	18.12.2021 07:47am	At this time, the vibration monitor was mounted on the ground spike to commence monitoring. Exceedance was not caused by the nearby construction activities.
2	19.12.2021 03:41pm	At this time, the vibration monitor was removed from the ground spike to complete the monitoring. Exceedance was not caused by the nearby construction activities.

It can be seen in Figure 4-1 and Figure 4-2 that the vibration levels produced from the vibration intensive works in the vicinity of the affected garage structure is below 4 mm/s. Note that there were events that resulted in an instantaneous vibration level of above 4 mm/s, however these were not caused by the nearby construction activities, as justified in Table 4-2.

5 Conclusion

Renzo Tonin & Associates completed noise and vibration monitoring for the WE25 possession works. The results of the noise measurements were below the predicted $L_{Aeq\ 15minutes}$ levels presented in the Gatewave model prepared for the works.

Based on the attended vibration measurement at Hurlstone Park and Campsie Station, the measured vibration levels were below the established vibration criteria for heritage, reinforced or unreinforced structures.

The results of the unattended vibration measurements were typically below the established vibration criteria presented in the Hurlstone Park Station Vibration Monitoring Plan prepared for the works. There were events that resulted in an instantaneous vibration level of above 4 mm/s. The cause of each event was <u>not</u> related to construction activity, as outlined in Table 4-2.

Document control

Date	Revision history	Non-issued revision	Issued revision	Prepared	Instructed	Reviewed / Authorised
23.12.2021	First Issue	0, 1	2	J. Liang/ R. Zhafranata	M. Tabacchi/ T. Gowen	T. Gowen

File Path: R:\AssocSydProjects\TL901-TL950\TL927 Southwest Metro - Stations Upgrades\1 Docs\19 December WE25 possession\TL927-1-19F01 WE25 Noise and Vibration Monitoring Report (r2).docx

Important Disclaimers:

The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

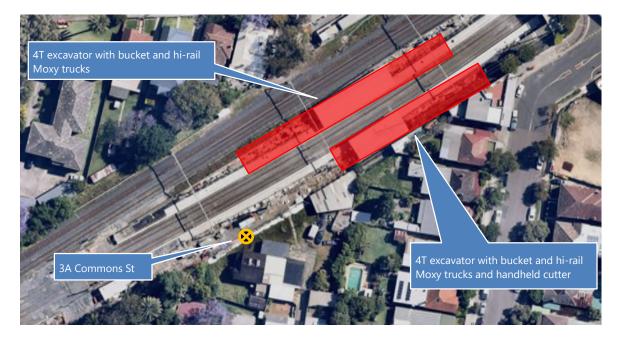
This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.

We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.


External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systems (eg facade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

APPENDIX A Measurement locations

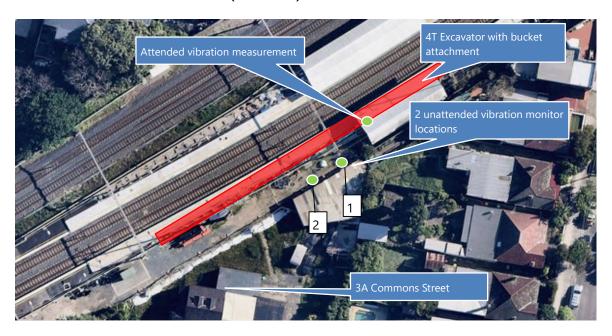
A.1 105 Duntroon Street, Hurlstone Park

A.2 3A Commons Street, Hurlstone Park

A.3 57A Ewart Lane and 59 Ewart Street, Dulwich Hill

A.4 13-15 Anglo Road and 3 Wilfred Avenue, Campise

A.5 41 Urunga Parade and 228 The Boulevarde, Punchbowl


A.6 3 Shadforth Street, Wiley Park

A.7 Campsie Station (Vibration)

A.8 Hurlstone Park Station (Vibration)

Construction Monitoring Report November 2021 to April 2022

Sydney Metro City & Southwest - Package 5 & 6

Appendix 7 – TL927-1-20F01 Shutdown 2 Noise and Vibration MonitoringReport (r2)

Internal Use Only
© Downer 2020. All Rights Reserved

Page 43

Warning: Printed documents are UNCONTROLLED Version: Rev A

18 May 2022

TL927-1-20F01 Shutdown 2 Noise and Vibration Monitoring Report (r2)

Downer EDI Works Pty Ltd 76 Berry Street Nth Sydney NSW 2060

Sydney Metro Southwest - Station Upgrades - Shutdown 2 Possession Works

1 Introduction

Renzo Tonin & Associates was engaged by Downer EDI Works to conduct noise and vibration monitoring during the Station Upgrades Shutdown 2 possession works for Sydney Metro Southwest. The noise monitoring was undertaken to verify predicted noise levels in the corresponding Gatewave model (Gatewave scenario ID: 2973 for high impact activities and Gatewave scenario ID: 2971 and 3008 for typical activities). The vibration monitoring was undertaken to monitor potentially affected structures. This report provides a summary of the monitoring results.

2 Details of monitoring

Noise monitoring was undertaken at Belmore, Campsie, Dulwich Hill, Punchbowl and Wiley Park Station between 26th December 2021 and 30th December 2021. Note that no construction works were occurring at Hurlstone Park Station during the evening ang night period between 26th December 2021 and 30th December 2021.

Two unattended vibration monitors were installed at the neighbouring garage structure at 3A Commons Street, Hurlstone Park between 08:00am 26th December and 03:00pm 9th January 2022. One unattended vibration monitor was installed inside the station building on platform 1 at Hurlstone Park Station between 01:00pm 2nd January 2022 and 03:00pm 9th January 2022.

2.1 Measurement location

The noise measurements were conducted at the worst affected residential receiver, relative to the measured works. The measurement locations are listed in Table 2-1. Figures depicting the monitoring locations are included in APPENDIX A.

Table 2-1: Measurement locations

Measurement ID	Assessment Point	Date and time	Measured plant	Monitoring type	Approx. distance to measured plant	Temporary noise barrier between measured plant/receiver
M1	13-15 Anglo Road, Campsie (Appendix A.2)	26.12.2021 09:11pm – 09:26pm	Two multi-crane hirail vehicles, hand tools including cutters and hammering	Noise	25m	No
M2	35 North Parade, Campsie (Appendix A.2)	26.12.2021 09:15pm – 09:30pm	3T excavator with hammer attachment	Noise	90m	No
M3	1 Acacia Street, Belmore (Appendix A.3)	26.12.2021 09:56pm – 10:04pm	Pressure washer	Noise	40m	No
M4	41 Urunga Parade, Punchbowl (Appendix A.4)	26.12.2021 11:14pm – 11:29pm	5T excavator with bucket attachment, lighting towers. Distant 8t excavator with bucket attachment and dump truck	Noise	25m	No
M5	14 Arthur Street, Punchbowl (Appendix A.4)	26.12.2021 11:17pm – 11:32pm	No construction noise was audible at this monitoring location	Noise	90m	No
M6	1-3 Shadforth Street, Wiley Park (Appendix A.5)	26.12.2021 11:50pm – 11:54pm	2 x 22.5t excavator with bucket attachment, lighting towers, hand tools	Noise	22m	No
M7	1-3 Shadforth Street, Wiley Park (Appendix A.5)	27.12.2021 08:03pm – 08:18pm	Concrete saw, hi-rail excavators and lighting tower	Noise	20m-65m	No
M8	1 Bedford Crescent, Dulwich Hill (Appendix A.1)	28.12.2021 08:14pm – 8:29pm	Handtools (grinder and hammer), hi-rail multi-crane vehicle, 13T excavator with crane attachment	Noise	50m	Some lighting towers were fitted with noise blankets
M9	51 Ewart Lane, Dulwich Hill (Appendix A.1)	28.12.2021 08:28pm – 08:43pm	Concrete saw, 8T excavator with crane attachment, hi-rail multi-crane vehicle, 13T excavator with crane attachment, lighting towers	Noise	30m	Some lighting towers were fitted with noise blankets
M10	1 Acacia Street, Belmore (Appendix A.3)	28.12.2021 09:29pm – 09:45pm	Handheld jackhammer, light tower, concrete saw, handheld power tools	Noise	65m	No

Measurement ID	Assessment Point	Date and time	Measured plant	Monitoring type	Approx. distance to measured plant	Temporary noise barrier between measured plant/receiver
M11	30 Redman Parade, Belmore (Appendix A.3)	28.12.2021 09:35pm – 09:50pm	Handheld jackhammer and handheld grinder	Noise	65m	No
M12	5 London Street, Campsie (Appendix A.2)	28.12.2021 10:25pm – 10:40pm	Concrete truck, jumping jack compactor, hand tools	Noise	65m	No
M13	1-3 Shadforth Street, Wiley Park (Appendix A.5)	28.12.2021 11:09pm – 11:25pm	22.5T excavator with crane attachment, light towers, two 5T excavators with bucket attachment, hi-rail dump truck vehicles, bobcat, rattlegun, hand tools	Noise	20m	No
M14	2 Shadforth Street, Wiley Park (Appendix A.5)	28.12.2021 11:10pm – 11:25pm	22.5T excavator with crane attachment, shovel	Noise	40m	No
M15	41 Urunga Parade, Punchbowl (Appendix A.4)	28.12.2021 11:44pm – 11:59pm	Rattlegun, handheld power tools, hi-rail multi-crane vehicle, light towers	Noise	20m	No
M16	14 Arthur Street, Punchbowl (Appendix A.4)	28.12.2021 11:48pm – 12:03am	Lighting tower	Noise	90m	No
M17	14 Arthur Street, Punchbowl (Appendix A.4)	29.12.2021 08:10pm – 08:25pm	Handheld grinder	Noise	90m	No
M18	41 Urunga Parade, Punchbowl (Appendix A.4)	29.12.2021 08:17pm – 08:32pm	Lighting towers, hirail 8T excavator with crane attachment	Noise	30m	No
M19	2 Shadforth Street, Wiley Park (Appendix A.5)	29.12.2021 08:50pm – 09:05pm	22.5T excavator with crane attachment, concrete saw, rattle gun	Noise	25m	No
M20	1-3 Shadforth Street, Wiley Park (Appendix A.5)	29.12.2021 08:55pm – 09:10pm	22.5T excavator with crane attachment, 8T excavator with auger attachment, hand grinders, hand tools	Noise	20m	No
M21	13-15 Anglo Road, Campsie (Appendix A.2)	29.12.2021 09:45pm – 10:00pm	Concrete agitator, and concrete pump truck	Noise	10m	No

					Approx.	Temporary noise barrier
Measurement ID	Assessment Point	Date and time	Measured plant	Monitoring type	to measured plant	between measured plant/receiver
M22	5 London Street, Campsie (Appendix A.2)	29.12.2021 09:54pm – 10:10pm	Concrete agitator and concrete pump truck, hand grinder	Noise	60m	No
M23	30 Redman Parade, Belmore (Appendix A.3)	29.12.2021 10:24pm – 10:39pm	Excavator with quackers alarm	Noise	85m	No
M24	1 Acacia Street, Belmore (Appendix A.3)	29.12.2021 10:30pm – 10:46pm	Hand tools including hand grinder and power drills	Noise	40m	No
M25	1 Bedford Crescent, Dulwich Hill (Appendix A.1)	29.12.2021 11:11pm – 11:26pm	Handheld jackhammer and lighting tower	Noise	50m	Yes
M26	51 Ewart Lane, Dulwich Hill (Appendix A.1)	29.12.2021 11:20pm – 11:36pm	Generators, lighting towers, cement mixers, 1.75T excavator with hammer attachment	Noise	20m	Some lighting towers were surrounded by noise blankets
M27	1 Bedford Crescent, Dulwich Hill (Appendix A.1)	30.12.2021 08:03pm – 08:18pm	Concrete agitator and concrete pump truck	Noise	80m	Some lighting towers were fitted with noise blankets
M28	51 Ewart Lane, Dulwich Hill (Appendix A.1)	30.12.2021 08:07pm – 08:22pm	Cement agitator, handheld cement vibrator, light towers	Noise	20m	Some lighting towers were fitted with noise blankets
M29	5 London Street, Campsie (Appendix A.2)	30.12.2021 08:56pm – 09:11pm	Concrete agitator and concrete pump truck, handheld power drill, 8T excavator with bucket attachment	Noise	60m	No
M30	13-15 Anglo Road, Campsie (Appendix A.2)	30.12.2021 09:00pm – 09:15pm	Concrete pump truck, plate compactor, hand tools including rattle gun and hammer	Noise	20m	No
M31	30 Redman Parade, Belmore (Appendix A.3)	30.12.2021 09:39pm – 09:54pm	Plate compactor and handheld electric jackhammer	Noise	65m	No
M32	1 Acacia Street, Belmore (Appendix A.3)	30.12.2021 09:41pm – 09:56pm	Handheld electric jackhammer, handheld power tools including grinder and drill, 15T excavator with bucket attachment	Noise	40m	No

Measurement ID	Assessment Point	Date and time	Measured plant	Monitoring type	Approx. distance to measured plant	Temporary noise barrier between measured plant/receiver
M33	2 Shadforth Street, Wiley Park (Appendix A.5)	30.12.2021 10:19pm – 10:34pm	Hand tools including rattle gun and hammer	Noise	30m	No
M34	1-3 Shadforth Street, Wiley Park (Appendix A.5)	30.12.2021 10:21pm – 10:36pm	5T excavator with auger attachment, hand power tools including power drill, handheld grinder	Noise	20m	No
M35	41 Urunga Parade, Punchbowl (Appendix A.4)	30.12.2021 10:54pm – 11:09pm	Light towers, 5.5T excavator with bucket attachment, 8T excavator with bucket attachment	Noise	20m	No
M36	14 Arthur Street, Punchbowl (Appendix A.4)	30.12.2021 10:56pm – 11:11pm	No construction noise was audible at this monitoring location	Noise	90m	No
M37	Neighbouring garage structure at 3A Commons Street, Hurlstone Park (Appendix A.6)	26.12.2021 – 09.01.2021 08:00am – 03:00pm	Jackhammer	Vibration	5m	N/A
M38	Station building on platform 1, Hurlstone Park Station (Appendix A.6)	02.01.2022 – 09.01.2022 01:00pm – 03:00pm	Jackhammer	Vibration	1-5m	N/A

2.2 Measurement equipment

Noise measurement equipment consisted of one Nti Audio XL2 Type 1 sound level meter and microphone calibrator. The microphone was checked prior and after measurements using a Bruel & Kjaer Type 4231 calibrator. No significant drift in calibration was observed. All instrumentation complies with AS IEC 61672.1 2004 'Electroacoustics – Sound Level Meters' and carries current NATA certification (or if less than 2 years old, manufacturers certification).

Table 2-2 summarises the details of noise measurement equipment.

Table 2-2: Summary of noise measurement equipment

Instrument	Make	Model	Serial Number	Last Calibrated
Type 1 Sound Level Meter (XL2-B)	Nti	XL2	A2A-16217-E0	13 August 2021
Type 1 Sound Level Meter (XL2-B)	Nti	XL2	A2A-02386-D2	7 July 2021
Type 1 Sound Level Meter Calibrator	B&K	Type 4231	3009707	2 December 2020

The instrumentation used for the vibration measurement are summarised in Table 2-3. The accelerometers used in the measurements have current calibration certificates.

Table 2-3: Summary of vibration instrumentation

Туре	Make / Model
Triaxial Transducers	Sigicom C12 (SN: 66830)
Triaxial Transducers	Sigicom C22 (SN: 70250)

2.3 Environmental conditions

Environmental conditions recorded during the measurements are provided in Table 2-4. Environmental conditions did have an adverse effect on some of the measured noise levels. Noise measurements that have been adversely affected by the environmental conditions have been deemed as an invalid measurement (identified in the table below).

Table 2-4: Environmental conditions

Measurement ID	Assessment Point	Date and Start Time	Environmental Conditions
M1	11 Lilian Lane, Campsie	26.12.2021 09:11pm	Overcast; air temperature 21°C, wind speed <5 m/s; relative humidity 81%.
M2	35 North Parade, Campsie	26.12.2021 09:15pm	Overcast; air temperature 21°C, wind speed <5 m/s; relative humidity 81%.
M3	1 Acacia Street, Belmore*	26.12.2021 09:56pm	Overcast; air temperature 20°C, wind speed <5 m/s; relative humidity 80%. Note that it started to rain during this measurement. As a result, the measurement was stopped.
M4	41 Urunga Parade, Punchbowl	26.12.2021 11:14pm	Overcast; air temperature 19°C, wind speed <5 m/s; relative humidity 84%.
M5	14 Arthur Street, Punchbowl	26.12.2021 11:17pm	Overcast; air temperature 21°C, wind speed <5 m/s; relative humidity 84%.
M6	1A Shadforth Street, Wiley Park*	26.12.2021 11:50pm	Overcast; air temperature 19°C, wind speed <5 m/s; relative humidity 84%. Note that it started to rain during this measurement. As a result, the measurement was stopped.
M7	1A Shadforth Street, Wiley Park	27.12.2021 08:03pm	Overcast; air temperature 20°C, wind speed <5 m/s; relative humidity 83%.
M8	1 Bedford Crescent, Dulwich Hill	28.12.2021 08:14pm	Overcast; air temperature 18° C, wind speed <5 m/s; relative humidity 66%.
M9	1 Ewart Lane, Dulwich Hill	28.12.2021 08:28pm	Overcast; air temperature 18°C, wind speed <5 m/s; relative humidity 66%.
M10	30 Redman Parade, Belmore	28.12.2021 09:35pm	Partly cloudy; air temperature 18°C, wind speed <5 m/s; relative humidity 63%.
M11	1 Acacia Street, Belmore	28.12.2021 09:29pm	Partly cloudy; air temperature 18°C, wind speed <5 m/s; relative humidity 63%.
M12	5 London Street, Campsie	28.12.2021 10:25pm	Clear sky; air temperature 18°C, wind speed <5 m/s; relative humidity 65%.
M13	1-3 Shadforth Street, Wiley Park	28.12.2021 11:09pm	Clear sky; air temperature 17°C, wind speed <5 m/s; relative humidity 73%.

Measurement ID	Assessment Point	Date and Start Time	Environmental Conditions
M14	2 Shadforth Street, Wiley Park	28.12.2021 11:10pm	Clear sky; air temperature 17°C, wind speed <5 m/s; relative humidity 73%.
M15	41 Urunga Parade, Punchbowl	28.12.2021 11:44pm	Clear sky; air temperature 17° C, wind speed <5 m/s; relative humidity 70%.
M16	14 Arthur Street, Punchbowl	28.12.2021 11:48pm	Clear sky; air temperature 17°C, wind speed <5 m/s; relative humidity 70%.
M17	14 Arthur Street, Punchbowl	29.12.2021 08:10pm	Clear sky; air temperature 21°C, wind speed <5 m/s; relative humidity 65%.
M18	41 Urunga Parade, Punchbowl	29.12.2021 08:17pm	Clear sky; air temperature 21°C, wind speed <5 m/s; relative humidity 65%.
M19	2 Shadforth Street, Wiley Park	29.12.2021 08:50pm	Clear sky; air temperature 20°C, wind speed <5 m/s; relative humidity 66%.
M20	1-3 Shadforth Street, Wiley Park	29.12.2021 08:55pm	Clear sky; air temperature 20°C, wind speed <5 m/s; relative humidity 66%.
M21	13-15 Anglo Road, Campsie	29.12.2021 09:45pm	Clear sky; air temperature 18°C, wind speed <5 m/s; relative humidity 73%.
M22	5 London Street, Campsie	29.12.2021 09:54pm	Clear sky; air temperature 18°C, wind speed <5 m/s; relative humidity 73%.
M23	30 Redman Parade, Belmore	29.12.2021 10:24pm	Clear sky; air temperature 17°C, wind speed <5 m/s; relative humidity 77%.
M24	1 Acacia Street, Belmore	29.12.2021 10:30pm	Clear sky; air temperature 17°C, wind speed <5 m/s; relative humidity 77%.
M25	1 Bedford Crescent, Dulwich Hill	29.12.2021 11:11pm	Clear sky; air temperature 18°C, wind speed <5 m/s; relative humidity 80%.
M26	51 Ewart Lane, Dulwich Hill	29.12.2021 11:20pm	Clear sky; air temperature 18°C, wind speed <5 m/s; relative humidity 80%.
M27	1 Bedford Crescent, Dulwich Hill	30.12.2021 08:03pm	Clear sky; air temperature 23°C, wind speed <5 m/s; relative humidity 65%.
M28	51 Ewart Lane, Dulwich Hill	30.12.2021 08:07pm	Clear sky; air temperature 23°C, wind speed <5 m/s; relative humidity 65%.
M29	5 London Street, Campsie	30.12.2021 08:56pm	Clear sky; air temperature 22°C, wind speed <5 m/s; relative humidity 69%.
M30	13-15 Anglo Road, Campsie	30.12.2021 09:00pm	Clear sky; air temperature 22°C, wind speed <5 m/s; relative humidity 69%.
M31	30 Redman Parade, Belmore	30.12.2021 09:39pm	Clear sky; air temperature 22°C, wind speed <5 m/s; relative humidity 69%.
M32	1 Acacia Street, Belmore	30.12.2021 09:41pm	Clear sky; air temperature 22°C, wind speed <5 m/s; relative humidity 69%.
M33	2 Shadforth Street, Wiley Park	30.12.2021 10:19pm	Clear sky; air temperature 22°C, wind speed <5 m/s; relative humidity 70%.
M34	1-3 Shadforth Street, Wiley Park	30.12.2021 10:21pm	Clear sky; air temperature 22°C, wind speed <5 m/s; relative humidity 70%.

Measurement ID	Assessment Point	Date and Start Time	Environmental Conditions
M35	41 Urunga Parade, Punchbowl	30.12.2021 10:54pm	Clear sky; air temperature 21°C, wind speed <5 m/s; relative humidity 70%.
M36	14 Arthur Street, Punchbowl	30.12.2021 10:56pm	Clear sky; air temperature 21°C, wind speed <5 m/s; relative humidity 70%.

Notes: * This measurement was adversely affected by the environmental conditions and have been deemed as an invalid measurement.

3 Noise Monitoring results

The results of the noise monitoring are presented in Table 3-1 below.

Table 3-1: Measured noise levels L_{Aeq(15min)}

Measurement			B 11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1		Measured no	oise level dB(A)	Above predicted noise	Comments
ID	Assessment Point	Prediction assumption (plant and equipment)	Predicted noise level dB(A)	Measured plant	L _{Aeq(15min)}	L _{Amax}	level?	
M1	13-15 Anglo Road, Campsie	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	74 ^T	Two multi-crane hi-rail vehicles, handheld drills, concrete saw, hammering	60	83	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works occurring were located approximately 25m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Some plant operation and hi-rail movements were partially shielded by the station building.
M2	35 North Parade, Campsie	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	57 [†]	3T excavator with hammer attachment	67*	77	Yes (L _{Aeq, 15min})	The Gatewave model was based on typical impact activities, not high impact activities (i.e no rockhammer). The difference between typical and high impact activities sound power level is 10-12dB. The measured level is 10dB above the predicted level. This is consistent with a predicted level for high impact activities including rockhammer.
M3	1 Acacia Street, Belmore	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	65 ^T	Pressure washer	N/A	N/A	N/A	Note that during this measurement, it started to rain after 8 minutes into the measurement. As a result, this measurement was adversely affected by the environmental conditions and have been deemed as an invalid measurement.
M4	41 Urunga Parade, Punchbowl	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	65 ^T	5T excavator with bucket attachment, lighting towers, Distant 8T excavator with bucket attachment, dump truck	54	72	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. It is noted that the majority of plant operation occurred at the station building approximately 90m away from the measurement location. The background noise level at this location was dominated by generator hum from lighting towers located approximately 25m away from the measurement location. Measured excavator activity at this location occurred near the alignment approximately 50-60m away.
M5	14 Arthur Street, Punchbowl	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	50 ^T	No construction noise was audible at this monitoring location	54 (44) ¹	70	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is higher than the predicted noise level. Note that the platform works occurring at Punchbowl Station was not audible at this monitoring location. The measured L _{Aeq, 15min} of 54 dB(A) was solely caused by vehicles movement along The Boulevarde and Arthur Street. Given that the construction noise was not audible at this monitoring location, the contribution from the construction works can be assumed to be 10dB below the measured L _{Aeq, 15min} . As a result, the contribution from the construction works can be calculated to be 44 dB(A), which is below the predicted noise level of 50 dB(A). Note that the measured works were shielded and approximately 90 metres away from the measurement location.
M6	1-3 Shadforth Street, Wiley Park	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	79 ^T	Two 22.5T excavators with bucket attachment, handheld cutter, lighting towers	N/A	N/A	N/A	Note that during this measurement, it started to rain after 4 minutes into the measurement. As a result, this measurement was adversely affected by the environmental conditions and have been deemed as an invalid measurement.
M7	1-3 Shadforth Street, Wiley Park	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	81 ^H	Concrete saw, hi-rail excavators and lighting tower	69*	75	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the concrete sawing activity was shielded and approximately 65 metres away from the measurement location. In the prediction model, the distance between the closest high impact work area and the most affected facade is approximately 10 metres. Note that the concrete sawing activity was intermittent during this measurement.
M8	1 Bedford Crescent, Dulwich Hill	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	75 [†]	Handtools (grinder and hammer), hi-rail multi-crane vehicle, 13T excavator with crane attachment	57	76	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works occurring were located approximately 50m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Some plant operation and hi-rail movements were partially shielded by the station building.
M9	51 Ewart Lane, Dulwich Hill	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	74 ^H	Concrete saw, 8T excavator with crane attachment, hi- rail multi-crane vehicle, 13T excavator with crane attachment, lighting towers		78	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the concrete sawing activity was located approximately 30m away from the measurement location. The background noise level during this measurement was dominated by generator noise from the lighting towers. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Note that the concrete sawing activity was intermittent during this measurement.
M10	1 Acacia Street, Belmore	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	65 ^T	Handheld jackhammer, ligh tower, concrete saw, handheld power tools	t 60*	68	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. Note that the handheld jackhammering activity was located approximately 65m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 35 metres. Note that the handheld jackhammering activity was shielded and intermittent during this measurement.

Measurement					Measured n	oise level dB(A)	Above predicted noise	Comments
ID	Assessment Point	Prediction assumption (plant and equipment)	Predicted noise level dB(A)	Measured plant	L _{Aeq(15min)}	L _{Amax}	level?	
M11	30 Redman Parade, Belmore	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	63 ^T	Handheld jackhammer and handheld grinder	59*	71	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level. Note that the handheld jackhammering activity was located approximately 65m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 50 metres. Note that the handheld jackhammering activity was shielded and intermittent during this measurement.
M12	5 London Street, Campsie	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	67 [™]	Concrete truck, jumping jack compactor, hand tools	: 52	70	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 65m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 35 metres. Note that the platform works were intermittent during this measurement. The paving works at the corner of Beamish Street and North Parade were occurring during this measurement and was not audible at this monitoring location.
M13	1-3 Shadforth Street, Wiley Park	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	79 ^T	22.5T excavator with crane attachment, light towers, two 5T excavators with bucket attachment, hi-rail dump truck vehicles, bobcat, rattlegun, hand tools	60	72	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 20m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Some plant operation and hi-rail movements were partially shielded by the station building. Note that the platform works were intermittent during this measurement.
M14	2 Shadforth Street, Wiley Park	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	81 ^T	22.5T excavator with crane attachment, shovel	53	65	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 40m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Some plant operation and hi-rail movements were partially shielded by the station building. Note that the platform works were intermittent during this measurement.
M15	41 Urunga Parade, Punchbowl	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	65 ^T	Rattlegun, handheld power tools, hi-rail multi-crane vehicle, lighting towers	53	70	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 20m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 15 metres. Some plant operation and hi-rail movements were partially shielded by the station building. Note that the platform works were intermittent during this measurement.
M16	14 Arthur Street, Punchbowl	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	50 ^T	Lighting tower was barely audible when there was no road traffic along The Boulevarde and Arthur Street	55 (45)1	76	No (LAeq, 15min)	The measured L _{Aeq, 15min} is higher than the predicted noise level. Note that the platform works occurring at Punchbowl Station was not audible at this monitoring location (a lighting tower was barely audible when there was no road traffic along The Boulevarde and Arthur Street). The measured LAeq, 15min of 55 dB(A) was solely caused by vehicles movement along The Boulevarde and Arthur Street. Given that the construction noise was barely audible at this monitoring location, the contribution from the construction works can be assumed to be 10dB below the measured LAeq, 15min. As a result, the contribution from the construction works can be calculated to be 45 dB(A), which is below the predicted noise level of 50 dB(A). Note that the measured works were shielded and approximately 90 metres away from the measurement location.
M17	14 Arthur Street, Punchbowl	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	50 ^T	Handheld grinder was barely audible when there was no road traffic along The Boulevarde and Arthur Street	56 (46)1	85	No (LAeq. 15min)	The measured Laeq, 15min is higher than the predicted noise level. Note that the platform works occurring at Punchbowl Station were not audible at this monitoring location (a handheld grinder was barely audible when there was no road traffic along The Boulevarde and Arthur Street). The measured Laeq, 15min of 56 dB(A) was solely caused by vehicles movement along The Boulevarde and Arthur Street. Given that the construction noise was barely audible at this monitoring location, the contribution from the construction works can be assumed to be 10dB below the measured Laeq, 15min. As a result, the contribution from the construction works can be calculated to be 46 dB(A), which is below the predicted noise level of 50 dB(A). Note that the measured works were shielded and approximately 90 metres away from the measurement location.
M18	41 Urunga Parade, Punchbowl	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	65 ^T	Lighting towers, hi-rail 8T excavator with crane attachment	53	76	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 30m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 15 metres. Some plant operation and hi-rail movements were partially shielded by the station building. Note that the platform works were intermittent during this measurement.

Measurement	Assessment Paint	Production occumation (alant and a minus 1)	Dradieted mains lavel 4D(4)	Managered	Measured n	oise level dB(A) Above predicted noise	Comments
ID	Assessment Point	Prediction assumption (plant and equipment)	Predicted noise level dB(A)	Measured plant	L _{Aeq(15min)}	L _{Amax}	level?	
M19	2 Shadforth Street, Wiley Park	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	83 ^H	22.5T excavator with crane attachment, concrete saw, rattle gun	65*	73	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the concrete sawing activity was shielded and approximately 25m metres away from the measurement location. In the prediction model, the distance between the closest high impact work area and the most affected facade is approximately 10 metres. Note that the concrete sawing activity was intermittent during this measurement.
M20	1-3 Shadforth Street, Wiley Park	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	81 ^H	22.5T excavator with crane attachment, 8T excavator with auger attachment, hand grinders, hand tools, concrete saw	68*	79	No (L _{Aeq,} 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the concrete sawing activity was shielded and approximately 20m metres away from the measurement location. In the prediction model, the distance between the closest high impact work area and the most affected facade is approximately 10 metres. Note that the concrete sawing activity was intermittent during this measurement.
M21	13-15 Anglo Road, Campsie	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	74 ^T	Concrete agitator and concrete pump truck	73	82	No (Laeq, 15min)	The measured LAeq, 15min is lower than the predicted noise level. Note that the concrete agitator and the concrete pump truck was located directly opposite of 13-15 Anglo Road receiver, approximately 10 metres away from the monitoring location.
M22	5 London Street, Campsie	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	67 [⊤]	Concrete agitator and concrete pump truck, hand grinder	55	75	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 60m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 35 metres. Note that the platform works were intermittent during this measurement.
M23	30 Redman Parade, Belmore	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	63 ^T	Excavator with quackers alarm	54	73	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 85m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 50 metres. Note that the platform works were intermittent during this measurement.
M24	1 Acacia Street, Belmore	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	65 ^T	Hand tools including hand grinder and power drills	50	64	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 40m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 35 metres. Note that the platform works were intermittent during this measurement.
M25	1 Bedford Crescent, Dulwich Hill	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	76 ^H	Handheld jackhammer and lighting tower	60*	73	No (Laeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the handheld jackhammering works occurring were located approximately 50m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest high impact work area and the most affected facade is approximately 40 metres. Note that the jackhammering works were shielded and intermittent during this measurement.
M26	51 Ewart Lane, Dulwich Hill	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	72 ^T	Generators, lighting towers, cement mixers, 1.75T excavator with hammer attachment	59	74	No (Laeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the rockhammering activity was located approximately 20m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Note that the rockhammering was intermittent during this measurement.
M27	1 Bedford Crescent, Dulwich Hill	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	75 ^T	Concrete agitator and concrete pump truck	59	76	No (Laeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 80m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres.
M28	51 Ewart Lane, Dulwich Hill	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	72 ^T	Cement agitator, handheld cement vibrator, light towers	60	77	No (Laeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 20m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres.

Measurement	Assessment Point	Production occumation (plant and a minus 1)	Dradietad maios Israel dD(A)	Managered	Measured r	noise level dB(A	A) Above predicted noise	Comments
ID	Assessment Point	Prediction assumption (plant and equipment)	Predicted noise level dB(A)	ivieasured plant	L _{Aeq(15min)}	L _{Amax}	level?	
M29	5 London Street, Campsie	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	67 ^T	Concrete agitator and concrete pump truck, handheld power drill, 8T excavator with bucket attachment	53	77	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 60m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 35 metres. Note that the platform works were intermittent during this measurement.
M30	13-15 Anglo Road, Campsie	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	74 ^T	Concrete pump truck, plate compactor, hand tools including rattle gun and hammer	59	76	No (LAeq, 15min)	The measured L _{Aeq. 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 20m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Note that the platform works were intermittent during this measurement.
M31	30 Redman Parade, Belmore	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	63 ^T	Plate compactor and handheld electric jackhammer	59*	73	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. Note that the handheld jackhammering activity was located approximately 65m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 50 metres. Note that the handheld jackhammering activity was shielded and intermittent during this measurement.
M32	1 Acacia Street, Belmore	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	65 ^T	Handheld electric jackhammer, handheld power tools including grinder and drill, 15T excavator with bucket attachment	58*	73	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. Note that the handheld jackhammering activity was located approximately 65m away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 35 metres. Note that the handheld jackhammering activity was shielded and intermittent during this measurement.
M33	2 Shadforth Street, Wiley Park	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	81 ^T	Hand tools including rattle gun and hammer	55	76	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 30m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Note that the platform works was shielded and intermittent during this measurement.
M34	1-3 Shadforth Street, Wiley Park	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	79 ^T	5T excavator with auger attachment, hand power tools including power drill, handheld grinder	57	78	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 20m away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Note that the platform works was shielded and intermittent during this measurement.
M35	41 Urunga Parade, Punchbowl	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	65 ^T	Light towers, 5.5T excavator with bucket attachment, 8T excavator with bucket attachment	54	74	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 20m away from the measurement location. The background noise level during the measurement was dominated by idle engine noise from the 5.5T excavator with bucket attachment. In the prediction model, the distance between the closest work area and the most affected facade is approximately 15 metres. Note that the platform works was intermittent during this measurement.
M36	14 Arthur Street, Punchbowl	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	50 ^τ	No construction noise was audible at this monitoring location	57 (47) ¹	82	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. Note that the platform works occurring at Punchbowl Station was not audible at this monitoring location. The measured L _{Aeq, 15min} of 57 dB(A) was solely caused by vehicles movement along The Boulevarde and Arthur Street. Given that the construction noise was not audible at this monitoring location, the contribution from the construction works can be assumed to be 10dB below the measured L _{Aeq, 15min} . As a result, the contribution from the construction works can be calculated to be 47 dB(A), which is below the predicted noise level of 50 dB(A). Note that the measured works were shielded and approximately 90 metres away from the measurement location.

Notes:

^{*: 5}dB(A) penalty applied for high impact activities.

T: Predicted L_{Aeq, 15min} for Typical activities.

H: Predicted $L_{Aeq, \, 15min}$ for High impact activities.

^{1:} Calculated L_{Aeq, 15min} contribution from the construction activity, given that the construction noise was not audible or barely audible at the monitoring location.

4 Vibration Monitoring results

4.1 Neighbouring garage structure at 3A Commons Street Vibration Monitoring

In accordance with the Hurlstone Park Station Vibration Monitoring Plan¹, the established vibration limits for the affected garage structure are shown below:

- Greater than or equal to 4 mm/s (cosmetic damage is possible);
- Greater than or equal to 8 mm/s (cosmetic damage becoming more likely).

The results of the unattended vibration measurements for the neighbouring garage structure at 3A Commons Street are presented in Figure 4-1 and Figure 4-2.

Figure 4-1: Unattended vibration monitoring location 1 results (refer to Appendix A.6)

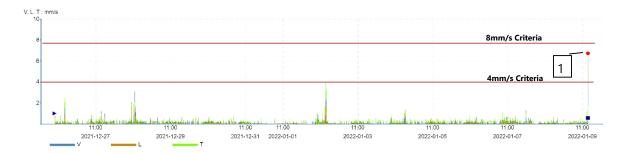
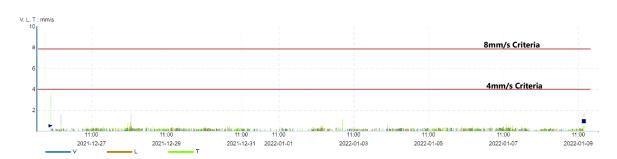



Figure 4-2: Unattended vibration monitoring location 2 results (refer to Appendix A.6)

¹ Sydney Metro Southwest – Station Upgrades – Hurlstone Park Station Vibration Monitoring Plan (ref: TL927-1-14F01 Hurlstone Park Stn VIB MON PLAN (r2)), dated 14 October 2021

The discussion of the unattended vibration measurements is summarised in Table 4-1 below.

Table 4-1: Unattended vibration monitoring summary

Exceedance ID	Date and Time	Cause of exceedance
1	09.01.2022 02:25pm	At this time, the vibration monitor was removed from the ground spike to complete the monitoring. Exceedance was not caused by the nearby construction activities.

It can be seen in Figure 4-1 and Figure 4-2 that the vibration levels produced from the vibration intensive works in the vicinity of the affected garage structure is below 4 mm/s. Note that there was an event that resulted in an instantaneous vibration level of above 4 mm/s, however this event was not caused by the nearby construction activities, as justified in Table 4-1.

4.2 Platform 1 station building at Hurlstone Park Station vibration monitoring

The applicable vibration criteria for cosmetic damage from the Construction Noise & Vibration – OOHW Assessment Stage 2 Possession Works (CNV-OOHWA)² is as follow:

- Unreinforced or light framed structures: 7.5 mm/s
- Heritage structures (structurally sound): 7.5mm/s

The results of the unattended vibration monitoring for the station building are presented in Figure 4-3.

Figure 4-3: Unattended vibration monitoring at platform 1 results (refer to Appendix A.6)

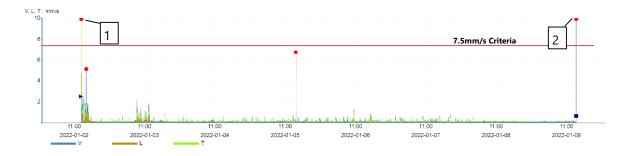


Table 4-2: Unattended vibration monitoring summary

Exceedance ID	Date and Time	Cause of exceedance
1	02.01.2022 01:19pm	At this time, the vibration monitor was mounted inside the station building to commence monitoring. Exceedance was not caused by the nearby construction activities.

² TL927-1-02F01 CNV_OOHWA WE42 Possession April 2021 (r4), dated: 06 April 2021

Exceedance ID	Date and Time	Cause of exceedance
2	09.01.2022 02:12pm	At this time, the vibration monitor was removed from the station building to complete the monitoring. Exceedance was not caused by the nearby construction activities.

It can be seen in Figure 4-3 that the vibration levels produced from the jackhammering works in the vicinity of the station building on platform 1 is below 7.5 mm/s. Note that there were events that resulted in an instantaneous vibration level of above 7.5 mm/s, however these were not caused by the nearby construction activities, as justified in Table 4-2.

5 Conclusion

Renzo Tonin & Associates completed noise and vibration monitoring for the Shutdown 2 possession works. The results of the noise measurements were below the predicted L_{Aeq 15minutes} levels presented in the Gatewave model prepared for the works, with the exception of the M2 noise measurement. The cause of exceedance has been explained in Table 3-1.

The results of the unattended vibration measurements were typically below the established vibration criteria presented in the Hurlstone Park Station Vibration Monitoring Plan prepared for the works. There were events that resulted in an instantaneous vibration level of above the established vibration criteria. The cause of each event was <u>not</u> related to construction activity, as outlined in Table 4-1 and Table 4-2.

Document control

Date	Revision history	Non-issued revision	Issued revision	Prepared	Instructed	Reviewed / Authorised
10.01.2022	First Issue	0	1	L. Woolf/ R. Zhafranata	M. Tabacchi/ T. Gowen	T. Gowen
18.05.2022	Additional comments added, in relation to temporary noise barrier observations and rectified the prediction assumptions for M2 measurement.	-	2	L. Woolf/ R. Zhafranata	M. Tabacchi/ T. Gowen	T. Gowen

File Path: R:\AssocSydProjects\TL901-TL950\TL927 Southwest Metro - Stations Upgrades\1 Docs\20 December Shutdown 2 possession\TL927-1-20F01 Shutdown 2 Noise and Vibration Monitoring Report (r2).docx

Important Disclaimers:

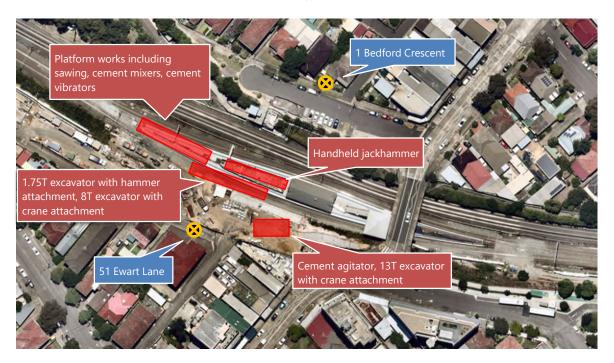
The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

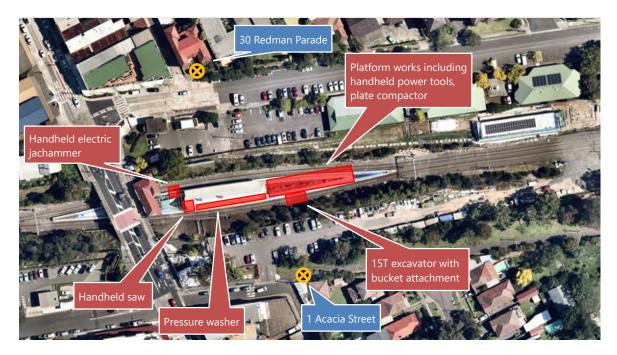
We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.

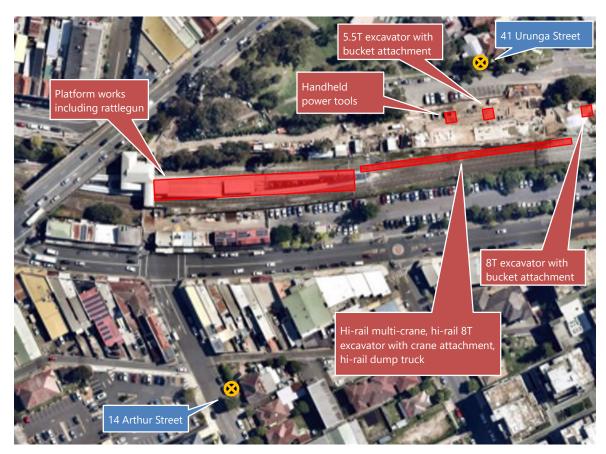

We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

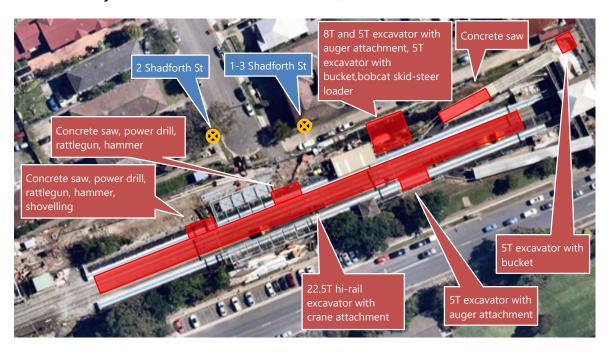
The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.

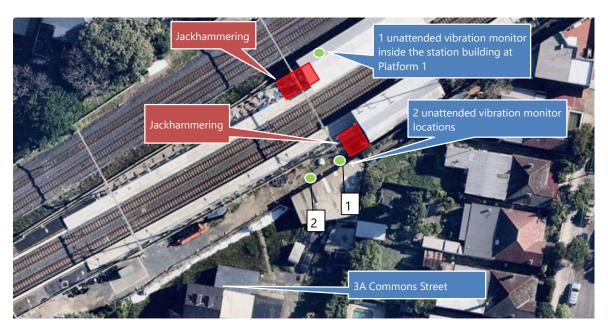
External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systemfaçadefacade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

APPENDIX A Measurement locations


A.1 Dulwich Hill Station: 51 Ewart Lane, 1 Bedford Crescent


A.2 Campsie Station: 13-15 Anglo Road, 35 North Parade, 5 London Street


A.3 Belmore Station: 30 Redman Parade, 1 Acacia Street


A.4 Punchbowl Station: 41 Urunga Street, 14 Arthur Street

A.5 Wiley Park Station: 1-3 Shadforth Street, 2 Shadforth Street

A.6 Hurlstone Park Station (Vibration)

Construction Monitoring Report November 2021 to April 2022

Sydney Metro City & Southwest - Package 5 & 6

Appendix 8 – TL927-1-21F01 2022 WE32 Noise and Vibration MonitoringReport (r1)

Internal Use Only
© Downer 2020. All Rights Reserved

Page 44

Version: Rev A

10 February 2022

TL927-1-21F01 2022 WE32 Noise and Vibration Monitoring Report (r1)

Downer EDI Works Pty Ltd 76 Berry Street Nth Sydney NSW 2060

Sydney Metro Southwest - Station Upgrades - WE32 Possession Works

1 Introduction

Renzo Tonin & Associates was engaged by Downer EDI Works to conduct noise and vibration monitoring during the Station Upgrades WE32 possession works for Sydney Metro Southwest. The noise monitoring was undertaken to verify predicted noise levels in the corresponding Gatewave model (Gatewave scenario ID: 2973 for high impact activities and Gatewave scenario ID: 2971 for typical activities). The vibration monitoring was undertaken to monitor potentially affected structures. This report provides a summary of the monitoring results.

Plant noise auditing was also conducted during the Station Upgrades WE32 possession works. The plant noise auditing was undertaken to ensure that the plant and equipment being used for the works are operating as expected.

2 Details of monitoring

Noise monitoring was undertaken at Hurlstone Park, Belmore, Campsie, Dulwich Hill, Punchbowl and Wiley Park Station on 5th February 2022.

Two unattended vibration monitors were installed at the neighbouring garage structure at 3A Commons Street, Hurlstone Park between 03:00pm 4th February and 09:00am 7th February 2022.

2.1 Measurement location

The noise measurements were conducted at the worst affected residential receivers, relative to the measured works. The measurement locations are listed in Table 2-1. Figures depicting the monitoring locations are included in APPENDIX A.

Table 2-1: Measurement locations

Measurement ID	Assessment Point	Date and time	Measured plant	Monitoring type	Approx. distance to measured plant	Temporary noise barrier between measured plant/receiver
M1	41 Urunga Parade, Punchbowl (Appendix A.1)	05.02.2022 12:24pm – 12:39pm	Excavator with bucket attachment	Noise	60m	No
M2	3A Commons Street, Hurlstone Park (Appendix A.2)	05.02.2022 01:25pm – 01:40pm	3.5T Excavator with hammer attachment and hi-rail hydrema	Noise	15m	No
M3	2 Hopetoun Street, Hurlstone Park (Appendix A.2)	05.02.2022 01:55pm – 02:10pm	Vacuum truck and telehandler	Noise	2m - 10m	No
M4	51 Ewart Lane, Dulwich Hill (Appendix A.3)	05.02.2022 02:58pm – 03:13pm	Telehandler, hi-rail excavator with bucket attachment and handheld grinder	Noise	20m	Yes, noise blankets were installed on the gate facing Ewart Lane.
M5	1 Bedford Crescent, Dulwich Hill (Appendix A.3)	05.02.2022 03:30pm – 03:45pm	Handheld grinder, hi- rail hydrema and handtools (hammer)	Noise	60m	No
М6	30 Redman Parade, Belmore (Appendix A.4)	05.02.2022 04:24pm – 04:39pm	Handheld grinder	Noise	60m	No
M7	1 Acacia Street, Belmore (Appendix A.4)	05.02.2022 04:49pm – 05:04pm	Vacuum truck, handheld grinder and hand tools (hammer)	Noise	50m	No
M8	13-15 Anglo Road, Campsie (Appendix A.5)	05.02.2022 06:20pm – 06:35pm	6T excavator with bucket attachment, hi-rail hydrema and handtools (hammer)	Noise	90m	No
M9	2 Wilfred Avenue, Campsie (Appendix A.5)	05.02.2022 06:57pm – 07:12pm	Hi-rail hydrema, plate compactor and excavator with bucket attachment	Noise	45m	No. During this measurement, a lighting tower on Anglo Road was spotted being installed with noise blankets.
M10	1-3 Shadforth Street, Wiley Park (Appendix A.6)	05.02.2022 07:44pm – 07:59pm	3 x EWP, excavator with bucket, rattle gun, crane and handtools	Noise	35m	No
M11	7 Shadforth Street, Wiley Park (Appendix A.6)	05.02.2022 08:03pm – 08:18pm	2 x EWP, rattle gun and crane	Noise	65m	No

Measurement ID	Assessment Point	Date and time	Measured plant	Monitoring type	Approx. distance to measured plant	Temporary noise barrier between measured plant/receiver
M12	Neighbouring garage structure at 3A Commons Street, Hurlstone Park (Appendix A.2)	04.02.2022 – 07.02.2022 03:00pm – 09:00am	3.5T excavator with hammer attachment	Vibration	5m	N/A

2.2 Measurement equipment

Noise measurement equipment consisted of one Nti Audio XL2 Type 1 sound level meter and microphone calibrator. The microphone was checked prior and after measurements using a Bruel & Kjaer Type 4231 calibrator. No significant drift in calibration was observed. All instrumentation complies with AS IEC 61672.1 2004 'Electroacoustics – Sound Level Meters' and carries current NATA certification (or if less than 2 years old, manufacturers certification).

Table 2-2 summarises the details of noise measurement equipment.

Table 2-2: Summary of noise measurement equipment

Instrument	Make	Model	Serial Number	Last Calibrated
Type 1 Sound Level Meter (XL2-A)	NTI	XL2	A2A-02386-D2	7 July 2021
Type 1 Sound Level Meter (XL2-B)	NTI	XL2	A2A-16217-E0	13 August 2021
Type 1 Sound Level Meter Calibrator	B&K	Type 4231	3009707	2 December 2020

The instrumentation used for the vibration measurement are summarised in Table 2-3. The accelerometers used in the measurements have current calibration certificates.

Table 2-3: Summary of vibration instrumentation

Туре	Make / Model
Triaxial Transducers	Sigicom C12 (SN: 66900)
Triaxial Transducers	Sigicom C22 (SN: 102479)

2.3 Environmental conditions

Environmental conditions recorded during the measurements are provided in Table 2-4. Environmental conditions did have an adverse effect on some of the measured noise levels. Noise measurements that have been adversely affected by the environmental conditions have been deemed as an invalid measurement (identified in the table below).

Table 2-4: Environmental conditions

Measurement ID	Assessment Point	Date and Start Time	Environmental Conditions
M1	41 Urunga Parade, Punchbowl	05.02.2022 12:24pm	Partly cloudy; air temperature 25°C, wind speed <5 m/s; relative humidity 58%.
M2	3A Commons Street, Hurlstone Park	05.02.2022 01:25pm	Partly cloudy; air temperature 27°C, wind speed <5 m/s; relative humidity 46%.
M3	2 Hopetoun Street, Hurlstone Park	05.02.2022 01:55pm	Partly cloudy; air temperature 27°C, wind speed <5 m/s; relative humidity 47%.
M4	51 Ewart Lane, Dulwich Hill	05.02.2022 02:58pm	Partly cloudy; air temperature 28°C, wind speed <5 m/s; relative humidity 53%.
M5	1 Bedford Crescent, Dulwich Hill	05.02.2022 03:30pm	Overcast; air temperature 23°C, wind speed <5 m/s; relative humidity 53%.
M6	30 Redman Parade, Belmore	05.02.2022 04:24pm	Partly cloudy; air temperature 28°C, wind speed <5 m/s; relative humidity 50.2%.
M7	1 Acacia street, Belmore	05.02.2022 04:49pm	Overcast; air temperature 27°C, wind speed <5 m/s; relative humidity 48%.
M8	13-15 Anglo Road, Campsie	05.02.2022 06:20pm	Overcast; air temperature 26°C, wind speed <5 m/s; relative humidity 49%.
M9	2 Wilfred Avenue, Campsie	05.02.2022 06:57pm	Overcast; air temperature 23°C, wind speed <5 m/s; relative humidity 54%.
M10	1-3 Shadforth Street, Wiley Park	05.02.2022 07:44pm	Partly cloudy; air temperature 22°C, wind speed <5 m/s; relative humidity 60%.
M11	7 Shadforth Street, Wiley Park	05.02.2022 08:03pm	Overcast; air temperature 21°C, wind speed <5 m/s; relative humidity 61%.

Notes:

3 Noise monitoring results

The results of the noise monitoring are presented in Table 3-1 below.

^{*} This measurement was adversely affected by the environmental conditions and have been deemed as an invalid measurement.

Table 3-1: Measured noise levels L_{Aeq(15min)}

Measurement			B 11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1		Measured no	easured noise level dB(A) Above predicted noise		Comments
ID	Assessment Point	Prediction assumption (plant and equipment)	Predicted noise level dB(A)	Measured plant	L _{Aeq(15min)}	L _{Amax}	level?	
M1	41 Urunga Parade, Punchbowl	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	73 ^T	Excavator with bucket attachment	54	74	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works were located approximately 60 metres away. In the prediction model, the distance between the closest work area and the most affected facade is approximately 15 metres. Note that the platform works were intermittent during this measurement.
M2	3A Commons Street, Hurlstone Park	Concrete saw, 5T excavators with hammer attachment, jackhammer, excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	82 ^H	3.5T Excavator with hammer attachment and hi-rail hydrema	69*	84	No (Laeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works were located approximately 15 metres away. In the prediction model, the distance between the closest work area and the most affected facade is approximately 5 metres. Note that the platform works were intermittent during this measurement.
M3	2 Hopetoun Street, Hurlstone Park	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	75 ^T	Vacuum truck and telehandler	72	89	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. Note that the vacuum truck and telehandler activity were located directly opposite the monitoring location, approximately 10 metres away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 9 metres.
M4	51 Ewart Lane, Dulwich Hill	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	72 ^T	Telehandler, hi-rail excavator with bucket attachment and handheld grinder	63	81	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level. Note that the telehandler activity was located directly opposite the monitoring location, and repeatedly moved between 20 metres to 40 metres from the monitoring location during the measurement. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres.
M5	1 Bedford Crescent, Dulwich Hill	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	75 ^T	Handheld grinder, hi-rail hydrema and handtools (hammer)	56	77	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works were located approximately 60 metres away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Some plant operation and hi-rail movements were partially shielded by the station building. Note that the platform works were intermittent during this measurement.
M6	30 Redman Parade, Belmore	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	63 ^T	Handheld grinder	63	87	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is the same as the predicted noise level. Note that the handheld grinder activity was located 60 metres away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 50 metres. Note that this measurement location was heavily affected by road traffic noise along Redman Parade.
M7	1 Acacia Street, Belmore	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	65 ^T	Vacuum truck, handheld grinder and hand tools (hammer)	61	89	No (Laeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. Note that the handheld grinder activity was located approximately 50 metres away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 35 metres. Note that this measurement location was heavily affected by road traffic noise along Acacia Street.
M8	13-15 Anglo Road, Campsie	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	74 ^T	Excavator with bucket attachment, hi-rail hydrema and handtools (hammer)	57	78	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 90 metres away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Note that the platform works were intermittent during this measurement.
M9	2 Wilfred Avenue, Campsie	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	70 ^T	Hi-rail hydrema, plate compactor and excavator with bucket attachment	59	75	No (LAeq, 15min)	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 45 metres away from the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 25 metres. Note that the platform works were intermittent during this measurement. Note that the platform works were intermittent during this measurement.
M10	1-3 Shadforth Street, Wiley Park	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	79 ^T	3 x EWP, excavator with bucket, rattle gun, 400T telescopic crane and handtools	60	77	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 35 metres away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 10 metres. Note that the platform works were intermittent during this measurement. Note that the platform works were intermittent during this measurement.

Measurement ID	Assessment Point	Prediction assumption (plant and equipment)	Predicted noise level dB(A) Measured plant	Manager	Measured noise level dB(A)		•	Comments
				Measured plant	L _{Aeq(15min)}	L _{Amax}	level?	
M11	7 Shadforth Street, Wiley Park	Excavator with bucket attachment, hand tools, skid street/bobcat, plate compactor, compressor, concrete agitator, drill rig, concrete pump, excavator with pulveriser and pressure washer	65 ^T	2 x EWP, rattle gun and 400T telescopic crane	56	79	No (L _{Aeq, 15min})	The measured L _{Aeq, 15min} is lower than the predicted noise level. This can be attributed to lesser quantity of plant items operating during the measurement compared to the predicted noisier plant in the prediction assumptions. Furthermore, the platform works was located approximately 65 metres away and at a lower ground level than the measurement location. In the prediction model, the distance between the closest work area and the most affected facade is approximately 50 metres. Note that the platform works were intermittent during this measurement. Note that the platform works were intermittent during this measurement.

Notes:

*: 5dB(A) penalty applied for high impact activities.

T: Predicted $L_{Aeq, \, 15min}$ for Typical activities.

H: Predicted $L_{Aeq,\ 15min}$ for High impact activities.

4 Plant noise auditing results

The plant noise auditing was conducted on site, in order to better assess how it operates in the field. The plant noise auditing locations are listed in Table 4-1. Figures depicting the plant noise auditing locations are included in APPENDIX A.

Table 4-1: Plant noise auditing locations

Measurement ID	Assessment Point	Date	Time	Measured plant	Measured distance
M13 (Appendix A.2)	Hurlstone Park Station	05.02.2022	01:25pm – 01:43pm	3.5T excavator with hammer attachment	3m and 5m
M14 (Appendix A.2)	Hurlstone Park Station	05.02.2022	01:48pm – 02:10pm	Vacuum truck (idling)	4m and 10m
M15 (Appendix A.2)	Hurlstone Park Station	05.02.2022	01:48pm – 02:10pm	Vacuum truck (operating)	4m and 10m
M16 (Appendix A.3)	Dulwich Hill Station	05.02.2022	03:31pm – 03:38pm	EWP (idling)	2m and 3m
M17 (Appendix A.4)	Belmore Station	05.02.2022	04:23pm – 04:33pm	Handheld grinder	3m and 7m
M18 (Appendix A.5)	Campsie Station	05.02.2022	06:32pm – 06:40pm	6T excavator with bucket attachment moving with alarms	3m, 4m and 6m
M19 (Appendix A.5)	Campsie Station	05.02.2022	06:32pm – 06:40pm	6T excavator with bucket attachment moving without alarms	3m, 4m and 6m
M20 (Appendix A.6)	Wiley Park Station	05.02.2022	07:50pm – 08:05pm	400T telescopic crane (idling)	4m, 5.5m, 7m, and 10m
M21 (Appendix A.6)	Wiley Park Station	05.02.2022	07:50pm – 08:05pm	400T telescopic crane (lifting)	4m and 10m

Based on the conducted plant noise auditing, the calculated sound power level for each measured plant and corresponding comments are shown in Table 4-2.

Table 4-2: Plant noise auditing results

Measurement ID	Measured plant	Calculated overall sound power level, dB(A)	Gatewave plant	Gatewave sound power level, dB(A)	Comments
M13	3.5T excavator with hammer attachment	113	Excavators with hammers (5T)	115	The calculated overall sound power level of the 3.5T excavator with hammer attachment was deemed representative and operating as expected.
M14	Vacuum truck (idling)	90	-	-	It was noted on site that the vacuum truck had an enclosure around the suction noise source. Furthermore, the exhaust side of the vacuum truck could not be measured safely as the work area is on the same side as the exhaust side.
					Additional plant auditing for the vacuum truck is required before including this item in the Gatewave database
M15	Vacuum truck (operating)	100	Vacuum truck	107	It was noted on site that the vacuum truck had an enclosure around the suction noise source. Furthermore, the exhaust side of the vacuum truck could not be measured safely as the work area is on the same side as the exhaust side.
					Additional plant auditing for the vacuum truck is required before including this item in the Gatewave database
M16	EWP (idling)	83	-	-	The calculated overall sound power level of the idling EWP will be added to the Gatewave database.
M17	Handheld grinder	107	Handtool – grinder	107	The calculated overall sound power level of the handheld grinder is consistent with the Gatwave sound power level of 'Handtool – grinder'.
M18	6T excavator with bucket attachment moving with alarms	98	Excavator w bucket (5t)	103	The Gatewave sound power level of 103 dB(A) for the 'Excavator w bucket (5t)' includes spoil handling and tracking. During this measurement, the 6T excavator was only tracking with alarms. This item will be included in the Gatewave database.

Measurement ID	Measured plant	Calculated overall sound power level, dB(A)	Gatewave plant	Gatewave sound power level, dB(A)	Comments
M19	6T excavator with bucket attachment moving without alarm	95	Excavator w bucket (5t)	103	The Gatewave sound power level of 103 dB(A) for the 'Excavator w bucket (5t)' includes spoil handling and tracking. During this measurement, the 6T excavator was only tracking without alarms. This item will be included in the Gatewave database.
M20	400T telescopic crane (idling)	96	-	-	Currently, Gatewave does not have a specific sound power level for a 400T telescopic crane idling. The calculated overall sound power level of the idling 400T telescopic crane will be added to the Gatewave database. Note that due to safety requirements, measurement locations around the 400T telescopic crane were very limited.
M21	400T telescopic crane (lifting)	101	-	-	Currently, Gatewave does not have a specific sound power level for a 400T telescopic crane lifting. The calculated overall sound power level of the 400T telescopic crane lifting will be added to the Gatewave database. Note that due to safety requirements, measurement locations around the 400T telescopic crane were very limited.

5 Vibration monitoring results

5.1 Neighbouring garage structure at 3A Commons Street Vibration Monitoring

In accordance with the Hurlstone Park Station Vibration Monitoring Plan¹, the established vibration limits for the affected garage structure are shown below:

- Greater than or equal to 4 mm/s (cosmetic damage is possible);
- Greater than or equal to 8 mm/s (cosmetic damage becoming more likely).

The results of the unattended vibration measurements for the neighbouring garage structure at 3A Commons Street are presented in Figure 5-1 and Figure 5-2.

Figure 5-1: Unattended vibration monitoring location 1 results (refer to Appendix A.2)

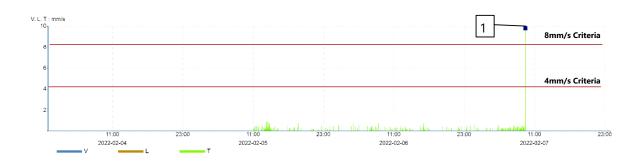
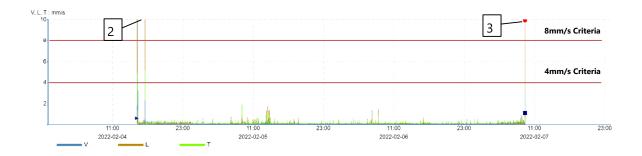



Figure 5-2: Unattended vibration monitoring location 2 results (refer to Appendix A.2)

4mm/s Criteria

DOWNER EDI WORKS PTY LTD TL927-1-21F01 2022 WE32 NOISE AND VIBRATION MONITORING REPORT (R1)

¹ Sydney Metro Southwest – Station Upgrades – Hurlstone Park Station Vibration Monitoring Plan (ref: TL927-1-14F01 Hurlstone Park Stn VIB MON PLAN (r2)), dated 14 October 2021

The discussion of the unattended vibration measurements is summarised in Table 5-1 below.

Table 5-1: Unattended vibration monitoring summary

Exceedance ID	Date and Time	Cause of exceedance
1	07.02.2022 09:24am	At this time, the vibration monitor was removed from the ground spike to complete the monitoring. Exceedance was not caused by the nearby construction activities.
2	04.02.2022 03:10pm	At this time, the vibration monitor was install on the ground spike to start the monitoring. Exceedance was not caused by the nearby construction activities.
3	07.02.2022 09:20am	At this time, the vibration monitor was removed from the ground spike to complete the monitoring. Exceedance was not caused by the nearby construction activities.

It can be seen in Figure 5-1 and Figure 5-2 that the vibration levels produced from the vibration intensive works in the vicinity of the affected garage structure is below 4 mm/s. Note that there were events that resulted in an instantaneous vibration level of above 4 mm/s, however this event was not caused by the nearby construction activities, as justified in Table 5-1.

6 Conclusion

Renzo Tonin & Associates completed noise and vibration monitoring for the WE32 possession works. The results of the noise measurements were below the predicted $L_{Aeq\ 15minutes}$ levels presented in the Gatewave model prepared for the works.

The results of the unattended vibration measurements were typically below the established vibration criteria presented in the Hurlstone Park Station Vibration Monitoring Plan prepared for the works. There were events that resulted in an instantaneous vibration level of above the established vibration criteria, however, the cause of these events was <u>not</u> related to construction activity, as outlined in Table 5-1.

The results of the conducted plant noise auditing in Table 4-2 have shown that the measured plant are operating as expected. Gatewave database will be updated accordingly.

Document control

Date	Revision history	Non-issued revision	Issued revision	Prepared	Instructed	Reviewed / Authorised
10.02.2022	First Issue	0	1	D. Auld/ R. Zhafranata	M. Tabacchi/ T. Gowen	M. Tabacchi

File Path: R:\AssocSydProjects\TL901-TL950\TL927 Southwest Metro - Stations Upgrades\1 Docs\21 February 2022 WE32 possession\TL927-1-21F01 2022 WE32 Noise and Vibration Monitoring Report (r1).docx

Important Disclaimers:

The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.

We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

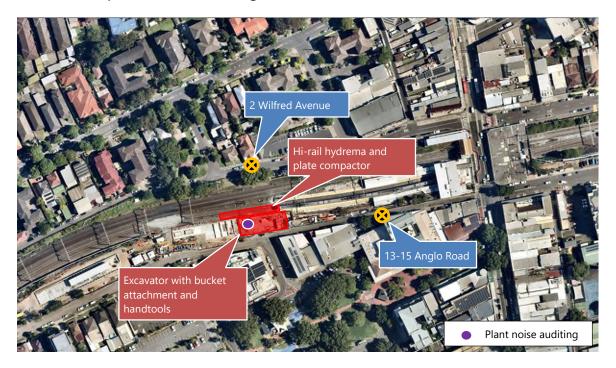
The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.

External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systemfaçadefacade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

APPENDIX A Measurement locations

A.1 Punchbowl Station: 41 Urunga Street


A.2 Hurlstone Park Station: 3A Commons Street and 2 Hopetoun Street


A.3 Dulwich Hill Station: 51 Ewart Lane and 1 Bedford Crescent

A.4 Belmore Station: 30 Redman Parade and 1 Acacia Street

A.5 Campsie Station: 13-15 Anglo Road and 2 Wilfred Avenue

A.6 Wiley Park Station: 1-3 Shadforth Street and 7 Shadforth Street

Construction Monitoring Report November 2021 to April 2022

Sydney Metro City & Southwest - Package 5 & 6

Appendix 9 – EDS-16589-HPS-18_0: Sydney Metro Package 5 and 6 – Hurlstone Park Station Monitoring of Garage Wall

Internal Use Only
© Downer 2020. All Rights Reserved

Page 45 Version: Rev A

Warning: Printed documents are UNCONTROLLED

Tuesday, 31 August 2021

Downer Group 39 Delhi Road North Ryde NSW 2113

ATTENTION: Robel Chowdhury

Robel.Chowdhury@Downergroup.com

EDS-16589-HPS-18_0: SYDNEY METRO PACKAGE 5 AND PACKAGE 6 – HURLSTONE PARK STATION MONTIORING OF GARAGE WALL

Project No. 00016589

Introduction

Lindsay Dynan Consulting Engineers have been requested to provide advice on the extent of survey and vibration monitoring recommended for proposed construction activities in the vicinity of the neighbouring garage and the collapsed boundary wall. We understand that proposed construction activities will include rock breakers that could cause ground vibrations.

Recommendation

GARAGE WALL - STABILITY AND CRACK MONITORING

Survey monitoring and crack gauge monitoring is recommended for the following:

- Crack width growth
- Wall out of plane displacement (tilts or leans)

Methodology:

- Visually monitor the condition of the garage wall during construction activities on a daily basis
- Inspect and record results of the survey and crack gauge position on a daily basis during rock breaking activities otherwise weekly
- Should any vertical or translation movement exceed 3mm refer to Lindsay Dynan for review
- Should any crack width increase by 1mm or greater refer to Lindsay Dynan for review (Note: 1mm limit is based on a Very Slight damage category in accordance with AS 2870. Refer appendix A for further details)

Denotes location and orientation for crack gauge (pack out and bond to blockwork) (3 locations)

Denotes location for survey point. Survey to record translational movements in each direction.

Figure 1: Survey Locations - Garage Wall

VIBRATION MONITORING

PPV or PVS is typically used to represent damage potential to buildings and structures and is subject to the type of construction, condition of the structure, ground conditions and distance from source. The garage building appears to in poor condition and includes unreinforced block construction. Damage associated with ground vibrations is also highly dependent on the fundamental frequency of the structure.

We recommend vibration monitoring be install at 2 locations along garage (say ¼ points). We further recommend that the following triggers be consider:

- Greater than or equal to 4mm/s (damage is possible)
 - Stop work and re-assess how to limit vibration
 - o Progress with full time visual monitor of the wall
- Greater than or equal to 8mm/s (damage becoming more likely)
 - o Stop work and refer to Lindsay Dynan

DILAPIDATION RECORD

We recommend that a photographic record of the existing garage is recorded prior to further works and include evidence of existing crack widths.

WALL TEMPORARY STABILTY

Lindsay Dynan inspected the garage wall on 26 August 2021 and observed that the wall is hollow unreinforced block. We also observed that the top of the wall is unrestrained at the roof level. On this basis we recommend that temporary propping is provided to the wall to provide lateral support and eliminate risk of collapse. Refer to separate correspondence on temporary propping.

LIMITATIONS

This assessment does not consider the following:

- Noise or vibration limits for compliance with EPA or other guidelines
- · Comfort limits for neighbours
- Stability of the already damaged and partly demolished boundary wall
- We have not considered monitoring requirements for excavations adjacent to the garage or boundary wall

Please note that this letter does not relieve any party of their responsibility to comply with relevant documentation such as drawings, specifications and standards. This certificate shall not be construed as relieving any other party of their responsibilities, liabilities or contractual obligations, and does not constitute an inspection certificate.

Should you require any further advice or clarification of any of the above, please do not hesitate to contact us.

Yours faithfully LINDSAY DYNAN CONSULTING ENGINEERS PTY LIMITED

Peter Forder

Principal Engineer BEng(Civil), CPEng, NER

Extract AS2870 - Residential Slabs and Footings

Classification of Damage due to Foundation Movement

TABLE C1
CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS

Description of typical damage and required repair	Approximate crack width limit (see Note 1)	Damage category
Hairline cracks	<0.1 mm	0 Negligible
Fine cracks that do not need repair	<1 mm	l Very slight
Cracks noticeable but easily filled. Doors and windows stick slightly	<5 mm	2 Slight
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weather tightness often impaired	5 mm to 15 mm (or a number of cracks 3 mm or more in one group)	3 Moderate
Extensive repair work involving breaking out and replacing sections of walls, especially over doors and windows. Window frames and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted	15 mm to 25 mm but also depends on number of cracks	4 Severe

MOTEO